Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Res Toxicol ; 36(3): 390-401, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36812109

RESUMEN

Drug-responsive T-cells are activated with the parent compound or metabolites, often via different pathways (pharmacological interaction and hapten). An obstacle to the investigation of drug hypersensitivity is the scarcity of reactive metabolites for functional studies and the absence of coculture systems to generate metabolites in situ. Thus, the aim of this study was to utilize dapsone metabolite-responsive T-cells from hypersensitive patients, alongside primary human hepatocytes to drive metabolite formation, and subsequent drug-specific T-cell responses. Nitroso dapsone-responsive T-cell clones were generated from hypersensitive patients and characterized in terms of cross-reactivity and pathways of T-cell activation. Primary human hepatocytes, antigen-presenting cells, and T-cell cocultures were established in various formats with the liver and immune cells separated to avoid cell contact. Cultures were exposed to dapsone, and metabolite formation and T-cell activation were measured by LC-MS and proliferation assessment, respectively. Nitroso dapsone-responsive CD4+ T-cell clones from hypersensitive patients were found to proliferate and secrete cytokines in a dose-dependent manner when exposed to the drug metabolite. Clones were activated with nitroso dapsone-pulsed antigen-presenting cells, while fixation of antigen-presenting cells or omission of antigen-presenting cells from the assay abrogated the nitroso dapsone-specific T-cell response. Importantly, clones displayed no cross-reactivity with the parent drug. Nitroso dapsone glutathione conjugates were detected in the supernatant of hepatocyte immune cell cocultures, indicating that hepatocyte-derived metabolites are formed and transferred to the immune cell compartment. Similarly, nitroso dapsone-responsive clones were stimulated to proliferate with dapsone, when hepatocytes were added to the coculture system. Collectively, our study demonstrates the use of hepatocyte immune cell coculture systems to detect in situ metabolite formation and metabolite-specific T-cell responses. Similar systems should be used in future diagnostic and predictive assays to detect metabolite-specific T-cell responses when synthetic metabolites are not available.


Asunto(s)
Hipersensibilidad a las Drogas , Humanos , Técnicas de Cocultivo , Dapsona/farmacología , Hígado , Hepatocitos , Activación de Linfocitos
2.
Hepatology ; 74(2): 973-986, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33872408

RESUMEN

BACKGROUND AND AIMS: The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates an array of cytoprotective genes, yet studies in transgenic mice have led to conflicting reports on its role in liver regeneration. We aimed to test the hypothesis that pharmacological activation of Nrf2 would enhance liver regeneration. APPROACH AND RESULTS: Wild-type and Nrf2 null mice were administered bardoxolone methyl (CDDO-Me), a potent activator of Nrf2 that has entered clinical development, and then subjected to two-thirds partial hepatectomy. Using translational noninvasive imaging techniques, CDDO-Me was shown to enhance the rate of restoration of liver volume (MRI) and improve liver function (multispectral optoacoustic imaging of indocyanine green clearance) in wild-type, but not Nrf2 null, mice following partial hepatectomy. Using immunofluorescence imaging and whole transcriptome analysis, these effects were found to be associated with an increase in hepatocyte hypertrophy and proliferation, the suppression of immune and inflammatory signals, and metabolic adaptation in the remnant liver tissue. Similar processes were modulated following exposure of primary human hepatocytes to CDDO-Me, highlighting the potential relevance of our findings to patients. CONCLUSIONS: Our results indicate that pharmacological activation of Nrf2 is a promising strategy for enhancing functional liver regeneration. Such an approach could therefore aid the recovery of patients undergoing liver surgery and support the treatment of acute and chronic liver disease.


Asunto(s)
Regeneración Hepática/efectos de los fármacos , Hígado/efectos de los fármacos , Factor 2 Relacionado con NF-E2/agonistas , Ácido Oleanólico/análogos & derivados , Adulto , Anciano de 80 o más Años , Animales , Células Cultivadas , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Hepatectomía , Hepatocitos , Humanos , Hígado/fisiología , Hígado/cirugía , Regeneración Hepática/genética , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Ácido Oleanólico/administración & dosificación , Cultivo Primario de Células
3.
Exp Dermatol ; 27(5): 473-475, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29227563

RESUMEN

CYP3A4 and CYP4A5 share specificity for a wide range of xenobiotics with the CYP3 subfamily collectively involved in the biotransformation of approximately 30% of all drugs. CYP3A4/5 mRNA transcripts have been reported in the skin, yet knowledge of their protein expression and function is lacking. In this study, we observed gene and protein expression of CYP3A4/5 in both human skin and tissue-engineered skin equivalents (TESEs), and enzyme activity was detected using the model substrate benzyl-O-methyl-cyanocoumarin. Mass spectrometric analysis of TESE lysates following testosterone application revealed a time-dependent increase in metabolite production, confirming the functional expression of these enzymes in skin.


Asunto(s)
Citocromo P-450 CYP3A/metabolismo , Modelos Biológicos , Piel/enzimología , Humanos , Hígado/enzimología , Ingeniería de Tejidos
4.
Mol Pharm ; 15(8): 3557-3572, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-29944835

RESUMEN

The weak base antipsychotic clozapine is the most effective medication for treating refractory schizophrenia. The brain-to-plasma concentration of unbound clozapine is greater than unity, indicating transporter-mediated uptake, which has been insufficiently studied. This is important, because it could have a significant impact on clozapine's efficacy, drug-drug interaction, and safety profile. A major limitation of clozapine's use is the risk of clozapine-induced agranulocytosis/granulocytopenia (CIAG), which is a rare but severe hematological adverse drug reaction. We first studied the uptake of clozapine into human brain endothelial cells (hCMEC/D3). Clozapine uptake into cells was consistent with a carrier-mediated process, which was time-dependent and saturable ( Vmax = 3299 pmol/million cells/min, Km = 35.9 µM). The chemical inhibitors lamotrigine, quetiapine, olanzapine, prazosin, verapamil, indatraline, and chlorpromazine reduced the uptake of clozapine by up to 95%. This could in part explain the in vivo interactions observed in rodents or humans for these compounds. An extensive set of studies utilizing transporter-overexpressing cell lines and siRNA-mediated transporter knockdown in hCMEC/D3 cells showed that clozapine was not a substrate of OCT1 (SLC22A1), OCT3 (SLC22A3), OCTN1 (SLC22A4), OCTN2 (SLC22A5), ENT1 (SLC29A1), ENT2 (SLC29A2), and ENT4/PMAT (SLC29A4). In a recent genome-wide analysis, the hepatic uptake transporters SLCO1B1 (OATP1B1) and SLCO1B3 (OATP1B3) were identified as additional candidate transporters. We therefore also investigated clozapine transport into OATP1B-transfected cells and found that clozapine was neither a substrate nor an inhibitor of OATP1B1 and OATP1B3. In summary, we have identified a carrier-mediated process for clozapine uptake into brain, which may be partly responsible for clozapine's high unbound accumulation in the brain and its drug-drug interaction profile. Cellular clozapine uptake is independent from currently known drug transporters, and thus, molecular identification of the clozapine transporter will help to understand clozapine's efficacy and safety profile.


Asunto(s)
Antipsicóticos/farmacología , Clozapina/farmacología , Esquizofrenia/tratamiento farmacológico , Proteínas Transportadoras de Solutos/metabolismo , Antipsicóticos/uso terapéutico , Encéfalo/citología , Encéfalo/metabolismo , Línea Celular Tumoral , Clozapina/uso terapéutico , Células Endoteliales/metabolismo , Células HEK293 , Hepatocitos/metabolismo , Humanos , Cultivo Primario de Células , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Transportadoras de Solutos/aislamiento & purificación
5.
Arch Toxicol ; 92(2): 557-569, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29362863

RESUMEN

The development of improved, innovative models for the detection of toxicity of drugs, chemicals, or chemicals in cosmetics is crucial to efficiently bring new products safely to market in a cost-effective and timely manner. In addition, improvement in models to detect toxicity may reduce the incidence of unexpected post-marketing toxicity and reduce or eliminate the need for animal testing. The safety of novel products of the pharmaceutical, chemical, or cosmetics industry must be assured; therefore, toxicological properties need to be assessed. Accepted methods for gathering the information required by law for approval of substances are often animal methods. To reduce, refine, and replace animal testing, innovative organotypic in vitro models have emerged. Such models appear at different levels of complexity ranging from simpler, self-organized three-dimensional (3D) cell cultures up to more advanced scaffold-based co-cultures consisting of multiple cell types. This review provides an overview of recent developments in the field of toxicity testing with in vitro models for three major organ types: heart, skin, and liver. This review also examines regulatory aspects of such models in Europe and the UK, and summarizes best practices to facilitate the acceptance and appropriate use of advanced in vitro models.


Asunto(s)
Técnicas de Cultivo de Célula , Corazón/efectos de los fármacos , Hígado/efectos de los fármacos , Piel/efectos de los fármacos , Pruebas de Toxicidad/métodos , Alternativas a las Pruebas en Animales/métodos , Animales , Seguridad de Productos para el Consumidor , Humanos
6.
Hepatology ; 64(5): 1743-1756, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27532775

RESUMEN

Hepatocytes are dynamic cells that, upon injury, can alternate between nondividing differentiated and dedifferentiated proliferating states in vivo. However, in two-dimensional cultures, primary human hepatocytes (PHHs) rapidly dedifferentiate, resulting in loss of hepatic functions that significantly limits their usefulness as an in vitro model of liver biology, liver diseases, as well as drug metabolism and toxicity. Thus, understanding the underlying mechanisms and stalling of the dedifferentiation process would be highly beneficial to establish more-accurate and relevant long-term in vitro hepatocyte models. Here, we present comprehensive analyses of whole proteome and transcriptome dynamics during the initiation of dedifferentiation during the first 24 hours of culture. We report that early major rearrangements of the noncoding transcriptome, hallmarked by increased expression of small nucleolar RNAs, long noncoding RNAs, microRNAs (miRNAs), and ribosomal genes, precede most changes in coding genes during dedifferentiation of PHHs, and we speculated that these modulations could drive the hepatic dedifferentiation process. To functionally test this hypothesis, we globally inhibited the miRNA machinery using two established chemically distinct compounds, acriflavine and poly-l-lysine. These inhibition experiments resulted in a significantly impaired miRNA response and, most important, in a pronounced reduction in the down-regulation of hepatic genes with importance for liver function. Thus, we provide strong evidence for the importance of noncoding RNAs, in particular, miRNAs, in hepatic dedifferentiation, which can aid the development of more-efficient differentiation protocols for stem-cell-derived hepatocytes and broaden our understanding of the dynamic properties of hepatocytes with respect to liver regeneration. CONCLUSION: miRNAs are important drivers of hepatic dedifferentiation, and our results provide valuable information regarding the mechanisms behind liver regeneration and possibilities to inhibit dedifferentiation in vitro. (Hepatology 2016;64:1743-1756).


Asunto(s)
Desdiferenciación Celular/genética , Hepatocitos/fisiología , MicroARNs/fisiología , Adulto , Anciano , Células Cultivadas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Transcriptoma
7.
Arch Toxicol ; 91(1): 439-452, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27039104

RESUMEN

The application of primary human hepatocytes following isolation from human tissue is well accepted to be compromised by the process of dedifferentiation. This phenomenon reduces many unique hepatocyte functions, limiting their use in drug disposition and toxicity assessment. The aetiology of dedifferentiation has not been well defined, and further understanding of the process would allow the development of novel strategies for sustaining the hepatocyte phenotype in culture or for improving protocols for maturation of hepatocytes generated from stem cells. We have therefore carried out the first proteomic comparison of primary human hepatocyte differentiation. Cells were cultured for 0, 24, 72 and 168 h as a monolayer in order to permit unrestricted hepatocyte dedifferentiation, so as to reveal the causative signalling pathways and factors in this process, by pathway analysis. A total of 3430 proteins were identified with a false detection rate of <1 %, of which 1117 were quantified at every time point. Increasing numbers of significantly differentially expressed proteins compared with the freshly isolated cells were observed at 24 h (40 proteins), 72 h (118 proteins) and 168 h (272 proteins) (p < 0.05). In particular, cytochromes P450 and mitochondrial proteins underwent major changes, confirmed by functional studies and investigated by pathway analysis. We report the key factors and pathways which underlie the loss of hepatic phenotype in vitro, particularly those driving the large-scale and selective remodelling of the mitochondrial and metabolic proteomes. In summary, these findings expand the current understanding of dedifferentiation should facilitate further development of simple and complex hepatic culture systems.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Hepatocitos/metabolismo , Farmacología/métodos , Proteoma/metabolismo , Toxicología/métodos , Desdiferenciación Celular/efectos de los fármacos , Células Cultivadas , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo I de Transporte de Electrón/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Humanos , Cinética , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/enzimología , Mitocondrias Hepáticas/metabolismo , Estabilidad Proteica/efectos de los fármacos , Proteoma/genética , Reproducibilidad de los Resultados , Rotenona/farmacología , Desacopladores/farmacología
8.
Arch Toxicol ; 91(3): 1385-1400, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27344343

RESUMEN

Assessing the potential of a new drug to cause drug-induced liver injury (DILI) is a challenge for the pharmaceutical industry. We therefore determined whether cell models currently used in safety assessment (HepG2, HepaRG, Upcyte and primary human hepatocytes in conjunction with basic but commonly used endpoints) are actually able to distinguish between novel chemical entities (NCEs) with respect to their potential to cause DILI. A panel of thirteen compounds (nine DILI implicated and four non-DILI implicated in man) were selected for our study, which was conducted, for the first time, across multiple laboratories. None of the cell models could distinguish faithfully between DILI and non-DILI compounds. Only when nominal in vitro concentrations were adjusted for in vivo exposure levels were primary human hepatocytes (PHH) found to be the most accurate cell model, closely followed by HepG2. From a practical perspective, this study revealed significant inter-laboratory variation in the response of PHH, HepG2 and Upcyte cells, but not HepaRG cells. This variation was also observed to be compound dependent. Interestingly, differences between donors (hepatocytes), clones (HepG2) and the effect of cryopreservation (HepaRG and hepatocytes) were less important than differences between the cell models per se. In summary, these results demonstrate that basic cell health endpoints will not predict hepatotoxic risk in simple hepatic cells in the absence of pharmacokinetic data and that a multicenter assessment of more sophisticated signals of molecular initiating events is required to determine whether these cells can be incorporated in early safety assessment.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Pruebas de Toxicidad Aguda/métodos , Células Cultivadas , Criopreservación , Células Hep G2/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Humanos , Reproducibilidad de los Resultados , Pruebas de Toxicidad Aguda/normas
9.
J Hepatol ; 62(3): 581-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25457200

RESUMEN

BACKGROUND & AIMS: Hepatocyte-like cells (HLCs), differentiated from pluripotent stem cells by the use of soluble factors, can model human liver function and toxicity. However, at present HLC maturity and whether any deficit represents a true fetal state or aberrant differentiation is unclear and compounded by comparison to potentially deteriorated adult hepatocytes. Therefore, we generated HLCs from multiple lineages, using two different protocols, for direct comparison with fresh fetal and adult hepatocytes. METHODS: Protocols were developed for robust differentiation. Multiple transcript, protein and functional analyses compared HLCs to fresh human fetal and adult hepatocytes. RESULTS: HLCs were comparable to those of other laboratories by multiple parameters. Transcriptional changes during differentiation mimicked human embryogenesis and showed more similarity to pericentral than periportal hepatocytes. Unbiased proteomics demonstrated greater proximity to liver than 30 other human organs or tissues. However, by comparison to fresh material, HLC maturity was proven by transcript, protein and function to be fetal-like and short of the adult phenotype. The expression of 81% phase 1 enzymes in HLCs was significantly upregulated and half were statistically not different from fetal hepatocytes. HLCs secreted albumin and metabolized testosterone (CYP3A) and dextrorphan (CYP2D6) like fetal hepatocytes. In seven bespoke tests, devised by principal components analysis to distinguish fetal from adult hepatocytes, HLCs from two different source laboratories consistently demonstrated fetal characteristics. CONCLUSIONS: HLCs from different sources are broadly comparable with unbiased proteomic evidence for faithful differentiation down the liver lineage. This current phenotype mimics human fetal rather than adult hepatocytes.


Asunto(s)
Células Madre Fetales/citología , Células Madre Fetales/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Adulto , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Diferenciación Celular , Línea Celular , Linaje de la Célula , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Metaboloma , Modelos Biológicos , Fenotipo , Proteoma/metabolismo
10.
Toxicol Appl Pharmacol ; 273(2): 229-41, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23732082

RESUMEN

Safety pharmacology (SP) is an essential part of the drug development process that aims to identify and predict adverse effects prior to clinical trials. SP studies are described in the International Conference on Harmonisation (ICH) S7A and S7B guidelines. The core battery and supplemental SP studies evaluate effects of a new chemical entity (NCE) at both anticipated therapeutic and supra-therapeutic exposures on major organ systems, including cardiovascular, central nervous, respiratory, renal and gastrointestinal. This review outlines the current practices and emerging concepts in SP studies including frontloading, parallel assessment of core battery studies, use of non-standard species, biomarkers, and combining toxicology and SP assessments. Integration of the newer approaches to routine SP studies may significantly enhance the scope of SP by refining and providing mechanistic insight to potential adverse effects associated with test compounds.


Asunto(s)
Descubrimiento de Drogas/normas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/metabolismo , Preparaciones Farmacéuticas/normas , Animales , Descubrimiento de Drogas/métodos , Descubrimiento de Drogas/tendencias , Evaluación Preclínica de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/normas , Evaluación Preclínica de Medicamentos/tendencias , Interacciones Farmacológicas/fisiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Humanos , Preparaciones Farmacéuticas/metabolismo
11.
Toxicol Sci ; 192(1): 106-116, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36782357

RESUMEN

Flucloxacillin is a ß-lactam antibiotic associated with a high incidence of drug-induced liver injury. Although expression of HLA-B*57:01 is associated with increased susceptibility, little is known of the pathological mechanisms involved in the induction of the clinical phenotype. Irreversible protein modification is suspected to drive the reaction through the provision of flucloxacillin-modified peptides that are presented to T-cells by the protein encoded by the risk allele. In this study, we have shown that flucloxacillin binds to multiple proteins within human primary hepatocytes, including major hepatocellular proteins (hemoglobin and albumin) and mitochondrial proteins. Inhibition of membrane transporters multidrug resistance-associated protein 2 (MRP2) and P-glycoprotein (P-gp) appeared to reduce the levels of covalent binding. A diverse range of proteins with different functions was found to be targeted by flucloxacillin, including adaptor proteins (14-3-3), proteins with catalytic activities (liver carboxylesterase 1, tRNA-splicing endonuclease subunit Sen2, All-trans-retinol dehydrogenase ADH1B, Glutamate dehydrogenase 1 mitochondrial, Carbamoyl-phosphate synthase [ammonia] mitochondrial), and transporters (hemoglobin, albumin, and UTP-glucose-1-phosphate uridylyltransferase). These flucloxacillin-modified intracellular proteins could provide a potential source of neoantigens for HLA-B*57:01 presentation by hepatocytes. More importantly, covalent binding to critical cellular proteins could be the molecular initiating events that lead to flucloxacillin-induced cholestasis Data are available via ProteomeXchange with identifier PXD038581.


Asunto(s)
Carcinoma Hepatocelular , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Neoplasias Hepáticas , Humanos , Floxacilina/toxicidad , Hígado/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Albúminas
12.
Toxicol Sci ; 196(1): 112-125, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37647630

RESUMEN

To minimize the occurrence of unexpected toxicities in early phase preclinical studies of new drugs, it is vital to understand fundamental similarities and differences between preclinical species and humans. Species differences in sensitivity to acetaminophen (APAP) liver injury have been related to differences in the fraction of the drug that is bioactivated to the reactive metabolite N-acetyl-p-benzoquinoneimine (NAPQI). We have used physiologically based pharmacokinetic modeling to identify oral doses of APAP (300 and 1000 mg/kg in mice and rats, respectively) yielding similar hepatic burdens of NAPQI to enable the comparison of temporal liver tissue responses under conditions of equivalent chemical insult. Despite pharmacokinetic and biochemical verification of the equivalent NAPQI insult, serum biomarker and tissue histopathology analyses revealed that mice still exhibited a greater degree of liver injury than rats. Transcriptomic and proteomic analyses highlighted the stronger activation of stress response pathways (including the Nrf2 oxidative stress response and autophagy) in the livers of rats, indicative of a more robust transcriptional adaptation to the equivalent insult. Components of these pathways were also found to be expressed at a higher basal level in the livers of rats compared with both mice and humans. Our findings exemplify a systems approach to understanding differential species sensitivity to hepatotoxicity. Multiomics analysis indicated that rats possess a greater basal and adaptive capacity for hepatic stress responses than mice and humans, with important implications for species selection and human translation in the safety testing of new drug candidates associated with reactive metabolite formation.


Asunto(s)
Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas , Ratas , Ratones , Humanos , Animales , Acetaminofén/toxicidad , Acetaminofén/metabolismo , Proteómica , Especificidad de la Especie , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Hígado/metabolismo , Estrés Oxidativo , Análisis de Sistemas
13.
Toxicol In Vitro ; 46: 29-38, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28919358

RESUMEN

Hepatotoxins cause liver damage via many mechanisms but the formation of reactive metabolites and/or damage to liver mitochondria are commonly implicated. We assess 3D human primary hepatocyte microtissues as a platform for hepatotoxicity studies with reactive metabolite-forming and mitochondria-perturbing compounds. We show that microtissues formed from cryopreserved human hepatocytes had bile canaliculi, transcribed mRNA from genes associated with xenobiotic metabolism and expressed functional cytochrome P450 enzymes. Hierarchical clustering was used to distinguish dose-dependent hepatotoxicity elicited by clozapine, fialuridine and acetaminophen (APAP) from control cultures and less liver-damaging compounds, olanzapine and entecavir. The regio-isomer of acetaminophen, N-acetyl-meta-aminophenol (AMAP) clustered with the hepatotoxic compounds. The principal metabolites of APAP were formed and dose-dependent changes in metabolite profile similar to those seen in patient overdose was observed. The toxicological profile of APAP was indistinguishable from that of AMAP, confirming AMAP as a human hepatotoxin. Tissue oxygen consumption rate was significantly decreased within 2h of exposure to APAP or AMAP, concomitant with glutathione depletion. These data highlight the potential utility of perfused metabolically functional human liver microtissues in drug development and mechanistic toxicology.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Sustancias Peligrosas/toxicidad , Hepatocitos/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Sistema Enzimático del Citocromo P-450 , Regulación hacia Abajo , Regulación de la Expresión Génica/efectos de los fármacos , Sustancias Peligrosas/administración & dosificación , Sustancias Peligrosas/metabolismo , Hepatocitos/metabolismo , Humanos , Dispositivos Laboratorio en un Chip , Consumo de Oxígeno , Regulación hacia Arriba
14.
NPJ Syst Biol Appl ; 4: 23, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29900006

RESUMEN

Drug-induced liver injury (DILI) has become a major problem for patients and for clinicians, academics and the pharmaceutical industry. To date, existing hepatotoxicity test systems are only poorly predictive and the underlying mechanisms are still unclear. One of the factors known to amplify hepatotoxicity is the tumor necrosis factor alpha (TNFα), especially due to its synergy with commonly used drugs such as diclofenac. However, the exact mechanism of how diclofenac in combination with TNFα induces liver injury remains elusive. Here, we combined time-resolved immunoblotting and live-cell imaging data of HepG2 cells and primary human hepatocytes (PHH) with dynamic pathway modeling using ordinary differential equations (ODEs) to describe the complex structure of TNFα-induced NFκB signal transduction and integrated the perturbations of the pathway caused by diclofenac. The resulting mathematical model was used to systematically identify parameters affected by diclofenac. These analyses showed that more than one regulatory module of TNFα-induced NFκB signal transduction is affected by diclofenac, suggesting that hepatotoxicity is the integrated consequence of multiple changes in hepatocytes and that multiple factors define toxicity thresholds. Applying our mathematical modeling approach to other DILI-causing compounds representing different putative DILI mechanism classes enabled us to quantify their impact on pathway activation, highlighting the potential of the dynamic pathway model as a quantitative tool for the analysis of DILI compounds.

15.
Toxicol Sci ; 162(2): 655-666, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29329425

RESUMEN

Primary human hepatocytes (PHHs) are commonly used for in vitro studies of drug-induced liver injury. However, when cultured as 2D monolayers, PHH lose crucial hepatic functions within hours. This dedifferentiation can be ameliorated when PHHs are cultured in sandwich configuration (2Dsw), particularly when cultures are regularly re-overlaid with extracellular matrix, or as 3D spheroids. In this study, the 6 participating laboratories evaluated the robustness of these 2 model systems made from cryopreserved PHH from the same donors considering both inter-donor and inter-laboratory variability and compared their suitability for use in repeated-dose toxicity studies using 5 different hepatotoxins with different toxicity mechanisms. We found that expression levels of proteins involved in drug absorption, distribution, metabolism, and excretion, as well as catalytic activities of 5 different CYPs, were significantly higher in 3D spheroid cultures, potentially affecting the exposure of the cells to drugs and their metabolites. Furthermore, global proteomic analyses revealed that PHH in 3D spheroid configuration were temporally stable whereas proteomes from the same donors in 2Dsw cultures showed substantial alterations in protein expression patterns over the 14 days in culture. Overall, spheroid cultures were more sensitive to the hepatotoxic compounds investigated, particularly upon long-term exposures, across testing sites with little inter-laboratory or inter-donor variability. The data presented here suggest that repeated-dosing regimens improve the predictivity of in vitro toxicity assays, and that PHH spheroids provide a sensitive and robust system for long-term mechanistic studies of drug-induced hepatotoxicity, whereas the 2Dsw system has a more dedifferentiated phenotype and lower sensitivity to detect hepatotoxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Hepatocitos/efectos de los fármacos , Preparaciones Farmacéuticas/administración & dosificación , Esferoides Celulares/efectos de los fármacos , Pruebas de Toxicidad/métodos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Criopreservación , Sistema Enzimático del Citocromo P-450/metabolismo , Relación Dosis-Respuesta a Droga , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Valor Predictivo de las Pruebas , Cultivo Primario de Células , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Factores de Tiempo , Pruebas de Toxicidad/normas
16.
Stem Cells Transl Med ; 6(5): 1321-1331, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28456008

RESUMEN

Drug-induced liver injury is the greatest cause of post-marketing drug withdrawal; therefore, substantial resources are directed toward triaging potentially dangerous new compounds at all stages of drug development. One of the major factors preventing effective screening of new compounds is the lack of a predictive in vitro model of hepatotoxicity. Primary human hepatocytes offer a metabolically relevant model for which the molecular initiating events of hepatotoxicity can be examined; however, these cells vary greatly between donors and dedifferentiate rapidly in culture. Induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (HLCs) offer a reproducible, physiologically relevant and genotypically normal model cell; however, current differentiation protocols produce HLCs with a relatively immature phenotype. During the reprogramming of somatic cells, the epigenome undergoes dramatic changes; however, this "resetting" is a gradual process, resulting in an altered differentiation propensity, skewed toward the lineage of origin, particularly in early passage cultures. We, therefore, performed a comparison of human hepatocyte- and dermal fibroblast-derived iPSCs, assessing the impact of epigenetic memory at all stages of HLC differentiation. These results provide the first isogenic assessment of the starting cell type in human iPSC-derived HLCs. Despite a trend toward improvement in hepatic phenotype in albumin secretion and gene expression, few significant differences in hepatic differentiation capacity were found between hepatocyte and fibroblast-derived iPSCs. We conclude that the donor and inter-clonal differences have a greater influence on the hepatocyte phenotypic maturity than the starting cell type. Therefore, it is not necessary to use human hepatocytes for generating iPSC-derived HLCs. Stem Cells Translational Medicine 2017;6:1321-1331.


Asunto(s)
Fibroblastos/citología , Fibroblastos/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Epigénesis Genética/genética , Humanos
17.
Toxicol Lett ; 258: 207-215, 2016 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-27363785

RESUMEN

Sixteen training compounds selected in the IMI MIP-DILI consortium, 12 drug-induced liver injury (DILI) positive compounds and 4 non-DILI compounds, were assessed in cryopreserved primary human hepatocytes. When a ten-fold safety margin threshold was applied, the non-DILI-compounds were correctly identified 2h following a single exposure to pooled human hepatocytes (n=13 donors) in suspension and 14-days following repeat dose exposure (3 treatments) to an established 3D-microtissue co-culture (3D-MT co-culture, n=1 donor) consisting of human hepatocytes co-cultured with non-parenchymal cells (NPC). In contrast, only 5/12 DILI-compounds were correctly identified 2h following a single exposure to pooled human hepatocytes in suspension. Exposure of the 2D-sandwich culture human hepatocyte monocultures (2D-sw) for 3days resulted in the correct identification of 11/12 DILI-positive compounds, whereas exposure of the human 3D-MT co-cultures for 14days resulted in identification of 9/12 DILI-compounds; in addition to ximelagatran (also not identified by 2D-sw monocultures, Sison-Young et al., 2016), the 3D-MT co-cultures failed to detect amiodarone and bosentan. The sensitivity of the 2D human hepatocytes co-cultured with NPC to ximelagatran was increased in the presence of lipopolysaccharide (LPS), but only at high concentrations, therefore preventing its classification as a DILI positive compound. In conclusion (1) despite suspension human hepatocytes having the greatest metabolic capacity in the short term, they are the least predictive of clinical DILI across the MIP-DILI test compounds, (2) longer exposure periods than 72h of human hepatocytes do not allow to increase DILI-prediction rate, (3) co-cultures of human hepatocytes with NPC, in the presence of LPS during the 72h exposure period allow the assessment of innate immune system involvement of a given drug.


Asunto(s)
Microambiente Celular/efectos de los fármacos , Criopreservación , Evaluación Preclínica de Medicamentos/métodos , Drogas en Investigación/efectos adversos , Hepatocitos/efectos de los fármacos , Células 3T3 , Animales , Técnicas de Cultivo Celular por Lotes , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Técnicas de Cocultivo , Drogas en Investigación/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Inmunidad Innata/efectos de los fármacos , Cinética , Macrófagos del Hígado/citología , Macrófagos del Hígado/efectos de los fármacos , Macrófagos del Hígado/inmunología , Lipopolisacáridos/agonistas , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/toxicidad , Ratones , Modelos Moleculares , Células del Estroma/citología , Células del Estroma/efectos de los fármacos , Células del Estroma/fisiología
18.
Sci Rep ; 6: 25187, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27143246

RESUMEN

Liver biology and function, drug-induced liver injury (DILI) and liver diseases are difficult to study using current in vitro models such as primary human hepatocyte (PHH) monolayer cultures, as their rapid de-differentiation restricts their usefulness substantially. Thus, we have developed and extensively characterized an easily scalable 3D PHH spheroid system in chemically-defined, serum-free conditions. Using whole proteome analyses, we found that PHH spheroids cultured this way were similar to the liver in vivo and even retained their inter-individual variability. Furthermore, PHH spheroids remained phenotypically stable and retained morphology, viability, and hepatocyte-specific functions for culture periods of at least 5 weeks. We show that under chronic exposure, the sensitivity of the hepatocytes drastically increased and toxicity of a set of hepatotoxins was detected at clinically relevant concentrations. An interesting example was the chronic toxicity of fialuridine for which hepatotoxicity was mimicked after repeated-dosing in the PHH spheroid model, not possible to detect using previous in vitro systems. Additionally, we provide proof-of-principle that PHH spheroids can reflect liver pathologies such as cholestasis, steatosis and viral hepatitis. Combined, our results demonstrate that the PHH spheroid system presented here constitutes a versatile and promising in vitro system to study liver function, liver diseases, drug targets and long-term DILI.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/fisiopatología , Hepatocitos/efectos de los fármacos , Hepatocitos/fisiología , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/fisiología , Arabinofuranosil Uracilo/análogos & derivados , Arabinofuranosil Uracilo/toxicidad , Células Cultivadas , Humanos , Modelos Biológicos , Prueba de Estudio Conceptual , Proteoma/análisis
19.
Toxicol Lett ; 237(1): 11-20, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26022718

RESUMEN

Glutathione (GSH) is the most prominent antioxidant in cells and the co-factor of an important set of enzymes involved in the skin metabolic clearance system, glutathione S-transferases (GST). Here, we describe an LC-MS (liquid chromatography-mass spectroscopy) method to measure GSH and its disulfide form (GSSG) in HaCaT cells and a 3D Reconstructed Human Epidermis (RHE) model. In our assay, the basal level of GSH in both systems was in the low nmol/mg soluble protein range, while the level of GSSG was systematically below our limit of quantification (0.1 µM). We found that 2,4-dinitrohalobenzenes deplete the GSH present in HaCaT cells within the first hour of exposure, in a dose dependent manner. The level of GSH in HaCaT cells treated with a single non-toxic dose of 10 µM of dinitrohalobenzene was also shown to increase after two hours. While cells treated with 1-chloro-2,4-dinitrobenzene (DNCB) and 1-fluoro-2,4-dinitrobenzene (DNFB) repleted GSH to levels similar to untreated control cells within 24h, 1-bromo-2,4-dinitrobenzene (DNBB) seemed to prevent such a repletion and appeared to be the most toxic compound in all assays. A mathematical modelling of experimental results was performed to further rationalise the differences observed between test chemicals. For this purpose the biological phenomena observed were simplified into two sequential events: the initial depletion of the GSH stock after chemical treatment followed by the repletion of the GSH once the chemical was cleared. Activation of the nuclear factor E2-related factor 2 (Nrf2) pathway was observed with all compounds within two hours, and at concentrations less than 10 µM. These data show that GSH depletion and repletion occur rapidly in skin cells and emphasize the importance of conducting kinetic studies when performing in vitro experiments exploring skin sensitization.


Asunto(s)
Dinitroclorobenceno/toxicidad , Dinitrofluorobenceno/toxicidad , Glutatión/metabolismo , Piel/efectos de los fármacos , Antioxidantes/metabolismo , Línea Celular , Cromatografía Liquida , Simulación por Computador , Dinitrobencenos/toxicidad , Relación Dosis-Respuesta a Droga , Glutatión Transferasa/metabolismo , Humanos , Espectrometría de Masas , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Piel/citología , Piel/metabolismo
20.
Toxicol Sci ; 147(2): 412-24, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26160117

RESUMEN

In vitro preclinical models for the assessment of drug-induced liver injury (DILI) are usually based on cryopreserved primary human hepatocytes (cPHH) or human hepatic tumor-derived cell lines; however, it is unclear how well such cell models reflect the normal function of liver cells. The physiological, pharmacological, and toxicological phenotyping of available cell-based systems is necessary in order to decide the testing purpose for which they are fit. We have therefore undertaken a global proteomic analysis of 3 human-derived hepatic cell lines (HepG2, Upcyte, and HepaRG) in comparison with cPHH with a focus on drug metabolizing enzymes and transport proteins (DMETs), as well as Nrf2-regulated proteins. In total, 4946 proteins were identified, of which 2722 proteins were common across all cell models, including 128 DMETs. Approximately 90% reduction in expression of cytochromes P450 was observed in HepG2 and Upcyte cells, and approximately 60% in HepaRG cells relative to cPHH. Drug transporter expression was also lower compared with cPHH with the exception of MRP3 and P-gp (MDR1) which appeared to be significantly expressed in HepaRG cells. In contrast, a high proportion of Nrf2-regulated proteins were more highly expressed in the cell lines compared with cPHH. The proteomic database derived here will provide a rational basis for the context-specific selection of the most appropriate 'hepatocyte-like' cell for the evaluation of particular cellular functions associated with DILI and, at the same time, assist in the construction of a testing paradigm which takes into account the in vivo disposition of a new drug.


Asunto(s)
Hepatocitos/citología , Hígado/efectos de los fármacos , Proteómica/métodos , Western Blotting , Células Cultivadas , Células Hep G2/citología , Células Hep G2/efectos de los fármacos , Células Hep G2/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA