Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 627(8004): 628-635, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383790

RESUMEN

Interleukin-10 (IL-10) is a key anti-inflammatory cytokine that can limit immune cell activation and cytokine production in innate immune cell types1. Loss of IL-10 signalling results in life-threatening inflammatory bowel disease in humans and mice-however, the exact mechanism by which IL-10 signalling subdues inflammation remains unclear2-5. Here we find that increased saturated very long chain (VLC) ceramides are critical for the heightened inflammatory gene expression that is a hallmark of IL-10 deficiency. Accordingly, genetic deletion of ceramide synthase 2 (encoded by Cers2), the enzyme responsible for VLC ceramide production, limited the exacerbated inflammatory gene expression programme associated with IL-10 deficiency both in vitro and in vivo. The accumulation of saturated VLC ceramides was regulated by a decrease in metabolic flux through the de novo mono-unsaturated fatty acid synthesis pathway. Restoring mono-unsaturated fatty acid availability to cells deficient in IL-10 signalling limited saturated VLC ceramide production and the associated inflammation. Mechanistically, we find that persistent inflammation mediated by VLC ceramides is largely dependent on sustained activity of REL, an immuno-modulatory transcription factor. Together, these data indicate that an IL-10-driven fatty acid desaturation programme rewires VLC ceramide accumulation and aberrant activation of REL. These studies support the idea that fatty acid homeostasis in innate immune cells serves as a key regulatory node to control pathologic inflammation and suggests that 'metabolic correction' of VLC homeostasis could be an important strategy to normalize dysregulated inflammation caused by the absence of IL-10.


Asunto(s)
Inflamación , Interleucina-10 , Esfingolípidos , Animales , Humanos , Ratones , Ceramidas/química , Ceramidas/metabolismo , Ácidos Grasos Insaturados/biosíntesis , Ácidos Grasos Insaturados/metabolismo , Homeostasis , Inmunidad Innata , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Interleucina-10/deficiencia , Interleucina-10/genética , Interleucina-10/metabolismo , Proteínas Proto-Oncogénicas c-rel , Esfingolípidos/metabolismo
2.
Nature ; 592(7852): 128-132, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33536623

RESUMEN

Tissue-resident innate lymphoid cells (ILCs) help sustain barrier function and respond to local signals. ILCs are traditionally classified as ILC1, ILC2 or ILC3 on the basis of their expression of specific transcription factors and cytokines1. In the skin, disease-specific production of ILC3-associated cytokines interleukin (IL)-17 and IL-22 in response to IL-23 signalling contributes to dermal inflammation in psoriasis. However, it is not known whether this response is initiated by pre-committed ILCs or by cell-state transitions. Here we show that the induction of psoriasis in mice by IL-23 or imiquimod reconfigures a spectrum of skin ILCs, which converge on a pathogenic ILC3-like state. Tissue-resident ILCs were necessary and sufficient, in the absence of circulatory ILCs, to drive pathology. Single-cell RNA-sequencing (scRNA-seq) profiles of skin ILCs along a time course of psoriatic inflammation formed a dense transcriptional continuum-even at steady state-reflecting fluid ILC states, including a naive or quiescent-like state and an ILC2 effector state. Upon disease induction, the continuum shifted rapidly to span a mixed, ILC3-like subset also expressing cytokines characteristic of ILC2s, which we inferred as arising through multiple trajectories. We confirmed the transition potential of quiescent-like and ILC2 states using in vitro experiments, single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) and in vivo fate mapping. Our results highlight the range and flexibility of skin ILC responses, suggesting that immune activities primed in healthy tissues dynamically adapt to provocations and, left unchecked, drive pathological remodelling.


Asunto(s)
Inmunidad Innata/inmunología , Linfocitos/inmunología , Linfocitos/patología , Psoriasis/inmunología , Psoriasis/patología , Piel/inmunología , Piel/patología , Animales , Diferenciación Celular , Linaje de la Célula , Cromatina/genética , Modelos Animales de Enfermedad , Femenino , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Interleucina-23/inmunología , Análisis de Clases Latentes , Linfocitos/clasificación , Masculino , Ratones , Psoriasis/genética , ARN Citoplasmático Pequeño/genética , Reproducibilidad de los Resultados , Factores de Tiempo
3.
Proc Natl Acad Sci U S A ; 119(33): e2203318119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939687

RESUMEN

γδ T cells are an abundant T cell population at the mucosa and are important in providing immune surveillance as well as maintaining tissue homeostasis. However, despite γδ T cells' origin in the thymus, detailed mechanisms regulating γδ T cell development remain poorly understood. N6-methyladenosine (m6A) represents one of the most common posttranscriptional modifications of messenger RNA (mRNA) in mammalian cells, but whether it plays a role in γδ T cell biology is still unclear. Here, we show that depletion of the m6A demethylase ALKBH5 in lymphocytes specifically induces an expansion of γδ T cells, which confers enhanced protection against gastrointestinal Salmonella typhimurium infection. Mechanistically, loss of ALKBH5 favors the development of γδ T cell precursors by increasing the abundance of m6A RNA modification in thymocytes, which further reduces the expression of several target genes including Notch signaling components Jagged1 and Notch2. As a result, impairment of Jagged1/Notch2 signaling contributes to enhanced proliferation and differentiation of γδ T cell precursors, leading to an expanded mature γδ T cell repertoire. Taken together, our results indicate a checkpoint role of ALKBH5 and m6A modification in the regulation of γδ T cell early development.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Linfocitos Intraepiteliales , ARN Mensajero , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Animales , Linfocitos Intraepiteliales/enzimología , Linfocitos Intraepiteliales/inmunología , Proteína Jagged-1/metabolismo , Ratones , Ratones Noqueados , ARN Mensajero/metabolismo , Receptor Notch2/metabolismo , Transducción de Señal/genética
4.
Nature ; 564(7736): 434-438, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30542152

RESUMEN

The annotation of the mammalian protein-coding genome is incomplete. Arbitrary size restriction of open reading frames (ORFs) and the absolute requirement for a methionine codon as the sole initiator of translation have constrained the identification of potentially important transcripts with non-canonical protein-coding potential1,2. Here, using unbiased transcriptomic approaches in macrophages that respond to bacterial infection, we show that ribosomes associate with a large number of RNAs that were previously annotated as 'non-protein coding'. Although the idea that such non-canonical ORFs can encode functional proteins is controversial3,4, we identify a range of short and non-ATG-initiated ORFs that can generate stable and spatially distinct proteins. Notably, we show that the translation of a new ORF 'hidden' within the long non-coding RNA Aw112010 is essential for the orchestration of mucosal immunity during both bacterial infection and colitis. This work expands our interpretation of the protein-coding genome and demonstrates that proteinaceous products generated from non-canonical ORFs are crucial for the immune response in vivo. We therefore propose that the misannotation of non-canonical ORF-containing genes as non-coding RNAs may obscure the essential role of a multitude of previously undiscovered protein-coding genes in immunity and disease.


Asunto(s)
Inmunidad Mucosa/genética , Sistemas de Lectura Abierta/genética , Biosíntesis de Proteínas , ARN Largo no Codificante/genética , Animales , Infecciones Bacterianas/genética , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/microbiología , Colitis/genética , Colitis/inmunología , Colitis/metabolismo , Inmunidad Mucosa/efectos de los fármacos , Interleucina-12/biosíntesis , Lipopolisacáridos/farmacología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/genética , ARN Largo no Codificante/metabolismo , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Salmonella typhimurium/inmunología , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
5.
J Immunol ; 203(2): 370-378, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31167776

RESUMEN

The transcription factor Helios is expressed in a large percentage of Foxp3+ regulatory T (Treg) cells and is required for the maintenance of their suppressive phenotype, as mice with a selective deficiency of Helios in Treg cells spontaneously develop autoimmunity. However, mice with a deficiency of Helios in all T cells do not exhibit autoimmunity, despite the defect in the suppressor function of their Treg cell population, suggesting that Helios also functions in non-Treg cells. Although Helios is expressed in a small subset of CD4+Foxp3- and CD8+ T cells and its expression is upregulated upon T cell activation, its function in non-Treg cells remains unknown. To examine the function of Helios in CD4+Foxp3- T cells, we transferred Helios-sufficient or -deficient naive CD4+Foxp3- TCR transgenic T cells to normal recipients and examined their capacity to respond to their cognate Ag. Surprisingly, Helios-deficient CD4+ T cells expanded and differentiated into Th1 or Th2 cytokine-producing effectors in a manner similar to wild-type TCR transgenic CD4+ T cells. However, the primed Helios-deficient cells failed to expand upon secondary challenge with Ag. The tolerant state of the Helios-deficient memory T cells was not cell-intrinsic but was due to a small population of Helios-deficient naive T cells that had differentiated into Ag-specific peripheral Treg cells that suppressed the recall response in an Ag-specific manner. These findings demonstrate that Helios plays a role in the determination of CD4+ T cell fate.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular/inmunología , Proteínas de Unión al ADN/deficiencia , Susceptibilidad a Enfermedades/inmunología , Factores de Transcripción Forkhead/inmunología , Linfocitos T Reguladores/inmunología , Factores de Transcripción/deficiencia , Animales , Autoinmunidad/inmunología , Linfocitos T CD8-positivos/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL
6.
bioRxiv ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38798553

RESUMEN

Lymphocyte activation involves a transition from quiescence and associated catabolic metabolism to a metabolic state with noted similarities to cancer cells such as heavy reliance on aerobic glycolysis for energy demands and increased nutrient requirements for biomass accumulation and cell division 1-3 . Following antigen receptor ligation, lymphocytes require spatiotemporally distinct "second signals". These include costimulatory receptor or cytokine signaling, which engage discrete programs that often involve remodeling of organelles and increased nutrient uptake or synthesis to meet changing biochemical demands 4-6 . One such signaling molecule, IL-4, is a highly pleiotropic cytokine that was first identified as a B cell co-mitogen over 30 years ago 7 . However, how IL-4 signaling mechanistically supports B cell proliferation is incompletely understood. Here, using single cell RNA sequencing we find that the cholesterol biosynthetic program is transcriptionally upregulated following IL-4 signaling during the early B cell response to influenza virus infection, and is required for B cell activation in vivo . By limiting lipid availability in vitro , we determine cholesterol to be essential for B cells to expand their endoplasmic reticulum, progress through cell cycle, and proliferate. In sum, we demonstrate that the well-known ability of IL-4 to act as a B cell growth factor is through a previously unknown rewiring of specific lipid anabolic programs, relieving sensitivity of cells to environmental nutrient availability.

7.
bioRxiv ; 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37214856

RESUMEN

Unchecked chronic inflammation is the underlying cause of many diseases, ranging from inflammatory bowel disease to obesity and neurodegeneration. Given the deleterious nature of unregulated inflammation, it is not surprising that cells have acquired a diverse arsenal of tactics to limit inflammation. IL-10 is a key anti-inflammatory cytokine that can limit immune cell activation and cytokine production in innate immune cell types; however, the exact mechanism by which IL-10 signaling subdues inflammation remains unclear. Here, we find that IL-10 signaling constrains sphingolipid metabolism. Specifically, we find increased saturated very long chain (VLC) ceramides are critical for the heightened inflammatory gene expression that is a hallmark of IL-10-deficient macrophages. Genetic deletion of CerS2, the enzyme responsible for VLC ceramide production, limited exacerbated inflammatory gene expression associated with IL-10 deficiency both in vitro and in vivo , indicating that "metabolic correction" is able to reduce inflammation in the absence of IL-10. Surprisingly, accumulation of saturated VLC ceramides was regulated by flux through the de novo mono-unsaturated fatty acid (MUFA) synthesis pathway, where addition of exogenous MUFAs could limit both saturated VLC ceramide production and inflammatory gene expression in the absence of IL-10 signaling. Together, these studies mechanistically define how IL-10 signaling manipulates fatty acid metabolism as part of its molecular anti-inflammatory strategy and could lead to novel and inexpensive approaches to regulate aberrant inflammation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA