RESUMEN
Transplanted neurons derived from stem cells have been proposed to improve function in animal models of human disease by various mechanisms such as neuronal replacement. However, whether the grafted neurons receive functional synaptic inputs from the recipient's brain and integrate into host neural circuitry is unknown. Here we studied the synaptic inputs from the host brain to grafted cortical neurons derived from human induced pluripotent stem cells after transplantation into stroke-injured rat cerebral cortex. Using the rabies virus-based trans-synaptic tracing method and immunoelectron microscopy, we demonstrate that the grafted neurons receive direct synaptic inputs from neurons in different host brain areas located in a pattern similar to that of neurons projecting to the corresponding endogenous cortical neurons in the intact brain. Electrophysiological in vivo recordings from the cortical implants show that physiological sensory stimuli, i.e. cutaneous stimulation of nose and paw, can activate or inhibit spontaneous activity in grafted neurons, indicating that at least some of the afferent inputs are functional. In agreement, we find using patch-clamp recordings that a portion of grafted neurons respond to photostimulation of virally transfected, channelrhodopsin-2-expressing thalamo-cortical axons in acute brain slices. The present study demonstrates, for the first time, that the host brain regulates the activity of grafted neurons, providing strong evidence that transplanted human induced pluripotent stem cell-derived cortical neurons can become incorporated into injured cortical circuitry. Our findings support the idea that these neurons could contribute to functional recovery in stroke and other conditions causing neuronal loss in cerebral cortex.
Asunto(s)
Lesiones Encefálicas/cirugía , Potenciales Evocados Somatosensoriales/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Células Madre Pluripotentes Inducidas/trasplante , Sinapsis/fisiología , Potenciales de Acción , Vías Aferentes/fisiología , Animales , Encéfalo/citología , Encéfalo/ultraestructura , Lesiones Encefálicas/etiología , Línea Celular Transformada , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Corteza Cerebral/ultraestructura , Modelos Animales de Enfermedad , Humanos , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Neuronas/fisiología , Neuronas/ultraestructura , Fosfopiruvato Hidratasa/metabolismo , Ratas , Ratas Desnudas , Ratas Sprague-Dawley , Accidente Cerebrovascular/complicaciones , Sinapsis/ultraestructura , Núcleos Talámicos Ventrales/citologíaRESUMEN
The adult CNS has a very limited capacity to regenerate neurons after insult. To overcome this limitation, the transplantation of neural progenitor cells (NPCs) has developed into a key strategy for neuronal replacement. This study assesses the long-term survival, migration, differentiation, and functional outcome of NPCs transplanted into the ischemic murine brain. Hippocampal neural progenitors were isolated from FVB-Cg-Tg(GFPU)5Nagy/J transgenic mice expressing green fluorescent protein (GFP). Syngeneic GFP-positive NPCs were stereotactically transplanted into the hippocampus of FVB mice following a transient global cerebral ischemia model. Behavioral tests revealed that ischemia/reperfusion induced spatial learning disturbances in the experimental animals. The NPC transplantation promoted cognitive function recovery after ischemic injury. To study the long-term fate of grafted GFP-positive NPCs in a host brain, immunohistochemical approaches were applied. Confocal microscopy revealed that grafted cells survived in the recipient tissue for 90 days following transplantation and differentiated into mature neurons with extensive dendritic trees and apparent spines. Immunoelectron microscopy confirmed the formation of synapses between the transplanted GFP-positive cells and host neurons that may be one of the factors underlying cognitive function recovery. Repair and functional recovery following brain damage represent a major challenge for current clinical and basic research. Our results provide insight into the therapeutic potential of transplanted hippocampal progenitor cells following ischemic brain injury.
Asunto(s)
Isquemia Encefálica/terapia , Hipocampo/patología , Degeneración Nerviosa/patología , Células-Madre Neurales/trasplante , Animales , Isquemia Encefálica/patología , Isquemia Encefálica/fisiopatología , Hipocampo/fisiopatología , Aprendizaje por Laberinto/fisiología , Ratones , Degeneración Nerviosa/fisiopatología , Células-Madre Neurales/patología , Trasplante de Células Madre , Sinapsis/patologíaRESUMEN
Polysialic acids are widely distributed in neuronal tissue. Due to their position on glycoproteins and gangliosides on the outer cell membranes and anionic nature, polysialic acids are involved in multiple cell signaling events. The level of sialylation of the cellular surface is regulated by endogenous neuraminidase (NEU), which catalyses the hydrolysis of terminal sialic acid residues. Using the specific blocker of endogenous NEU, N-acetyl-2,3-dehydro-2-deoxyneuraminic acid (NADNA), we show that downregulation of the endogenous NEU activity causes a significant increase in the level of hippocampal tissue sialylation. Acute application of NADNA increased the firing frequency and amplitude of spontaneous synchronous oscillations, and frequency of multiple unit activity in cultured hippocampal slices. The tonic phase of seizure-like activity in the low-magnesium model of ictogenesis was significantly increased in slices pretreated with NADNA. These data indicate that the degree of synchronization is influenced by the amount of active NEU in cultured hippocampal slices. Pretreatment with NADNA led to an increase of the density of simple and perforated synapses in the hippocampal CA1 stratum radiatum region. Co-incubation of slices with NADNA and high concentrations of calcium eliminated the effect of the NEU blocker on synaptic density, suggesting that synaptogenesis observed following downregulation of the endogenous NEU activity is an activity-dependent process.
Asunto(s)
Hipocampo/citología , Hipocampo/fisiología , Ácidos Neuramínicos/metabolismo , Neuraminidasa/antagonistas & inhibidores , Neuronas/enzimología , Neuronas/fisiología , Sinapsis/fisiología , Animales , Calcio/metabolismo , Electrofisiología , Ácido N-Acetilneuramínico/análogos & derivados , Ácido N-Acetilneuramínico/metabolismo , Ácidos Neuramínicos/química , Neuraminidasa/metabolismo , Neuronas/citología , Ratas , Ratas Wistar , Técnicas de Cultivo de TejidosRESUMEN
Stem/progenitor cell-based therapies hold promises for repairing the damaged nervous system. However, the efficiency of these approaches for neuronal replacement remains very limited. A major challenge is to develop pretransplant cell manipulations that may promote the survival, engraftment, and differentiation of transplanted cells. Here, we investigated whether overexpression of fibroblast growth factor-2 (FGF-2) in grafted neural progenitors could improve their integration in the host tissue. We show that FGF-2-transduced progenitors grafted in the early postnatal rat cortex have the distinct tendency to associate with the vasculature and establish multiple proliferative clusters in the perivascular environment. The contact with vessels appears to be critical for maintaining progenitor cells in an undifferentiated and proliferative phenotype in the intact cortex. Strikingly, perivascular clusters of FGF-2 expressing cells seem to supply immature neurons in an ischemic environment. Our data provide evidence that engineering neural progenitors to overexpress FGF-2 may be a suitable strategy to improve the integration of grafted neural progenitor cells with the host vasculature thereby generating neurovascular clusters with a neurogenic potential for brain repair.
Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/biosíntesis , Hipoxia-Isquemia Encefálica/cirugía , Neuronas/metabolismo , Trasplante de Células Madre/métodos , Células Madre/metabolismo , Animales , Vasos Sanguíneos , Diferenciación Celular/fisiología , Factor 2 de Crecimiento de Fibroblastos/genética , Inmunohistoquímica , Neuronas/citología , Ratas , Ratas Wistar , Células Madre/citologíaRESUMEN
Patterns of activity that induce synaptic plasticity at excitatory synapses, such as long-term potentiation, result in structural remodeling of the postsynaptic spine, comprising an enlargement of the spine head and reorganization of the postsynaptic density (PSD). Furthermore, spine synapses represent complex functional units in which interaction between the presynaptic varicosity and the postsynaptic spine is also modulated by surrounding astroglial processes. To investigate how activity patterns could affect the morphological interplay between these three partners, we used an electron microscopic (EM) approach and 3D reconstructions of excitatory synapses to study the activity-related morphological changes underlying induction of synaptic potentiation by theta burst stimulation or brief oxygen/glucose deprivation episodes in hippocampal organotypic slice cultures. EM analyses demonstrated that the typical glia-synapse organization described in in vivo rat hippocampus is perfectly preserved and comparable in organotypic slice cultures. Three-dimensional reconstructions of synapses, classified as simple or complex depending upon PSD organization, showed significant changes following induction of synaptic potentiation using both protocols. The spine head volume and the area of the PSD significantly enlarged 30 min and 1 h after stimulation, particularly in large synapses with complex PSD, an effect that was associated with a concomitant enlargement of presynaptic terminals. Furthermore, synaptic activity induced a pronounced increase of the glial coverage of both pre- and postsynaptic structures, these changes being prevented by application of the NMDA receptor antagonist D-2-amino-5-phosphonopentanoic acid. These data reveal dynamic, activity-dependent interactions between glial processes and pre- and postsynaptic partners and suggest that glia can participate in activity-induced structural synapse remodeling.
Asunto(s)
Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Neuroglía/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , 2-Amino-5-fosfonovalerato/farmacología , Animales , Hipoxia de la Célula/fisiología , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/fisiología , Espinas Dendríticas/ultraestructura , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Glucosa/deficiencia , Hipocampo/efectos de los fármacos , Hipocampo/ultraestructura , Imagenología Tridimensional , Técnicas In Vitro , Modelos Lineales , Microelectrodos , Microscopía Electrónica de Transmisión , Neuroglía/efectos de los fármacos , Neuroglía/ultraestructura , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/fisiología , Terminales Presinápticos/ultraestructura , Ratas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Sinapsis/efectos de los fármacos , Sinapsis/ultraestructuraRESUMEN
Ca(2+) signaling is the astrocyte form of excitability and the endoplasmic reticulum (ER) plays an important role as an intracellular Ca(2+) store. Since the subcellular distribution of the ER influences Ca(2+) signaling, we compared the arrangement of ER in astrocytes of hippocampus tissue and astrocytes in cell culture by electron microscopy. While the ER was usually located in close apposition to the plasma membrane in astrocytes in situ, the ER in cultured astrocytes was close to the nuclear membrane. Activation of metabotropic receptors linked to release of Ca(2+) from ER stores triggered distinct responses in cultured and in situ astrocytes. In culture, Ca(2+) signals were commonly first recorded close to the nucleus and with a delay at peripheral regions of the cells. Store-operated Ca(2+) entry (SOC) as a route to refill the Ca(2+) stores could be easily identified in cultured astrocytes as the Zn(2+)-sensitive component of the Ca(2+) signal. In contrast, such a Zn(2+)-sensitive component was not recorded in astrocytes from hippocampal slices despite of evidence for SOC. Our data indicate that both, astrocytes in situ and in vitro express SOC necessary to refill stores, but that a SOC-related signal is not recorded in the cytoplasm of astrocytes in situ since the stores are close to the plasma membrane and the refill does not affect cytoplasmic Ca(2+) levels.
Asunto(s)
Astrocitos/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Compuestos de Anilina , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Astrocitos/ultraestructura , Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/ultraestructura , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Citoplasma/ultraestructura , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/ultraestructura , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes , Hipocampo/metabolismo , Hipocampo/ultraestructura , Inmunohistoquímica , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Membrana Nuclear/efectos de los fármacos , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestructura , Técnicas de Cultivo de Órganos , Coloración y Etiquetado , Xantenos , Zinc/metabolismo , Zinc/farmacologíaRESUMEN
Diabetic patients show impaired brain functions, although underlying mechanisms remain unclear. Little is known as well about early diabetes-related changes in a brain tissue. To investigate them we analyzed the reaction of astroglial cells in the hippocampus of rats rendered diabetic by a single injection of streptozotocin (STZ). Astrocyte count, size and shape as well as levels of glial fibrillary acidic protein (GFAP) and S100b protein were assessed 3, 7 and 14 days after the STZ injection using immunohistochemistry, immuno-enzyme assay and computer-assisted image analysis. The reduced GFAP-positive cell count was found on day 3 when these cells were significantly smaller and less arborized with respect to the control. This tendency reversed on day 7 when more numerous GFAP-positive cells grew in size and became more ramified. S100b-positive cell count changes followed a contrasting pattern, elevating on days 3 and 7 and dropping on day 14. The level of cytoskeletal GFAP changed in parallel with GFAP expression revealed by immunocytochemistry, while cytosolic GFAP level started to increase only 7 days after the STZ injection. At the same time S100b level experienced an elevation on day 3 reaching the peak on day 7 and decreasing afterwards. These results suggest that the reaction of astroglial cells may be the earliest response of the brain tissue to an altered glucose metabolism playing presumably the critical role in the mechanisms underlying diabetes-related impairments of brain functions.
Asunto(s)
Astrocitos/patología , Diabetes Mellitus Experimental/patología , Hipocampo/patología , Animales , Astrocitos/metabolismo , Recuento de Células , Forma de la Célula , Tamaño de la Célula , Diabetes Mellitus Experimental/inducido químicamente , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunoensayo , Inmunohistoquímica , Masculino , Factores de Crecimiento Nervioso/metabolismo , Ratas , Ratas Wistar , Subunidad beta de la Proteína de Unión al Calcio S100 , Proteínas S100/metabolismo , EstreptozocinaRESUMEN
Stimulation of endogenous neurogenesis and recruitment of neural progenitors from the subventricular zone (SVZ) neurogenic site may represent a useful strategy to improve regeneration in the ischemic cortex. Here, we tested whether transgenic overexpression of extracellular matrix metalloproteinase inducer (EMMPRIN), the regulator of matrix metalloproteinases (MMPs) expression, in endogenous neural progenitor cells (NPCs) in the subventricular zone (SVZ) could increase migration towards ischemic injury. For this purpose, we applied a lentivector-mediated gene transfer system. We found that EMMPRIN-transduced progenitors exhibited enhanced MMP-2 activity in vitro and showed improved motility in 3D collagen gel as well as in cortical slices. Using a rat model of neonatal ischemia, we showed that EMMPRIN overexpressing SVZ cells invade the injured cortical tissue more efficiently than controls. Our results suggest that EMMPRIN overexpression could be suitable approach to improve capacities of endogenous or transplanted progenitors to invade the injured cortex.
Asunto(s)
Basigina/biosíntesis , Isquemia Encefálica/metabolismo , Movimiento Celular/fisiología , Corteza Cerebral/metabolismo , Ventrículos Laterales/metabolismo , Células-Madre Neurales/metabolismo , Animales , Animales Recién Nacidos , Basigina/genética , Isquemia Encefálica/patología , Corteza Cerebral/patología , Expresión Génica , Ventrículos Laterales/patología , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Ratas WistarRESUMEN
BACKGROUND: Alzheimer's disease (AD)-linked protein, presenilin 1 (PS1), is present at the synapse, and the knock-out of presenilin in mice leads to synaptic dysfunction. On the other hand, synaptic activity was shown to influence PS1-dependent generation of distinct amyloid ß (Aß) species. However, the precise nature of these regulations remains unclear. The current study reveals novel role of PS1 at the synapse, and deciphers how PS1 and synaptic vesicle-associated protein, synaptotagmin 1 (Syt1) modulate each other functions in neurons via direct activity-triggered interaction. Additionally, the therapeutic potential of fostering PS1-Syt1 binding is investigated as a synapse-specific strategy for AD prevention. METHODS: PS1-based cell-permeable peptide targeting PS1-Syt1 binding site was designed to inhibit PS1-Syt1 interaction in neurons. PS1 conformation, synaptic vesicle exocytosis and trafficking were assayed by fluorescence lifetime imaging microscopy (FLIM), glutamate release/synaptopHluorin assay, and fluorescence recovery after photobleaching, respectively. Syt1 level and interaction with PS1 in control and sporadic AD brains were determined by immunohistochemistry and FLIM. AAV-mediated delivery of Syt1 into mouse hippocampi was used to investigate the therapeutic potential of strengthening PS1-Syt1 binding in vivo. Statistical significance was determined using two-tailed unpaired Student's t-test, Mann-Whitney's U-test or two-way ANOVA followed by a Bonferroni's post-test. RESULTS: We demonstrate that targeted inhibition of the PS1-Syt1 binding in neurons, without changing the proteins' expression level, triggers "pathogenic" conformational shift of PS1, and consequent increase in the Aß42/40 ratio. Moreover, our data indicate that PS1, by binding directly to Syt1, regulates synaptic vesicle trafficking and facilitates exocytosis and neurotransmitter release. Analysis of human brain tissue revealed that not only Syt1 levels but also interactions between remaining Syt1 and PS1 are diminished in sporadic AD. On the other hand, overexpression of Syt1 in mouse hippocampi was found to potentiate PS1-Syt1 binding and promote "protective" PS1 conformation. CONCLUSIONS: The study reports novel functions of PS1 and Syt1 at the synapse, and demonstrates the importance of PS1-Syt1 binding for exocytosis and safeguarding PS1 conformation. It suggests that reduction in the Syt1 level and PS1-Syt1 interactions in AD brain may present molecular underpinning of the pathogenic PS1 conformation, increased Aß42/40 ratio, and impaired exocytosis.
Asunto(s)
Péptidos beta-Amiloides/metabolismo , Exocitosis/fisiología , Presenilina-1/metabolismo , Sinaptotagmina I/metabolismo , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Células Cultivadas , Humanos , Inmunohistoquímica/métodos , Ratones Endogámicos C57BL , Neuronas/metabolismo , Sinapsis/metabolismoRESUMEN
Pyramidal neurons of the hippocampus possess differential susceptibility to the ischemia-induced damage with the highest vulnerability of CA1 and the lower sensitivity of CA3 neurons. This damage is triggered by Ca(2+)-dependent excitotoxicity and can result in a delayed cell death that might be potentially suspended through activation of endogenous neuroprotection with the hypoxia-inducible transcription factors (HIF). However, the molecular mechanisms of this neuroprotection remain poorly understood. Here we show that prolonged (30min) oxygen and glucose deprivation (OGD) in situ impairs intracellular Ca(2+) regulation in CA1 rather than in CA3 neurons with the differently altered expression of genes coding Ca(2+)-ATPases: the mRNA level of plasmalemmal Ca(2+)-ATPases (PMCA1 and PMCA2 subtypes) was downregulated in CA1 neurons, whereas the mRNA level of the endoplasmic reticulum Ca(2+)-ATPases (SERCA2b subtype) was increased in CA3 neurons at 4h of re-oxygenation after prolonged OGD. These demonstrate distinct susceptibility of CA1 and CA3 neurons to the ischemic impairments in intracellular Ca(2+) regulation and Ca(2+)-ATPase expression. Stabilization of HIF-1α by inhibiting HIF-1α hydroxylation prevented the ischemic decrease in both PMCA1 and PMCA2 mRNAs in CA1 neurons, upregulated the SERCA2b mRNA level and eliminated the OGD-induced Ca(2+) store dysfunction in these neurons. Cumulatively, these findings reveal the previously unknown HIF-1α-driven upregulation of Ca(2+)-ATPases as a mechanism opposing the ischemic impairments in intracellular Ca(2+) regulation in hippocampal neurons. The ability of HIF-1α to modulate expression of genes coding Ca(2+)-ATPases suggests SERCA2b as a novel target for HIF-1 and may provide potential implications for HIF-1α-stabilizing strategy in activating endogenous neuroprotection.
Asunto(s)
Calcio/metabolismo , Hipocampo/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neuronas/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Citoplasma/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Isquemia/metabolismo , Fármacos Neuroprotectores/farmacología , Ratas Wistar , Activación Transcripcional/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacosRESUMEN
Neural progenitor cells (NPCs) overexpressing fibroblast growth factor 2 (FGF-2) have the distinct tendency to associate with the vasculature and establish multiple proliferative clusters in the perivascular environment after transplantation into the cerebral cortex. Strikingly, the vascular clusters of progenitor cells give rise to immature neurons after ischemic injury, raising prospects for the formation of ectopic neurogenic niches for repair. We investigated the spatial relationship of perivascular clusters with the host vascular structures. FGF-2-GFP-transduced NPCs were transplanted into the intact somatosensory rat cortex. Confocal microscopic analysis revealed that grafted cells preferentially contacted venules at sites with aquaporin-4-positive astrocytic endfeet and avoided contacts with desmin-positive pericytes. Electron microscopic analysis confirmed that grafted cells preferentially made contact with astroglial endfeet, and only a minority of them reached the endothelial basal lamina. These results provide new insights into the fine structural and anatomical relationship between grafted FGF-2-transduced NPCs and the host vasculature.
Asunto(s)
Corteza Cerebral/irrigación sanguínea , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/trasplante , Animales , Animales Recién Nacidos , Astrocitos/citología , Vasos Sanguíneos/citología , Vasos Sanguíneos/ultraestructura , Agregación Celular , Células Cultivadas , Corteza Cerebral/citología , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Pericitos/citología , Ratas Sprague-Dawley , Corteza Somatosensorial/citologíaRESUMEN
We investigated the ultrastructural characteristics of mouse adipose-derived stem/stromal cells (ASCs) induced towards osteogenic lineage. ASCs were isolated from adipose tissue of FVB-Cg-Tg(GFPU)5Nagy/J mice and expanded in monolayer culture. Flow cytometry, histochemical staining, and electron microscopy techniques were used to characterize the ASCs with respect to their ability for osteogenic differentiation capacity. Immunophenotypically, ASCs were characterized by high expression of the CD44 and CD90 markers, while the relative content of cells expressing CD45, CD34 and CD117 markers was <2%. In assays of differentiation, the positive response to osteogenic differentiation factors was observed and characterized by deposition of calcium in the extracellular matrix and alkaline phosphatase production. Electron microscopy analysis revealed that undifferentiated ASCs had a rough endoplasmic reticulum with dilated cisterns and elongated mitochondria. At the end of the osteogenic differentiation, the ASCs transformed from their original fibroblast-like appearance to having a polygonal osteoblast-like morphology. Ultrastructurally, these cells were characterized by large euchromatic nucleus and numerous cytoplasm containing elongated mitochondria, a very prominent rough endoplasmic reticulum, Golgi apparatus and intermediate filament bundles. Extracellular matrix vesicles of variable size similar to the calcification nodules were observed among collagen fibrils. Our data provide the ultrastructural basis for further studies on the cellular mechanisms involved in osteogenic differentiation of mouse adipose-derived stem/stromal cells. Microsc. Res. Tech. 79:557-564, 2016. © 2016 Wiley Periodicals, Inc.
Asunto(s)
Tejido Adiposo/citología , Diferenciación Celular/fisiología , Osteogénesis/fisiología , Células del Estroma/ultraestructura , Animales , Antígenos CD , Células Cultivadas , Citometría de Flujo , Inmunofenotipificación , Ratones , Microscopía Electrónica de Transmisión , Células del Estroma/química , Células del Estroma/citologíaRESUMEN
The neural cell adhesion molecule (NCAM) plays a critical role in development and plasticity of the nervous system and is involved in the mechanisms of learning and memory. Here, we show that intracerebroventricular administration of the FG loop (FGL), a synthetic 15 amino acid peptide corresponding to the binding site of NCAM for the fibroblast growth factor receptor 1 (FGFR1), immediately after training rats in fear conditioning or water maze learning, induced a long-lasting improvement of memory. In primary cultures of hippocampal neurons, FGL enhanced the presynaptic function through activation of FGFR1 and promoted synapse formation. These results provide the first evidence for a memory-facilitating effect resulting from a treatment that mimics NCAM function. They suggest that increased efficacy of synaptic transmission and formation of new synapses probably mediate the cognition-enhancing properties displayed by the peptide.
Asunto(s)
Memoria/efectos de los fármacos , Imitación Molecular/fisiología , Moléculas de Adhesión de Célula Nerviosa/agonistas , Moléculas de Adhesión de Célula Nerviosa/farmacología , Péptidos/farmacología , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Células Cultivadas , Condicionamiento Clásico/efectos de los fármacos , Emociones/efectos de los fármacos , Inyecciones Intraventriculares , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/fisiología , Datos de Secuencia Molecular , Actividad Motora/efectos de los fármacos , Moléculas de Adhesión de Célula Nerviosa/química , Neuronas/efectos de los fármacos , Neuronas/fisiología , Péptidos/química , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/fisiología , Pirroles/farmacología , Ratas , Ratas Wistar , Receptores de Factores de Crecimiento de Fibroblastos/efectos de los fármacos , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Sinapsis/fisiología , Transmisión Sináptica/fisiologíaRESUMEN
Accumulating evidence suggests that extracellular matrix (ECM) molecules play important roles in formation of synapses. Our previous electrophysiologic study of mice deficient in the extracellular matrix glycoprotein tenascin-R (TN-R) showed an impaired gamma-aminobutyric acid release at perisomatic inhibitory synapses in the CA1 pyramidal cell layer of the hippocampus. The present study investigated possible ultrastructural correlates of abnormal perisomatic inhibition. Topographic, morphometric, and stereologic methods were applied at the light and electron microscopic levels to quantify the density and spatial arrangement of cell bodies of CA1 pyramidal neurons and density and architecture of symmetric synapses formed on them in TN-R(-/-) and wild-type mice of different ages. The spatial arrangement of neuronal cell bodies in the CA1 pyramidal cell layer was found more diffuse and disordered in TN-R(-/-) mice than in wild-type animals. The coverage of the plasma membrane of pyramidal cell bodies by active zones of symmetric synapses was reduced by at least 40% in TN-R(-/-) animals compared with control animals. Further, the length of active zone profiles of perisomatic inhibitory synapses in the CA1 pyramidal cell layer was 8-14% smaller, whereas the number of active zones calculated per length unit of cell body profile was 30-40% smaller in TN-R mutants than in wild-type animals. The density and spatial arrangement of synaptic vesicles in the synaptic terminals provided ultrastructural evidence for reduced synaptic activity in TN-R mutants. Thus, TN-R appears to play an important role in the regulation of the number and architecture of perisomatic inhibitory synapses, which play crucial roles in the synchronization of neuronal activity and modulation of synaptic plasticity in the hippocampus.
Asunto(s)
Hipocampo/patología , Células Piramidales/ultraestructura , Sinapsis/patología , Tenascina/deficiencia , Animales , Masculino , Ratones , Ratones Mutantes , Microscopía Electrónica , Inhibición Neural , Plasticidad Neuronal , Sinapsis/ultraestructuraRESUMEN
The studies of neuronal cell-glycosaminoglycan interactions indicate an increasing interest in the question of how heparin can mediate adhesion properties of the cell. We have found that high levels of both N-CAM concentration and heparin-binding activity were noticed in the early stages of brain formation. According to electron microscopy data, an elevation of free heparin in the substratum leads to a decrease of the N-CAM content and changing of its distribution on the membrane of cultured hippocampal neurons. Spatial arrangement of immunogold labelled N-CAM molecules in plasma membrane profiles of cultured neurones was quantified with image analysis software using an interlabel distance estimate. To convert these estimates into two dimensional (2D) quantities, namely the 2D pattern and density of labelling, a computer simulation technique was used. Heparin added to the substratum in a concentration of 40 microg/ml decreased the 2D N-CAM labelling density by 50% - 39.8 labels/microm(2) compared with the control values of 88.9 labels/microm(2).
Asunto(s)
Envejecimiento/fisiología , Animales Recién Nacidos/fisiología , Encéfalo/fisiología , Matriz Extracelular/metabolismo , Heparina/fisiología , Animales , Animales Recién Nacidos/crecimiento & desarrollo , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Adhesión Celular/fisiología , Moléculas de Adhesión Celular Neuronal/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Simulación por Computador , Hipocampo/citología , Hipocampo/metabolismo , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Neuronas/metabolismo , Ratas , Ratas Wistar , PorcinosRESUMEN
Synaptic vesicles are organelles that specialize in the storage of a neurotransmitter that continuously undergo an exo-endocytotic cycle. During this cycle vesicles change their positions within a presynaptic terminal and their numbers as well as spatial arrangement can provide insight into a neurotransmitter turnover. This article introduces a technique based on the nearest-neighbor formalism to quantify the proximity of vesicles to active zones and vesicle clustering in different regions of a terminal. The technique, implemented in a software package, uses the two-dimensional coordinates of features identified in digitized electron micrographs as an input. It has been validated in the analysis of asymmetric synapses of the rat hippocampal CA1 stratum radiatum affected by transient cerebral ischemia. It was shown that a 15-minute-long ischemic episode influenced the spatial arrangement of vesicles that were more distant from active zones and had larger intervesicle spacings with respect to the control. The latter effect was apparently stronger within 200 nm distance of active zones.
Asunto(s)
Vesículas Sinápticas/ultraestructura , Animales , Isquemia Encefálica/patología , Hipocampo/ultraestructura , Masculino , Microscopía Electrónica , Ratas , Ratas WistarRESUMEN
The effect of tetanic stimulation (30 Hz, 4 s) on evoked GABAergic inhibitory postsynaptic currents (IPSCs) was studied in cell cultures of dissociated hippocampal neurons with established synaptic connections. It was found that tetanic stimulation elicited post-tetanic depression (PTD) of the evoked IPSCs with a duration of more than 50 s in about 60% of the connections tested; post-tetanic potentiation was induced in 25% of the connections. We propose that the opposite effects of tetanization on IPSC amplitude are due to differences in the type of the interneuron that was tetanized. Since PTD in our experiments was usually accompanied by changes in the IPSC coefficient of variation and changes of a paired pulse depression, which are thought to reflect presynaptic mechanisms of modulation, we suggest that part of the PTD is due to a presynaptic mechanism(s).
Asunto(s)
Estimulación Eléctrica , Hipocampo/fisiología , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo , Animales , Técnicas de Cultivo de Célula , Estimulación Eléctrica/métodos , RatasRESUMEN
The first milk, colostrum, is an important source of nutrients and an exclusive source of immunoglobulins (Ig), essential for the growth and protection from infection of newborn pigs. Colostrum intake has also been shown to affect the vitality and behaviour of neonatal pigs. The objective of this study was to evaluate the effects of feeding colostrum and plasma immunoglobulin on brain development in neonatal pigs. Positive correlations were found between growth, levels of total protein and IgG in blood plasma and hippocampus development in sow-reared piglets during the first 3 postnatal days. In piglets fed an elemental diet (ED) for 24h, a reduced body weight, a lower plasma protein level and a decreased level of astrocyte specific protein in the hippocampus was observed, as compared to those that were sow-reared. The latter was coincident with a reduced microgliogenesis and an essentially diminished number of neurons in the CA1 area of the hippocampus after 72h. Supplementation of the ED with purified plasma Ig, improved the gliogenesis and supported the trophic and immune status of the hippocampus. The data obtained indicate that the development of the hippocampus structure is improved by colostrum or an Ig-supplemented elemental diet in order to stimulate brain protein synthesis and its development during the early postnatal period.
Asunto(s)
Calostro , Hipocampo/crecimiento & desarrollo , Inmunoglobulina G/administración & dosificación , Inmunoglobulina G/sangre , Porcinos/sangre , Porcinos/crecimiento & desarrollo , Administración Oral , Animales , Animales Recién Nacidos , Peso Corporal/efectos de los fármacos , Peso Corporal/fisiología , Suplementos Dietéticos , Femenino , Hipocampo/citología , Hipocampo/efectos de los fármacos , Masculino , Proteínas del Tejido Nervioso/metabolismo , Tamaño de los Órganos/efectos de los fármacos , Tamaño de los Órganos/fisiologíaRESUMEN
Synaptic activity, such as long-term potentiation (LTP), has been shown to induce morphological plasticity of excitatory synapses on dendritic spines through the spine head and postsynaptic density (PSD) enlargement and reorganization. Much less, however, is known about activity-induced morphological modifications of inhibitory synapses. Using an in vitro model of rat organotypic hippocampal slice cultures and electron microscopy, we studied activity-related morphological changes of somatic inhibitory inputs triggered by a brief oxygen-glucose deprivation (OGD) episode, a condition associated with a synaptic enhancement referred to as anoxic LTP and a structural remodeling of excitatory synapses. Three-dimensional reconstruction of inhibitory axo-somatic synapses at different times before and after brief OGD revealed important morphological changes. The PSD area significantly and markedly increased at synapses with large and complex PSDs, but not at synapses with simple, macular PSDs. Activity-related changes of PSD size and presynaptic bouton volume developed in a strongly correlated manner. Analyses of single and serial sections further showed that the density of inhibitory synaptic contacts on the cell soma did not change within 1 h after OGD. In contrast, the proportion of the cell surface covered with inhibitory PSDs, as well as the complexity of these PSDs significantly increased, with less macular PSDs and more complex, segmented shapes. Together, these data reveal a rapid activity-related restructuring of somatic inhibitory synapses characterized by an enlargement and increased complexity of inhibitory PSDs, providing a new mechanism for a quick adjustment of the excitatory-inhibitory balance. This article is part of a Special Issue entitled 'Synaptic Plasticity & Interneurons'.
Asunto(s)
Región CA1 Hipocampal/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Plasticidad Neuronal/fisiología , Células Piramidales/fisiología , Sinapsis/patología , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Técnicas de Cultivo de Célula , Espinas Dendríticas/fisiología , Hipocampo , Potenciación a Largo Plazo/fisiología , Densidad Postsináptica/fisiología , Terminales Presinápticos/fisiología , Ratas , Sinapsis/fisiologíaRESUMEN
Negatively charged sialic acid residues located close to pores of voltage-gated sodium channels substantially influence their gating properties. The in vitro low Mg²âº seizure model is used to emulate difficult-to-treat status epilepticus. Using this model on cultured hippocampal slices, we examined the effectiveness of desialylation in reducing persistent seizure-like activity. We show that desialylation in cultured hippocampal slices effectively suppresses seizure-like activity induced by low Mg²âº. These findings suggest that targeting negatively charged sialic acids may be an effective strategy to treat status epilepticus.