Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
PLoS Pathog ; 18(3): e1010309, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35316298

RESUMEN

The eggs of the parasitic blood fluke, Schistosoma, are the main drivers of the chronic pathologies associated with schistosomiasis, a disease of poverty afflicting approximately 220 million people worldwide. Eggs laid by Schistosoma mansoni in the bloodstream of the host are encapsulated by vascular endothelial cells (VECs), the first step in the migration of the egg from the blood stream into the lumen of the gut and eventual exit from the body. The biomechanics associated with encapsulation and extravasation of the egg are poorly understood. We demonstrate that S. mansoni eggs induce VECs to form two types of membrane extensions during encapsulation; filopodia that probe eggshell surfaces and intercellular nanotubes that presumably facilitate VEC communication. Encapsulation efficiency, the number of filopodia and intercellular nanotubes, and the length of these structures depend on the egg's vitality and, to a lesser degree, its maturation state. During encapsulation, live eggs induce VEC contractility and membranous structures formation in a Rho/ROCK pathway-dependent manner. Using elastic hydrogels embedded with fluorescent microbeads as substrates to culture VECs, live eggs induce VECs to exert significantly greater contractile forces during encapsulation than dead eggs, which leads to 3D deformations on both the VEC monolayer and the flexible substrate underneath. These significant mechanical deformations cause the VEC monolayer tension to fluctuate with the eventual rupture of VEC junctions, thus facilitating egg transit out of the blood vessel. Overall, our data on the mechanical interplay between host VECs and the schistosome egg improve our understanding of how this parasite manipulates its immediate environment to maintain disease transmission.


Asunto(s)
Esquistosomiasis mansoni , Esquistosomiasis , Animales , Células Endoteliales , Humanos , Óvulo , Schistosoma mansoni , Esquistosomiasis mansoni/parasitología
2.
J Chem Inf Model ; 62(24): 6553-6573, 2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-35960688

RESUMEN

The worldwide COVID-19 pandemic caused by the coronavirus SARS-CoV-2 urgently demands novel direct antiviral treatments. The main protease (Mpro) and papain-like protease (PLpro) are attractive drug targets among coronaviruses due to their essential role in processing the polyproteins translated from the viral RNA. In this study, we virtually screened 688 naphthoquinoidal compounds and derivatives against Mpro of SARS-CoV-2. Twenty-four derivatives were selected and evaluated in biochemical assays against Mpro using a novel fluorogenic substrate. In parallel, these compounds were also assayed with SARS-CoV-2 PLpro. Four compounds inhibited Mpro with half-maximal inhibitory concentration (IC50) values between 0.41 µM and 9.0 µM. In addition, three compounds inhibited PLpro with IC50 ranging from 1.9 µM to 3.3 µM. To verify the specificity of Mpro and PLpro inhibitors, our experiments included an assessment of common causes of false positives such as aggregation, high compound fluorescence, and inhibition by enzyme oxidation. Altogether, we confirmed novel classes of specific Mpro and PLpro inhibitors. Molecular dynamics simulations suggest stable binding modes for Mpro inhibitors with frequent interactions with residues in the S1 and S2 pockets of the active site. For two PLpro inhibitors, interactions occur in the S3 and S4 pockets. In summary, our structure-based computational and biochemical approach identified novel naphthoquinonal scaffolds that can be further explored as SARS-CoV-2 antivirals.


Asunto(s)
Antivirales , Proteasas 3C de Coronavirus , Proteasas Similares a la Papaína de Coronavirus , Naftoquinonas , Inhibidores de Proteasas , SARS-CoV-2 , Humanos , Antivirales/farmacología , Antivirales/química , COVID-19 , Simulación del Acoplamiento Molecular , Naftoquinonas/química , Naftoquinonas/farmacología , Papaína , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores
3.
J Antimicrob Chemother ; 75(10): 2925-2932, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32617557

RESUMEN

BACKGROUND: Treatment of schistosomiasis, a neglected disease, relies on just one partially effective drug, praziquantel. We revisited the 9-acridanone hydrazone, Ro 15-5458, a largely forgotten antischistosomal lead compound. METHODS: Ro 15-5458 was evaluated in juvenile and adult Schistosoma mansoni-infected mice. We studied dose-response, hepatic shift and stage specificity. The metabolic stability of Ro 15-5458 was measured in the presence of human and mouse liver microsomes, and human hepatocytes; the latter also served to identify metabolites. Pharmacokinetic parameters were measured in naive mice. The efficacy of Ro 15-5458 was also assessed in S. haematobium-infected hamsters and S. japonicum-infected mice. RESULTS: Ro 15-5458 had single-dose ED50 values of 15 and 5.3 mg/kg in mice harbouring juvenile and adult S. mansoni infections, respectively. An ED50 value of 17 mg/kg was measured in S. haematobium-infected hamsters; however, the compound was inactive at up to 100 mg/kg in S. japonicum-infected mice. The drug-induced hepatic shift occurred between 48 and 66 h post treatment. A single oral dose of 50 mg/kg of Ro 15-5458 had high activity against all tested S. mansoni stages (1-, 7-, 14-, 21- and 49-day-old). In vitro, human hepatocytes produced N-desethyl and glucuronide metabolites; otherwise Ro 15-5458 was metabolically stable in the presence of microsomes or whole hepatocytes. The maximum plasma concentration was approximately 8.13 µg/mL 3 h after a 50 mg/kg oral dose and the half-life was approximately 4.9 h. CONCLUSIONS: Ro 15-5458 has high activity against S. mansoni and S. haematobium, yet lacks activity against S. japonicum, which is striking. This will require further investigation, as a broad-spectrum antischistosomal drug is desirable.


Asunto(s)
Esquistosomiasis mansoni , Esquistosomicidas , Acridinas , Animales , Cricetinae , Hidrazonas/uso terapéutico , Ratones , Schistosoma mansoni , Esquistosomiasis mansoni/tratamiento farmacológico , Esquistosomicidas/uso terapéutico
4.
Artículo en Inglés | MEDLINE | ID: mdl-29760143

RESUMEN

Schistosomiasis is considered the most important disease caused by helminth parasites, in terms of morbidity and mortality. Tools to facilitate gain- and loss-of-function approaches can be expected to precipitate the discovery of novel interventions, and drug selection of transgenic schistosomes would facilitate the establishment of stable lines of engineered parasites. Sensitivity of developmental stages of schistosomes to the aminonucleoside antibiotic puromycin was investigated. For the schistosomulum and sporocyst stages, viability was quantified by fluorescence microscopy following dual staining with fluorescein diacetate and propidium iodine. By 6 days in culture, the 50% lethal concentration (LC50) for schistosomula was 19 µg/ml whereas the sporocysts were 45-fold more resilient. Puromycin potently inhibited the development of in vitro-laid eggs (LC50, 68 ng/ml) but was less effective against liver eggs (LC50, 387 µg/ml). Toxicity for adult stages was evaluated using the xCELLigence-based, real-time motility assay (xWORM), which revealed LC50s after 48 h of 4.9 and 17.3 µg/ml for male and female schistosomes, respectively. Also, schistosomula transduced with pseudotyped retrovirus encoding the puromycin resistance marker were partially rescued when cultured in the presence of the antibiotic. Together, these findings will facilitate selection on puromycin of transgenic schistosomes and the enrichment of cultures of transgenic eggs and sporocysts to facilitate the establishment of schistosome transgenic lines. Streamlining schistosome transgenesis with drug selection will open new avenues to understand parasite biology and hopefully lead to new interventions for this neglected tropical disease.


Asunto(s)
Puromicina/farmacología , Schistosoma mansoni/efectos de los fármacos , Animales , Animales Modificados Genéticamente , Femenino , Fluoresceínas/farmacología , Genómica/métodos , Masculino , Schistosoma mansoni/genética , Esquistosomiasis/tratamiento farmacológico
5.
Transgenic Res ; 23(3): 539-56, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24474164

RESUMEN

Draft genome sequences for the human schistosomes, Schistosoma japonicum, S. mansoni and S. haematobium are now available. The schistosome genome contains ~11,000 protein encoding genes for which the functions of few are well understood. Nonetheless, the newly described gene products and novel non-coding RNAs represent potential intervention targets, and molecular tools are being developed to determine their importance. Over the past decade, noteworthy advances has been reported towards development of tools for gene manipulation of schistosomes, including gene expression perturbation by RNAi, and transient and stable transfection including transgenesis mediated by genome integration competent vectors. Retrovirus-mediated transgenesis is an established functional genomic approach for model species. It offers the means to establish gain- or loss-of-function phenotypes, supports vector-based RNA interference, and represents a powerful forward genetics tool for insertional mutagenesis. Murine leukemia virus (MLV) pseudotyped with vesicular stomatitis virus glycoprotein mediates somatic transgenesis in S. mansoni, and vertical transmission of integrated transgenes in S. mansoni has been demonstrated, leading the establishment of transgenic lines. In addition, MLV transgenes encoding antibiotic resistance allow the selection of MLV-transduced parasites with the appropriate antibiotics. Here we describe detailed methods to produce and quantify pseudotyped MLV particles for use in transducing developmental stages of schistosomes. Approaches to analyze MLV-transduced schistosomes, including qPCR and high throughput approaches to verify and map genome integration of transgenes are also presented. We anticipate these tools should find utility in genetic investigations in other laboratories and for other helminth pathogens of important neglected tropical diseases.


Asunto(s)
Técnicas de Transferencia de Gen , Genoma , Virus de la Leucemia Murina/genética , Schistosoma mansoni/genética , Animales , Células Germinativas/virología , Humanos , Virus de la Leucemia Murina/patogenicidad , Ratones , Ratones Transgénicos/genética , Mutagénesis Insercional , Transducción Genética
6.
bioRxiv ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38405969

RESUMEN

Schistosomiasis, or bilharzia, is a neglected tropical disease caused by Schistosoma spp. blood flukes that infects over 200 million people worldwide. Just one partially effective drug is available, and new drugs and drug targets would be welcome. The 20S proteasome is a validated drug target for many parasitic infections, including those caused by Plasmodium and Leishmania. We previously showed that anticancer proteasome inhibitors that act through the Schistosoma mansoni 20S proteasome (Sm20S) kill the parasite in vitro. To advance these initial findings, we employed Multiplex Substrate Profiling by Mass Spectrometry (MSP-MS) to define the substrate cleavage specificities of the three catalytic ß subunits of purified Sm20S. The profiles in turn were used to design and synthesize subunit-specific optimized substrates that performed two to eight fold better than the equivalent substrates used to measure the activity of the constitutive human proteasome (c20S). These specific substrates also eliminated the need to purify Sm20S from parasite extracts - a single step enrichment was sufficient to accurately measure substrate hydrolysis and its inhibition with proteasome inhibitors. Finally, we show that the substrate and inhibition profiles for the 20S proteasome from the three medically important schistosome species are similar, suggesting that data arising from an inhibitor development campaign that focuses on Sm20S can be extrapolated to the other two targets with consequent time and cost savings.

7.
Future Med Chem ; 15(11): 959-985, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37435731

RESUMEN

Aim: Discovery of novel SARS-CoV-2 main protease (Mpro) inhibitors using a structure-based drug discovery strategy. Materials & methods: Virtual screening employing covalent and noncovalent docking was performed to discover Mpro inhibitors, which were subsequently evaluated in biochemical and cellular assays. Results: 91 virtual hits were selected for biochemical assays, and four were confirmed as reversible inhibitors of SARS CoV-2 Mpro with IC50 values of 0.4-3 µM. They were also shown to inhibit SARS-CoV-1 Mpro and human cathepsin L. Molecular dynamics simulations indicated the stability of the Mpro inhibitor complexes and the interaction of ligands at the subsites. Conclusion: This approach led to the discovery of novel thiosemicarbazones as potent SARS-CoV-2 Mpro inhibitors.


Asunto(s)
COVID-19 , Tiosemicarbazonas , Humanos , SARS-CoV-2 , Antivirales/farmacología , Antivirales/química , Tiosemicarbazonas/farmacología , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Proteínas no Estructurales Virales
8.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35745663

RESUMEN

One inhibitor of the main SARS-CoV-2 protease has been approved recently by the FDA, yet it targets only SARS-CoV-2 main protease (Mpro). Here, we discovered inhibitors containing thiuram disulfide or dithiobis-(thioformate) tested against three key proteases involved in SARS-CoV-2 replication, including Mpro, SARS-CoV-2 papain-like protease (PLpro), and human cathepsin L. The use of thiuram disulfide and dithiobis-(thioformate) covalent inhibitor warheads was inspired by an idea to find a better alternative than disulfiram, an approved treatment for chronic alcoholism that is currently in phase 2 clinical trials against SARS-CoV-2. Our goal was to find more potent inhibitors that target both viral proteases and one essential human protease to reduce the dosage, improve the efficacy, and minimize the adverse effects associated with these agents. We found that compounds coded as RI175, RI173, and RI172 were the most potent inhibitors in an enzymatic assay against SARS-CoV-2 Mpro, SARS-CoV-2 PLpro, and human cathepsin L, with IC50s of 300, 200, and 200 nM, which is about 5-, 19-, and 11-fold more potent than disulfiram, respectively. In addition, RI173 was tested against SARS-CoV-2 in a cell-based and toxicity assay and was shown to have a greater antiviral effect than disulfiram. The identified compounds demonstrated the promising potential of thiuram disulfide or dithiobis-(thioformate) as a reactive functional group in small molecules that could be further developed for treatment of the COVID-19 virus or related variants.

9.
bioRxiv ; 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35018373

RESUMEN

The worldwide COVID-19 pandemic caused by the coronavirus SARS-CoV-2 urgently demands novel direct antiviral treatments. The main protease (Mpro) and papain-like protease (PLpro) are attractive drug targets among coronaviruses due to their essential role in processing the polyproteins translated from the viral RNA. In the present work, we virtually screened 688 naphthoquinoidal compounds and derivatives against Mpro of SARS-CoV-2. Twenty-four derivatives were selected and evaluated in biochemical assays against Mpro using a novel fluorogenic substrate. In parallel, these compounds were also assayed with SARS-CoV-2 PLpro. Four compounds inhibited Mpro with half-maximal inhibitory concentration (IC 50 ) values between 0.41 µM and 66 µM. In addition, eight compounds inhibited PLpro with IC 50 ranging from 1.7 µM to 46 µM. Molecular dynamics simulations suggest stable binding modes for Mpro inhibitors with frequent interactions with residues in the S1 and S2 pockets of the active site. For two PLpro inhibitors, interactions occur in the S3 and S4 pockets. In summary, our structure-based computational and biochemical approach identified novel naphthoquinonal scaffolds that can be further explored as SARS-CoV-2 antivirals.

10.
J Med Chem ; 65(4): 2956-2970, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-34730959

RESUMEN

Cathepsin L is a key host cysteine protease utilized by coronaviruses for cell entry and is a promising drug target for novel antivirals against SARS-CoV-2. The marine natural product gallinamide A and several synthetic analogues were identified as potent inhibitors of cathepsin L with IC50 values in the picomolar range. Lead molecules possessed selectivity over other cathepsins and alternative host proteases involved in viral entry. Gallinamide A directly interacted with cathepsin L in cells and, together with two lead analogues, potently inhibited SARS-CoV-2 infection in vitro, with EC50 values in the nanomolar range. Reduced antiviral activity was observed in cells overexpressing transmembrane protease, serine 2 (TMPRSS2); however, a synergistic improvement in antiviral activity was achieved when combined with a TMPRSS2 inhibitor. These data highlight the potential of cathepsin L as a COVID-19 drug target as well as the likely need to inhibit multiple routes of viral entry to achieve efficacy.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Antivirales/farmacología , Productos Biológicos/farmacología , Tratamiento Farmacológico de COVID-19 , Catepsina L/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/farmacología , SARS-CoV-2/efectos de los fármacos , Células A549 , Animales , Péptidos Catiónicos Antimicrobianos/síntesis química , Péptidos Catiónicos Antimicrobianos/química , Antivirales/síntesis química , Antivirales/química , Productos Biológicos/síntesis química , Productos Biológicos/química , COVID-19/metabolismo , Catepsina L/metabolismo , Chlorocebus aethiops , Inhibidores de Cisteína Proteinasa/síntesis química , Inhibidores de Cisteína Proteinasa/química , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Proteómica , Relación Estructura-Actividad , Células Vero
11.
Mem Inst Oswaldo Cruz ; 106(7): 785-93, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22124549

RESUMEN

Genome sequences for Schistosoma japonicum and Schistosoma mansoni are now available. The schistosome genome encodes ~13,000 protein encoding genes for which the function of only a minority is understood. There is a valuable role for transgenesis in functional genomic investigations of these new schistosome gene sequences. In gain-of-function approaches, transgenesis can lead to integration of transgenes into the schistosome genome which can facilitate insertional mutagenesis screens. By contrast, transgene driven, vector-based RNA interference (RNAi) offers powerful loss-of-function manipulations. Our laboratory has focused on development of tools to facilitate schistosome transgenesis. We have investigated the utility of retroviruses and transposons to transduce schistosomes. Vesicular stomatitis virus glycoprotein (VSVG) pseudotyped murine leukemia virus (MLV) can transduce developmental stages of S. mansoni including eggs. We have also observed that the piggyBac transposon is transpositionally active in schistosomes. Approaches with both VSVG-MLV and piggyBac have resulted in somatic transgenesis and have lead to integration of active reporter transgenes into schistosome chromosomes. These findings provided the first reports of integration of reporter transgenes into schistosome chromosomes. Experience with these systems is reviewed herewith, along with findings with transgene mediated RNAi and germ line transgenesis, in addition to pioneering and earlier reports of gene manipulation for schistosomes.


Asunto(s)
Técnicas de Transferencia de Gen , Genoma de los Helmintos/genética , Schistosoma japonicum/genética , Schistosoma mansoni/genética , Animales , Animales Modificados Genéticamente , Cromosomas/genética , Cromosomas/virología , Elementos Transponibles de ADN , ADN de Helmintos/genética , ADN Viral/genética , ADN Viral/aislamiento & purificación , Vectores Genéticos , Humanos , Virus de la Leucemia Murina/genética , Virus de la Leucemia Murina/aislamiento & purificación , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/aislamiento & purificación , Ratones , Interferencia de ARN , Schistosoma japonicum/virología , Schistosoma mansoni/virología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/aislamiento & purificación
12.
ACS Infect Dis ; 7(2): 406-420, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33434015

RESUMEN

Schistosomiasis is a chronic and painful disease of poverty caused by the flatworm parasite Schistosoma. Drug discovery for antischistosomal compounds predominantly employs in vitro whole organism (phenotypic) screens against two developmental stages of Schistosoma mansoni, post-infective larvae (somules) and adults. We generated two rule books and associated scoring systems to normalize 3898 phenotypic data points to enable machine learning. The data were used to generate eight Bayesian machine learning models with the Assay Central software according to parasite's developmental stage and experimental time point (≤24, 48, 72, and >72 h). The models helped predict 56 active and nonactive compounds from commercial compound libraries for testing. When these were screened against S. mansoni in vitro, the prediction accuracy for active and inactives was 61% and 56% for somules and adults, respectively; also, hit rates were 48% and 34%, respectively, far exceeding the typical 1-2% hit rate for traditional high throughput screens.


Asunto(s)
Descubrimiento de Drogas , Schistosoma mansoni , Animales , Teorema de Bayes , Larva , Aprendizaje Automático
13.
ACS Infect Dis ; 7(5): 1089-1103, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33135408

RESUMEN

Schistosomiasis is a parasitic disease that affects approximately 200 million people in developing countries. Current treatment relies on just one partially effective drug, and new drugs are needed. Tubulin and microtubules (MTs) are essential constituents of the cytoskeleton in all eukaryotic cells and considered potential drug targets to treat parasitic infections. The α- and ß-tubulin of Schistosoma mansoni have ∼96% and ∼91% sequence identity to their respective human tubulins, suggesting that compounds which bind mammalian tubulin may interfere with MT-mediated functions in the parasite. To explore the potential of different classes of tubulin-binding molecules as antischistosomal leads, we completed a series of in vitro whole-organism screens of a target-based compound library against S. mansoni adults and somules (postinfective larvae), and identified multiple biologically active compounds, among which phenylpyrimidines were the most promising. Further structure-activity relationship studies of these hits identified a series of thiophen-2-yl-pyrimidine congeners, which induce a potent and long-lasting paralysis of the parasite. Moreover, compared to the originating compounds, which showed cytotoxicity values in the low nanomolar range, these new derivatives were 1-4 orders of magnitude less cytotoxic and exhibited weak or undetectable activity against mammalian MTs in a cell-based assay of MT stabilization. Given their selective antischistosomal activity and relatively simple drug-like structures, these molecules hold promise as candidates for the development of new treatments for schistosomiasis.


Asunto(s)
Microtúbulos , Schistosoma mansoni , Animales , Humanos , Parálisis , Relación Estructura-Actividad
14.
ACS Chem Biol ; 16(4): 642-650, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33787221

RESUMEN

Host-cell cysteine proteases play an essential role in the processing of the viral spike protein of SARS coronaviruses. K777, an irreversible, covalent inactivator of cysteine proteases that has recently completed phase 1 clinical trials, reduced SARS-CoV-2 viral infectivity in several host cells: Vero E6 (EC50< 74 nM), HeLa/ACE2 (4 nM), Caco-2 (EC90 = 4.3 µM), and A549/ACE2 (<80 nM). Infectivity of Calu-3 cells depended on the cell line assayed. If Calu-3/2B4 was used, EC50 was 7 nM, but in the ATCC Calu-3 cell line without ACE2 enrichment, EC50 was >10 µM. There was no toxicity to any of the host cell lines at 10-100 µM K777 concentration. Kinetic analysis confirmed that K777 was a potent inhibitor of human cathepsin L, whereas no inhibition of the SARS-CoV-2 cysteine proteases (papain-like and 3CL-like protease) was observed. Treatment of Vero E6 cells with a propargyl derivative of K777 as an activity-based probe identified human cathepsin B and cathepsin L as the intracellular targets of this molecule in both infected and uninfected Vero E6 cells. However, cleavage of the SARS-CoV-2 spike protein was only carried out by cathepsin L. This cleavage was blocked by K777 and occurred in the S1 domain of the SARS-CoV-2 spike protein, a different site from that previously observed for the SARS-CoV-1 spike protein. These data support the hypothesis that the antiviral activity of K777 is mediated through inhibition of the activity of host cathepsin L and subsequent loss of cathepsin L-mediated viral spike protein processing.


Asunto(s)
Antivirales/farmacología , Inhibidores de Cisteína Proteinasa/farmacología , Fenilalanina/farmacología , Piperazinas/farmacología , SARS-CoV-2/efectos de los fármacos , Compuestos de Tosilo/farmacología , Animales , Catepsina L/antagonistas & inhibidores , Catepsina L/metabolismo , Línea Celular Tumoral , Chlorocebus aethiops , Humanos , Pruebas de Sensibilidad Microbiana , Dominios Proteicos , Proteolisis , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Internalización del Virus/efectos de los fármacos
15.
Mol Biochem Parasitol ; 236: 111259, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31958469

RESUMEN

The RNA helicase Vasa plays a pivotal role in the development of the germ line. To decipher the functional roles of vasa/PL10-like genes in the human blood fluke Schistosoma mansoni, we performed RNA interference followed by the analysis of the ovary in the adult female. Double-stranded RNA targeting the schistosome vasa-like gene Smvlg1 reduced the volume of the ovary. Changes in morphology of the ovary were analysed using carmine red-staining of the parasites followed by a novel confocal laser scanning microscopy (CLSM)-based approach to control for natural autofluorescence in female schistosome tissues. The reduction in the ovary volume may have been promoted by the loss of germ cells. By contrast, significant differences were not apparent in the number of eggs produced or hatching rate of eggs laid by the female schistosomes transfected with Smvlg1-specific dsRNA. The findings suggested a role for S. mansoni vasa/PL10-like gene -1 in germ cell development within the schistosome ovary that might impact in the pathogenesis and disease transmission by this neglected tropical disease pathogen.


Asunto(s)
Genes de Helminto , Ovario , Schistosoma mansoni , Animales , ARN Helicasas DEAD-box/genética , Femenino , Expresión Génica , Genitales , Microscopía Confocal/métodos , Ovario/anatomía & histología , Ovario/citología , Ovario/metabolismo , Interferencia de ARN , Schistosoma mansoni/genética , Schistosoma mansoni/metabolismo , Transfección/métodos
16.
Pharmaceuticals (Basel) ; 13(2)2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-32028743

RESUMEN

The neglected tropical disease, schistosomiasis, is caused by trematode blood flukes of the Schistosoma genus and infects approximately 200 million people worldwide. With just one partially effective drug available for disease treatment, new drugs are urgently needed. Herein, a series of 47 phthalimide (Pht) analogues possessing high-value bioactive scaffolds (i.e., benzimidazole and 1,2,3,-triazoles) was synthesized by click-chemistry. Compounds were evaluated for anti-schistosomal activity in culture against somules (post-infective larvae) and adults of Schistosoma mansoni, their predicted ADME (absorption, distribution, metabolism, and excretion) properties, and toxicity vs. HepG2 cells. The majority showed favorable parameters for surface area, lipophilicity, bioavailability and Lipinski score. Thirteen compounds were active at 10 µM against both somules and adults (6d, 6f, 6i-6l, 6n-6p, 6s, 6r', 6t' and 6w). Against somules, the majority caused degeneracy and/or death after 72 h; whereas against adult parasites, five compounds (6l, 6d, 6f, 6r' and 6s) elicited degeneracy, tegumental (surface) damage and/or death. Strongest potency against both developmental stages was recorded for compounds possessing n-butyl or isobutyl as a linker, and a pentafluorophenyl group on triazole. Apart from five compounds for which anti-parasite activity tracked with toxicity to HepG2 cells, there was apparently no toxicity to HepG2 cells (EC50 values ≥50 µM). The data overall suggest that phthaloyl-triazole compounds are favorable synthons for additional studies as anti-schistosomals.

17.
bioRxiv ; 2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33398273

RESUMEN

The emergence of SARS-CoV-2 in late 2019, and the subsequent COVID-19 pandemic, has led to substantial mortality, together with mass global disruption. There is an urgent need for novel antiviral drugs for therapeutic or prophylactic application. Cathepsin L is a key host cysteine protease utilized by coronaviruses for cell entry and is recognized as a promising drug target. The marine natural product, gallinamide A and several synthetic analogues, were identified as potent inhibitors of cathepsin L activity with IC 50 values in the picomolar range. Lead molecules possessed selectivity over cathepsin B and other related human cathepsin proteases and did not exhibit inhibitory activity against viral proteases Mpro and PLpro. We demonstrate that gallinamide A and two lead analogues potently inhibit SARS-CoV-2 infection in vitro , with EC 50 values in the nanomolar range, thus further highlighting the potential of cathepsin L as a COVID-19 antiviral drug target.

18.
bioRxiv ; 2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33140046

RESUMEN

K777 is a di-peptide analog that contains an electrophilic vinyl-sulfone moiety and is a potent, covalent inactivator of cathepsins. Vero E6, HeLa/ACE2, Caco-2, A549/ACE2, and Calu-3, cells were exposed to SARS-CoV-2, and then treated with K777. K777 reduced viral infectivity with EC50 values of inhibition of viral infection of: 74 nM for Vero E6, <80 nM for A549/ACE2, and 4 nM for HeLa/ACE2 cells. In contrast, Calu-3 and Caco-2 cells had EC50 values in the low micromolar range. No toxicity of K777 was observed for any of the host cells at 10-100 µM inhibitor. K777 did not inhibit activity of the papain-like cysteine protease and 3CL cysteine protease, encoded by SARS-CoV-2 at concentrations of ≤ 100 µM. These results suggested that K777 exerts its potent anti-viral activity by inactivation of mammalian cysteine proteases which are essential to viral infectivity. Using a propargyl derivative of K777 as an activity-based probe, K777 selectively targeted cathepsin B and cathepsin L in Vero E6 cells. However only cathepsin L cleaved the SARS-CoV-2 spike protein and K777 blocked this proteolysis. The site of spike protein cleavage by cathepsin L was in the S1 domain of SARS-CoV-2 , differing from the cleavage site observed in the SARS CoV-1 spike protein. These data support the hypothesis that the antiviral activity of K777 is mediated through inhibition of the activity of host cathepsin L and subsequent loss of viral spike protein processing.

19.
J R Soc Interface ; 16(150): 20180675, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30958153

RESUMEN

Schistosomiasis is a chronic and morbid disease of poverty affecting approximately 200 million people worldwide. Mature schistosome flatworms wander in the host's hepatic portal and mesenteric venous system where they encounter a range of blood flow conditions and geometrical confinement. However, the mechanisms that support schistosome locomotion and underlie the pathogen's adaptation to its physical environment are largely unknown. By combining microfabrication and traction force microscopy, we developed various in vitro assays to quantify the mechanics of locomotion of adult male Schistosoma mansoni in different physiologically relevant conditions. We show that in unconfined settings, the parasite undergoes two-anchor marching mediated by the coordinated action of its oral and ventral suckers. This mode of locomotion is maintained when the worm faces an external flow, to which it responds by adjusting the strength of its suckers. In geometrically confined conditions, S. mansoni switches to a different crawling modality by generating retrograde peristaltic waves along its body, a mechanism shared with terrestrial and marine worms. However, while the surface of most worms has backward-pointing bristles that rectify peristaltic waves and facilitate forward locomotion, S. mansoni has isotropically oriented tubercles. This requires tight coordination between muscle contraction and substrate friction but gives S. mansoni the ability to reverse its direction of locomotion without turning its body, which is likely advantageous to manoeuvre in narrow-bore vessels. We show that the parasite can also coordinate the action of its suckers with its peristaltic body contractions to increase crawling speed. Throughout this study, we report on a number of biomechanical parameters to quantify the motility of adult schistosomes (e.g. sucker grabbing strength, the rate of detachment under flow, peristaltic wave properties and traction stresses). The new series of in vitro assays make it possible to quantify key phenotypical aspects of S. mansoni motility that could guide the discovery of new drugs to treat schistosomiasis.


Asunto(s)
Locomoción/fisiología , Modelos Biológicos , Schistosoma mansoni/fisiología , Animales , Masculino
20.
Artículo en Inglés | MEDLINE | ID: mdl-31192168

RESUMEN

The protozoan parasite Entamoeba histolytica can induce amebic colitis and amebic liver abscess. First-line drugs for the treatment of amebiasis are nitroimidazoles, particularly metronidazole. Metronidazole has side effects and potential drug resistance is a concern. Schistosomiasis, a chronic and painful infection, is caused by various species of the Schistosoma flatworm. There is only one partially effective drug, praziquantel, a worrisome situation should drug resistance emerge. As many essential metabolic pathways and enzymes are shared between eukaryotic organisms, it is possible to conceive of small molecule interventions that target more than one organism or target, particularly when chemical matter is already available. Farnesyltransferase (FT), the last common enzyme for products derived from the mevalonate pathway, is vital for diverse functions, including cell differentiation and growth. Both E. histolytica and Schistosoma mansoni genomes encode FT genes. In this study, we phenotypically screened E. histolytica and S. mansoni in vitro with the established FT inhibitors, lonafarnib and tipifarnib, and with 125 tipifarnib analogs previously screened against both the whole organism and/or the FT of Trypanosoma brucei and Trypanosoma cruzi. For E. histolytica, we also explored whether synergy arises by combining lonafarnib and metronidazole or lonafarnib with statins that modulate protein prenylation. We demonstrate the anti-amebic and anti-schistosomal activities of lonafarnib and tipifarnib, and identify 17 tipifarnib analogs with more than 75% growth inhibition at 50 µM against E. histolytica. Apart from five analogs of tipifarnib exhibiting activity against both E. histolytica and S. mansoni, 10 additional analogs demonstrated anti-schistosomal activity (severe degenerative changes at 10 µM after 24 h). Analysis of the structure-activity relationship available for the T. brucei FT suggests that FT may not be the relevant target in E. histolytica and S. mansoni. For E. histolytica, combination of metronidazole and lonafarnib resulted in synergism for growth inhibition. Also, of a number of statins tested, simvastatin exhibited moderate anti-amebic activity which, when combined with lonafarnib, resulted in slight synergism. Even in the absence of a definitive molecular target, identification of potent anti-parasitic tipifarnib analogs encourages further exploration while the synergistic combination of metronidazole and lonafarnib offers a promising treatment strategy for amebiasis.


Asunto(s)
Entamoeba histolytica/efectos de los fármacos , Farnesiltransferasa/metabolismo , Schistosoma mansoni/efectos de los fármacos , Amebiasis/tratamiento farmacológico , Animales , Biomphalaria , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Quimioterapia/métodos , Farnesiltransferasa/efectos de los fármacos , Farnesiltransferasa/genética , Femenino , Metronidazol/farmacología , Piperidinas/farmacología , Piridinas/farmacología , Quinolonas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA