Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Eukaryot Microbiol ; 70(5): e12988, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37291797

RESUMEN

Lophomonas blattarum is a facultative commensal gut dweller of common pest cockroaches. Its cells are roughly spherical in shape with an apical tuft of ~50 flagella. Controversially, it has been implicated in human respiratory infections based on light microscopic observations of similarly shaped cells in sputum or bronchoalveolar lavage fluid. Here, we have sequenced the 18S rRNA gene of L. blattarum and its sole congener, Lophomonas striata, isolated from cockroaches. Both species branch in a fully supported clade with Trichonymphida, consistent with a previous study of L. striata, but not consistent with sequences from human samples attributed to L. blattarum.


Asunto(s)
Cucarachas , Parabasalidea , Animales , Humanos , Parabasalidea/genética , Filogenia , ARN Ribosómico 18S/genética , Flagelos
2.
BMC Biol ; 19(1): 142, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294116

RESUMEN

BACKGROUND: The opportunistic pathogen Naegleria fowleri establishes infection in the human brain, killing almost invariably within 2 weeks. The amoeba performs piece-meal ingestion, or trogocytosis, of brain material causing direct tissue damage and massive inflammation. The cellular basis distinguishing N. fowleri from other Naegleria species, which are all non-pathogenic, is not known. Yet, with the geographic range of N. fowleri advancing, potentially due to climate change, understanding how this pathogen invades and kills is both important and timely. RESULTS: Here, we report an -omics approach to understanding N. fowleri biology and infection at the system level. We sequenced two new strains of N. fowleri and performed a transcriptomic analysis of low- versus high-pathogenicity N. fowleri cultured in a mouse infection model. Comparative analysis provides an in-depth assessment of encoded protein complement between strains, finding high conservation. Molecular evolutionary analyses of multiple diverse cellular systems demonstrate that the N. fowleri genome encodes a similarly complete cellular repertoire to that found in free-living N. gruberi. From transcriptomics, neither stress responses nor traits conferred from lateral gene transfer are suggested as critical for pathogenicity. By contrast, cellular systems such as proteases, lysosomal machinery, and motility, together with metabolic reprogramming and novel N. fowleri proteins, are all implicated in facilitating pathogenicity within the host. Upregulation in mouse-passaged N. fowleri of genes associated with glutamate metabolism and ammonia transport suggests adaptation to available carbon sources in the central nervous system. CONCLUSIONS: In-depth analysis of Naegleria genomes and transcriptomes provides a model of cellular systems involved in opportunistic pathogenicity, uncovering new angles to understanding the biology of a rare but highly fatal pathogen.


Asunto(s)
Naegleria fowleri , Animales , Modelos Animales de Enfermedad , Genómica , Ratones , Naegleria fowleri/genética , Transcriptoma , Trogocitosis
3.
J Eukaryot Microbiol ; 67(2): 209-222, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31705733

RESUMEN

The ciliate Tetrahymena thermophila does not require sterols for growth and synthesizes pentacyclic triterpenoid alcohols, mainly tetrahymanol, as sterol surrogates. However, when sterols are present in the environment, T. thermophila efficiently incorporates and modifies them. These modifications consist of desaturation reactions at positions C5(6), C7(8), and C22(23), and de-ethylation at C24 of 29-carbon sterols (i.e. phytosterols). Three out of four of the enzymes involved in the sterol modification pathway have been previously identified. However, identification of the sterol C22 desaturase remained elusive, as did other basic aspects of this metabolism. To get more insights into this peculiar metabolism, we here perform a whole transcriptome analysis of T. thermophila in response to exogenous cholesterol. We found 356 T. thermophila genes to be differentially expressed after supplementation with cholesterol for 2 h. Among those that were upregulated, we found two genes belonging to the long spacing family of desaturases that we tentatively identified by RNAi analysis as sterol C22 desaturases. Additionally, we determined that the inhibition of tetrahymanol synthesis after supplementation with cholesterol occurs by a transcriptional downregulation of genes involved in squalene synthesis and cyclization. Finally, we identified several uncharacterized genes that are likely involved in sterols transport and signaling.


Asunto(s)
Colesterol/metabolismo , Genoma de Protozoos , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo , Colesterol/administración & dosificación , Medios de Cultivo , Perfilación de la Expresión Génica
4.
Mol Biol Evol ; 34(4): 943-956, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28087774

RESUMEN

Mitochondria are the respiratory organelles of eukaryotes and their evolutionary history is deeply intertwined with that of eukaryotes. The compartmentalization of respiration in mitochondria occurs within cristae, whose evolutionary origin has remained unclear. Recent discoveries, however, have revived the old notion that mitochondrial cristae could have had a pre-endosymbiotic origin. Mitochondrial cristae are likely homologous to the intracytoplasmic membranes (ICMs) used by diverse alphaproteobacteria for harnessing energy. Because the Mitochondrial Contact site and Cristae Organizing System (MICOS) that controls the development of cristae evolved from a simplified version that is phylogenetically restricted to Alphaproteobacteria (alphaMICOS), ICMs most probably transformed into cristae during the endosymbiotic origin of mitochondria. This inference is supported by the sequence and structural similarities between MICOS and alphaMICOS, and the expression pattern and cellular localization of alphaMICOS. Given that cristae and ICMs develop similarly, alphaMICOS likely functions analogously to mitochondrial MICOS by culminating ICM development with the creation of tubular connections and membrane contact sites at the alphaproteobacterial envelope. Mitochondria thus inherited a pre-existing ultrastructure adapted to efficient energy transduction from their alphaproteobacterial ancestors. The widespread nature of purple bacteria among alphaproteobacteria raises the possibility that cristae evolved from photosynthetic ICMs.


Asunto(s)
Alphaproteobacteria/genética , Mitocondrias/genética , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Alphaproteobacteria/metabolismo , Evolución Biológica , Evolución Molecular , Proteínas de la Membrana/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Filogenia , Unión Proteica , Simbiosis/genética
5.
Mol Biol Evol ; 33(4): 980-3, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26681153

RESUMEN

The SAR group (Stramenopila, Alveolata, Rhizaria) is one of the largest clades in the tree of eukaryotes and includes a great number of parasitic lineages. Rhizarian parasites are obligate and have devastating effects on commercially important plants and animals but despite this fact, our knowledge of their biology and evolution is limited. Here, we present rhizarian transcriptomes from all major parasitic lineages in order to elucidate their evolutionary relationships using a phylogenomic approach. Our results suggest that Ascetosporea, parasites of marine invertebrates, are sister to the novel clade Apofilosa. The phytomyxean plant parasites branch sister to the vampyrellid algal ectoparasites in the novel clade Phytorhiza. They also show that Ascetosporea + Apofilosa + Retaria + Filosa + Phytorhiza form a monophyletic clade, although the branching pattern within this clade is difficult to resolve and appears to be model-dependent. Our study does not support the monophyly of the rhizarian parasitic lineages (Endomyxa), suggesting independent origins for rhizarian animal and plant parasites.


Asunto(s)
Filogenia , Plantas/genética , Rhizaria/genética , Animales , Eucariontes , Plantas/parasitología , Rhizaria/patogenicidad , Alineación de Secuencia
6.
Plant Cell Physiol ; 58(5): 934-945, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28340089

RESUMEN

The origin of land plants from algae is a long-standing question in evolutionary biology. It is becoming increasingly clear that many characters that were once assumed to be 'embryophyte specific' can in fact be found in their closest algal relatives, the streptophyte algae. One such case is the phenylpropanoid pathway. While biochemical data indicate that streptophyte algae harbor lignin-like components, the phenylpropanoid core pathway, which serves as the backbone of lignin biosynthesis, has been proposed to have arisen at the base of the land plants. Here we revisit this hypothesis using a wealth of new sequence data from streptophyte algae. Tracing the biochemical pathway towards lignin biogenesis, we show that most of the genes required for phenylpropanoid synthesis and the precursors for lignin production were already present in streptophyte algae. Nevertheless, phylogenetic analyses and protein structure predictions of one of the key enzyme classes in lignin production, cinnamyl alcohol dehydrogenase (CAD), suggest that CADs of streptophyte algae are more similar to sinapyl alcohol dehydrogenases (SADs). This suggests that the end-products of the pathway leading to lignin biosynthesis in streptophyte algae may facilitate the production of lignin-like compounds and defense molecules. We hypothesize that streptophyte algae already possessed the genetic toolkit from which the capacity to produce lignin later evolved in vascular plants.


Asunto(s)
Carofíceas/metabolismo , Lignina/metabolismo , Propanoles/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Evolución Biológica , Interacciones Huésped-Patógeno
7.
Plant Physiol ; 164(3): 1527-41, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24492333

RESUMEN

Protein phosphatases with Kelch-like domains (PPKL) are members of the phosphoprotein phosphatases family present only in plants and alveolates. PPKL have been described as positive effectors of brassinosteroid (BR) signaling in plants. Most of the evidence supporting this role has been gathered using one of the four homologs in Arabidopsis (Arabidopsis thaliana), brassinosteroid-insensitive1 suppressor (BSU1). We reappraised the roles of the other three members of the family, BSL1, BSL2, and BSL3, through phylogenetic, functional, and genetic analyses. We show that BSL1 and BSL2/BSL3 belong to two ancient evolutionary clades that have been highly conserved in land plants. In contrast, BSU1-type genes are exclusively found in the Brassicaceae and display a remarkable sequence divergence, even among closely related species. Simultaneous loss of function of the close paralogs BSL2 and BSL3 brings about a peculiar array of phenotypic alterations, but with marginal effects on BR signaling; loss of function of BSL1 is, in turn, phenotypically silent. Still, the products of these three genes account for the bulk of PPKL-related activity in Arabidopsis and together have an essential role in the early stages of development that BSU1 is unable to supplement. Our results underline the functional relevance of BSL phosphatases in plants and suggest that BSL2/BSL3 and BSU1 may have contrasting effects on BR signaling. Given that BSU1-type genes have likely undergone a functional shift and are phylogenetically restricted, we caution that inferences based on these genes to the whole family or to other species may be misleading.


Asunto(s)
Evolución Molecular , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/genética , Plantas/enzimología , Plantas/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Arabidopsis/genética , Brasinoesteroides/farmacología , Flores/anatomía & histología , Flores/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Mutación/genética , Fenotipo , Filogenia , Proteínas de Plantas/metabolismo , Plantas/efectos de los fármacos , Estructura Terciaria de Proteína , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/enzimología
8.
BMC Genomics ; 15: 122, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24512041

RESUMEN

BACKGROUND: The alveolates include a large number of important lineages of protists and algae, among which are three major eukaryotic groups: ciliates, apicomplexans and dinoflagellates. Collectively alveolates are present in virtually every environment and include a vast diversity of cell shapes, molecular and cellular features and feeding modes including lifestyles such as phototrophy, phagotrophy/predation and intracellular parasitism, in addition to a variety of symbiotic associations. Oxyrrhis marina is a well-known model for heterotrophic protist biology, and is now emerging as a useful organism to explore the many changes that occurred during the origin and diversification of dinoflagellates by virtue of its phylogenetic position at the base of the dinoflagellate tree. RESULTS: We have generated and analysed expressed sequence tag (EST) sequences from the alveolate Oxyrrhis marina in order to shed light on the evolution of a number of dinoflagellate characteristics, especially regarding the emergence of highly unusual genomic features. We found that O. marina harbours extensive gene redundancy, indicating high rates of gene duplication and transcription from multiple genomic loci. In addition, we observed a correlation between expression level and copy number in several genes, suggesting that copy number may contribute to determining transcript levels for some genes. Finally, we analyze the genes and predicted products of the recently discovered Dinoflagellate Viral Nuclear Protein, and several cases of horizontally acquired genes. CONCLUSION: The dataset presented here has proven very valuable for studying this important group of protists. Our analysis indicates that gene redundancy is a pervasive feature of dinoflagellate genomes, thus the mechanisms involved in its generation must have arisen early in the evolution of the group.


Asunto(s)
Dinoflagelados/genética , Etiquetas de Secuencia Expresada , Modelos Biológicos , Evolución Biológica , Análisis por Conglomerados , Reparación del ADN/genética , Dinoflagelados/clasificación , Biblioteca de Genes , Transferencia de Gen Horizontal , Genoma de Protozoos , Meiosis/genética , Filogenia , Retroelementos
9.
Proc Natl Acad Sci U S A ; 107(37): 16190-5, 2010 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-20736348

RESUMEN

With malaria parasites (Plasmodium spp.), Toxoplasma, and many other species of medical and veterinary importance its iconic representatives, the protistan phylum Apicomplexa has long been defined as a group composed entirely of parasites and pathogens. We present here a report of a beneficial apicomplexan: the mutualistic marine endosymbiont Nephromyces. For more than a century, the peculiar structural and developmental features of Nephromyces, and its unusual habitat, have thwarted characterization of the phylogenetic affinities of this eukaryotic microbe. Using short-subunit ribosomal DNA (SSU rDNA) sequences as key evidence, with sequence identity confirmed by fluorescence in situ hybridization (FISH), we show that Nephromyces, originally classified as a chytrid fungus, is actually an apicomplexan. Inferences from rDNA data are further supported by the several apicomplexan-like structural features in Nephromyces, including especially the strong resemblance of Nephromyces infective stages to apicomplexan sporozoites. The striking emergence of the mutualistic Nephromyces from a quintessentially parasitic clade accentuates the promise of this organism, and the three-partner symbiosis of which it is a part, as a model for probing the factors underlying the evolution of mutualism, pathogenicity, and infectious disease.


Asunto(s)
Apicomplexa/fisiología , Simbiosis , Urocordados/fisiología , Animales , Apicomplexa/ultraestructura , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Filogenia , Toxoplasma/fisiología , Urocordados/ultraestructura
10.
Curr Biol ; 33(6): 1099-1111.e6, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36921606

RESUMEN

Mitochondrial cristae expand the surface area of respiratory membranes and ultimately allow for the evolutionary scaling of respiration with cell volume across eukaryotes. The discovery of Mic60 homologs among alphaproteobacteria, the closest extant relatives of mitochondria, suggested that cristae might have evolved from bacterial intracytoplasmic membranes (ICMs). Here, we investigated the predicted structure and function of alphaproteobacterial Mic60, and a protein encoded by an adjacent gene Orf52, in two distantly related purple alphaproteobacteria, Rhodobacter sphaeroides and Rhodopseudomonas palustris. In addition, we assessed the potential physical interactors of Mic60 and Orf52 in R. sphaeroides. We show that the three α helices of mitochondrial Mic60's mitofilin domain, as well as its adjacent membrane-binding amphipathic helix, are present in alphaproteobacterial Mic60. The disruption of Mic60 and Orf52 caused photoheterotrophic growth defects, which are most severe under low light conditions, and both their disruption and overexpression led to enlarged ICMs in both studied alphaproteobacteria. We also found that alphaproteobacterial Mic60 physically interacts with BamA, the homolog of Sam50, one of the main physical interactors of eukaryotic Mic60. This interaction, responsible for making contact sites at mitochondrial envelopes, has been conserved in modern alphaproteobacteria despite more than a billion years of evolutionary divergence. Our results suggest a role for Mic60 in photosynthetic ICM development and contact site formation at alphaproteobacterial envelopes. Overall, we provide support for the hypothesis that mitochondrial cristae evolved from alphaproteobacterial ICMs and have therefore improved our understanding of the nature of the mitochondrial ancestor.


Asunto(s)
Alphaproteobacteria , Proteínas Mitocondriales , Proteínas Mitocondriales/metabolismo , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Membranas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Evolución Biológica
11.
J Parasit Dis ; 46(3): 672-685, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36091289

RESUMEN

Parasitological examination of the commercially important pelagic fish Sardinella aurita Valenciennes, 1847 (Clupeidae) from the Eastern coast of Algeria revealed xenomas in the peritoneal cavity, suggesting a microsporidian infection. The prevalence of the disease was approximately 30% on average, higher in smaller individuals and showing significant seasonal variation. The xenomas contained numerous ellipsoidal spores, surrounded by a dense layer of connective tissue. Spore sizes were 6.10 ± 0.38 µm length and 3.54 ± 0.43 µm width. Ultrastructural examination by transmission electron microscopy showed various development stages of the parasite, including meronts, sporonts, sporoblasts and mature spores. The internal organization of the mature spores, with a single nucleus, prominent posterior vacuole, a lamellar polaroplast and an isofilar polar tube arranged in a single row, was typical of the genus Glugea. The DNA sequence of the small subunit ribosomal RNA gene confirmed that this parasite belongs to the genus Glugea. Genetic and morphologic comparison with G. sardinellensis, a species previously described in the same host from Tunisia shows many similarities, although some molecular and morphometric inconsistencies precluded the unambiguous assignment of our samples to G. sardinellensis. At the same time, we do not find sufficient grounds to erect a new taxon for our parasite. We discuss the implications of our findings for the current state of the systematics of Glugea.

12.
Nat Ecol Evol ; 6(3): 253-262, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35027725

RESUMEN

Determining the phylogenetic origin of mitochondria is key to understanding the ancestral mitochondrial symbiosis and its role in eukaryogenesis. However, the precise evolutionary relationship between mitochondria and their closest bacterial relatives remains hotly debated. The reasons include pervasive phylogenetic artefacts as well as limited protein and taxon sampling. Here we developed a new model of protein evolution that accommodates both across-site and across-branch compositional heterogeneity. We applied this site-and-branch-heterogeneous model (MAM60 + GFmix) to a considerably expanded dataset that comprises 108 mitochondrial proteins of alphaproteobacterial origin, and novel metagenome-assembled genomes from microbial mats, microbialites and sediments. The MAM60 + GFmix model fits the data much better and agrees with analyses of compositionally homogenized datasets with conventional site-heterogenous models. The consilience of evidence thus suggests that mitochondria are sister to the Alphaproteobacteria to the exclusion of MarineProteo1 and Magnetococcia. We also show that the ancestral presence of the crista-developing mitochondrial contact site and cristae organizing system (a mitofilin-domain-containing Mic60 protein) in mitochondria and the Alphaproteobacteria only supports their close relationship.


Asunto(s)
Alphaproteobacteria , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Metagenoma , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales , Filogenia
13.
Mol Biol Evol ; 26(8): 1699-705, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19380463

RESUMEN

Intron reduction and loss is a significant component of genome compaction in many eukaryotic lineages, including yeasts, microsporidia, and some nucleomorphs. Nucleomorphs are the extremely reduced relicts of algal endosymbiont nuclei found in two lineages, cryptomonads and chlorarachniophytes. In cryptomonads, introns are rare or even lost altogether. In contrast, the nucleomorph of the chlorarachniophyte Bigelowiella natans contains the smallest nuclear genome known but paradoxically also retained over 800 tiny spliceosomal introns, ranging from 18 to 21 nt in length. Because introns have not been described in any other chlorarachniophyte nucleomorph, we do not know when these introns were reduced or whether they have been lost in other lineages. To gain insight into the evolution of these unique introns, we sequenced more than 150 spliceosomal introns in the nucleomorph of the chlorarachniophyte Gymnochlora stellata and compared size distribution, sequence features, and patterns of gain/loss. To clarify the possible relationship between intron size and splicing efficiency, we also analyzed the outcome of 580 splicing events. Overall, these data indicate that the radical intron size reduction took place in the ancestor of all extant chlorarachniophytes and that although most introns have been retained through this reductive process, intron loss has also occurred. We also show that intron size is not static, and splicing is not determined strictly by size, but that size does play a strong role in splicing efficiency, likely as part of a combination of sequence features and size.


Asunto(s)
Núcleo Celular/genética , Criptófitas/genética , Evolución Molecular , Intrones , Empalmosomas/genética , Criptófitas/citología , Criptófitas/fisiología , Genoma , Simbiosis
14.
FEMS Microbiol Ecol ; 96(11)2020 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-32918444

RESUMEN

Oomycetes include many devastating plant pathogens. Across oomycete diversity, plant-infecting lineages are interspersed by non-pathogenic ones. Unfortunately, our understanding of the evolution of lifestyle switches is hampered by a scarcity of data on the molecular biology of saprotrophic oomycetes, ecologically important primary colonizers of dead tissue that can serve as informative reference points for understanding the evolution of pathogens. Here, we established Salisapilia sapeloensis as a tractable system for the study of saprotrophic oomycetes. We generated multiple transcriptomes from S. sapeloensis and compared them with (i) 22 oomycete genomes and (ii) the transcriptomes of eight pathogenic oomycetes grown under 13 conditions. We obtained a global perspective on gene expression signatures of oomycete lifestyles. Our data reveal that oomycete saprotrophs and pathogens use similar molecular mechanisms for colonization but exhibit distinct expression patterns. We identify a S. sapeloensis-specific array and expression of carbohydrate-active enzymes and putative regulatory differences, highlighted by distinct expression levels of transcription factors. Salisapilia sapeloensis expresses only a small repertoire of candidates for virulence-associated genes. Our analyses suggest lifestyle-specific gene regulatory signatures and that, in addition to variation in gene content, shifts in gene regulatory networks underpin the evolution of oomycete lifestyles.


Asunto(s)
Oomicetos , Genoma , Estilo de Vida , Oomicetos/genética , Plantas , Virulencia
15.
Mol Biol Evol ; 25(7): 1297-306, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18385218

RESUMEN

Reconstructing the history of plastid acquisition and loss in the alveolate protists is a difficult problem because our knowledge of the distribution of plastids in extant lineages is incomplete due to the possible presence of cryptic, nonphotosynthetic plastids in several lineages. The discovery of the apicoplast in apicomplexan parasites has drawn attention to this problem and, more specifically, to the question of whether many other nonphotosynthetic lineages also contain cryptic plastids or are derived from plastid-containing ancestors. Oxyrrhis marina is one such organism: It is a heterotrophic, early-branching member of the dinoflagellate lineage for which there is no evidence of a plastid. To investigate the possibility that O. marina is derived from a photosynthetic ancestor, we have generated and analyzed a large-scale EST database and searched for evidence of plastid-derived genes. Here, we describe 8 genes whose phylogeny shows them to be derived from plastid-targeted homologues. These genes encode proteins from several pathways known to be localized in the plastids of other algae, including synthesis of tetrapyrroles, isoprenoids, and amino acids, as well as carbon metabolism and oxygen detoxification. The 5' end of 5 cDNAs were also characterized using cap-dependent or spliced leader-mediated reverse transcriptase-polymerase chain reaction, revealing that at least 4 of these genes have retained leaders that are similar in nature to the plastid-targeting signals of other secondary plastids, suggesting that these proteins may be targeted to a cryptic organelle. At least 2 genes do not encode such leaders, and their products may presently function in the cytosol. Altogether, the presence of plastid-derived genes in O. marina shows that its ancestors contained a plastid, and the pathways represented by the genes and presence of targeting signals on at least some of the genes further suggests that a relict organelle may still exist to fulfill plastid metabolic functions.


Asunto(s)
Dinoflagelados , Plastidios/genética , Proteínas Protozoarias , Animales , Dinoflagelados/citología , Dinoflagelados/genética , Evolución Molecular , Funciones de Verosimilitud , Filogenia , Plastidios/metabolismo , Proteínas Protozoarias/clasificación , Proteínas Protozoarias/genética
16.
Curr Opin Genet Dev ; 15(6): 601-8, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16188433

RESUMEN

Eukaryotic nuclear genomes are generally considered to be large and gene-sparse, but extreme reduction has taken place several times, resulting in small genomes with a high gene-density. This process involves losing genes, compacting those that remain, or often both. Recently sequenced nuclear genomes include several that have converged to similar gene-densities by many means: variation in numbers and lengths of genes, intergenic regions and introns all contribute, but not equally in any given genome. Genomes of microsporidia and nucleomorphs have taken compaction much further, and in these hyper-compacted genomes there is evidence that some basic processes such as gene expression might be affected by genome form. In these genomes, normally weak forces might become more significant drivers of genome evolution.


Asunto(s)
Núcleo Celular/genética , Evolución Molecular , Genoma , Genómica , Animales , Humanos
17.
Genome Biol Evol ; 11(1): 41-53, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30500900

RESUMEN

The phylum Apicomplexa is a quintessentially parasitic lineage, whose members infect a broad range of animals. One exception to this may be the apicomplexan genus Nephromyces, which has been described as having a mutualistic relationship with its host. Here we analyze transcriptome data from Nephromyces and its parasitic sister taxon, Cardiosporidium, revealing an ancestral purine degradation pathway thought to have been lost early in apicomplexan evolution. The predicted localization of many of the purine degradation enzymes to peroxisomes, and the in silico identification of a full set of peroxisome proteins, indicates that loss of both features in other apicomplexans occurred multiple times. The degradation of purines is thought to play a key role in the unusual relationship between Nephromyces and its host. Transcriptome data confirm previous biochemical results of a functional pathway for the utilization of uric acid as a primary nitrogen source for this unusual apicomplexan.


Asunto(s)
Apicomplexa/genética , Peroxisomas/genética , Purinas/metabolismo , Apicomplexa/metabolismo , Ácido Úrico/metabolismo
18.
Elife ; 82019 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-30789345

RESUMEN

The Alphaproteobacteria is an extraordinarily diverse and ancient group of bacteria. Previous attempts to infer its deep phylogeny have been plagued with methodological artefacts. To overcome this, we analyzed a dataset of 200 single-copy and conserved genes and employed diverse strategies to reduce compositional artefacts. Such strategies include using novel dataset-specific profile mixture models and recoding schemes, and removing sites, genes and taxa that are compositionally biased. We show that the Rickettsiales and Holosporales (both groups of intracellular parasites of eukaryotes) are not sisters to each other, but instead, the Holosporales has a derived position within the Rhodospirillales. A synthesis of our results also leads to an updated proposal for the higher-level taxonomy of the Alphaproteobacteria. Our robust consensus phylogeny will serve as a framework for future studies that aim to place mitochondria, and novel environmental diversity, within the Alphaproteobacteria.


Asunto(s)
Alphaproteobacteria/clasificación , Alphaproteobacteria/genética , Evolución Molecular , Filogenia , Biología Computacional , Genes Bacterianos , Biología Molecular
19.
Genome Biol Evol ; 11(10): 2727-2740, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31328784

RESUMEN

A most interesting exception within the parasitic Apicomplexa is Nephromyces, an extracellular, probably mutualistic, endosymbiont found living inside molgulid ascidian tunicates (i.e., sea squirts). Even though Nephromyces is now known to be an apicomplexan, many other questions about its nature remain unanswered. To gain further insights into the biology and evolutionary history of this unusual apicomplexan, we aimed to 1) find the precise phylogenetic position of Nephromyces within the Apicomplexa, 2) search for the apicoplast genome of Nephromyces, and 3) infer the major metabolic pathways in the apicoplast of Nephromyces. To do this, we sequenced a metagenome and a metatranscriptome from the molgulid renal sac, the specialized habitat where Nephromyces thrives. Our phylogenetic analyses of conserved nucleus-encoded genes robustly suggest that Nephromyces is a novel lineage sister to the Hematozoa, which comprises both the Haemosporidia (e.g., Plasmodium) and the Piroplasmida (e.g., Babesia and Theileria). Furthermore, a survey of the renal sac metagenome revealed 13 small contigs that closely resemble the genomes of the nonphotosynthetic reduced plastids, or apicoplasts, of other apicomplexans. We show that these apicoplast genomes correspond to a diverse set of most closely related but genetically divergent Nephromyces lineages that co-inhabit a single tunicate host. In addition, the apicoplast of Nephromyces appears to have retained all biosynthetic pathways inferred to have been ancestral to parasitic apicomplexans. Our results shed light on the evolutionary history of the only probably mutualistic apicomplexan known, Nephromyces, and provide context for a better understanding of its life style and intricate symbiosis.


Asunto(s)
Apicomplexa/genética , Apicoplastos/genética , Genoma , Apicomplexa/clasificación , Núcleo Celular/genética , Redes y Vías Metabólicas/genética , Filogenia
20.
J Mol Biol ; 372(2): 356-68, 2007 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-17655860

RESUMEN

The mitochondrial genome and the expression of the genes within it have evolved to be highly unusual in several lineages. Within alveolates, apicomplexans and dinoflagellates share the most reduced mitochondrial gene content on record, but differ from one another in organisation and function. To clarify how these characteristics originated, we examined mitochondrial genome form and expression in a key lineage that arose close to the divergence of apicomplexans and dinoflagellates, Oxyrrhis marina. We show that Oxyrrhis is a basal member of the dinoflagellate lineage whose mitochondrial genome has some unique characteristics while sharing others with apicomplexans or dinoflagellates. Specifically, Oxyrrhis has the smallest gene complement known, with several rRNA fragments and only two protein coding genes, cox1 and a cob-cox3 fusion. The genome appears to be highly fragmented, like that of dinoflagellates, but genes are frequently arranged as tandem copies, reminiscent of the repeating nature of the Plasmodium genome. In dinoflagellates and Oxyrrhis, genes are found in many arrangements, but the Oxyrrhis genome appears to be more structured, since neighbouring genes or gene fragments are invariably the same: cox1 and the cob-cox3 fusion were never found on the same genomic fragment. Analysing hundreds of cDNAs for both genes and circularized mRNAs from cob-cox3 showed that neither uses canonical start or stop codons, although a UAA terminator is created in the cob-cox3 fusion mRNA by post-transcriptional oligoadenylation. mRNAs from both genes also use a novel 5' oligo(U) cap. Extensive RNA editing is characteristic of dinoflagellates, but we find no editing in Oxyrrhis. Overall, the combination of characteristics found in the Oxyrrhis genome allows us to plot the sequence of many events that led to the extreme organisation of apicomplexan and dinoflalgellate mitochondrial genomes.


Asunto(s)
ADN Mitocondrial/genética , Dinoflagelados/genética , Evolución Molecular , Genes Protozoarios/genética , Genoma de Protozoos/genética , Mitocondrias/genética , Filogenia , Animales , Secuencia de Bases , Codón Iniciador/genética , Codón de Terminación/genética , ADN Complementario/genética , Dinoflagelados/clasificación , Dinoflagelados/citología , Dinoflagelados/enzimología , Regulación de la Expresión Génica , Mitocondrias/enzimología , Datos de Secuencia Molecular , Caperuzas de ARN/química , Edición de ARN , ARN Protozoario/genética , ARN Protozoario/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA