RESUMEN
Granzymes are a family of proteases used by CD8 T cells to mediate cytotoxicity and other less-defined activities. The substrate and mechanism of action of many granzymes are unknown, although they diverge among the family members. In this study, we show that mouse CD8+ tumor-infiltrating lymphocytes (TILs) express a unique array of granzymes relative to CD8 T cells outside the tumor microenvironment in multiple tumor models. Granzyme F was one of the most highly upregulated genes in TILs and was exclusively detected in PD1/TIM3 double-positive CD8 TILs. To determine the function of granzyme F and to improve the cytotoxic response to leukemia, we constructed chimeric Ag receptor T cells to overexpress a single granzyme, granzyme F or the better-characterized granzyme A or B. Using these doubly recombinant T cells, we demonstrated that granzyme F expression improved T cell-mediated cytotoxicity against target leukemia cells and induced a form of cell death other than chimeric Ag receptor T cells expressing only endogenous granzymes or exogenous granzyme A or B. However, increasing expression of granzyme F also had a detrimental impact on the viability of the host T cells, decreasing their persistence in circulation in vivo. These results suggest a unique role for granzyme F as a marker of terminally differentiated CD8 T cells with increased cytotoxicity, but also increased self-directed cytotoxicity, suggesting a potential mechanism for the end of the terminal exhaustion pathway.
Asunto(s)
Leucemia , Receptores Quiméricos de Antígenos , Animales , Ratones , Linfocitos T CD8-positivos , Granzimas , Leucemia/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Microambiente Tumoral , Citotoxicidad InmunológicaRESUMEN
T cells recognize and respond to self antigens in both cancer and autoimmunity. One strategy to influence this response is to incorporate amino acid substitutions into these T cell-specific epitopes. This strategy is being reconsidered now with the goal of increasing time to regression with checkpoint blockade therapies in cancer and antigen-specific immunotherapies in autoimmunity. We discuss how these amino acid substitutions change the interactions with the MHC class I or II molecule and the responding T cell repertoire. Amino acid substitutions in epitopes that are the most effective in therapies bind more strongly to T cell receptor and/or MHC molecules and cross-react with the same repertoire of T cells as the natural antigen.
Asunto(s)
Autoinmunidad , Epítopos/inmunología , Inmunomodulación , Neoplasias/etiología , Péptidos/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Sustitución de Aminoácidos , Animales , Reacciones Cruzadas , Susceptibilidad a Enfermedades/inmunología , Epítopos/genética , Antígenos de Histocompatibilidad/genética , Antígenos de Histocompatibilidad/inmunología , Humanos , Mutación , Neoplasias/metabolismo , Neoplasias/patología , Péptidos/genética , Receptores de Antígenos de Linfocitos T/metabolismoRESUMEN
Tumors frequently express unmutated self-tumor-associated antigens (self-TAAs). However, trial results using self-TAAs as vaccine targets against cancer are mixed, often attributed to deletion of T cells with high-affinity receptors (TCRs) for self-TAAs during T cell development. Mutating these weak self-TAAs to produce higher affinity, effective vaccines is challenging, since the mutations may not benefit all members of the broad self-TAA-specific T cell repertoire. We previously identified a common weak murine self-TAA that we converted to a highly effective antitumor vaccine by a single amino acid substitution. In this case the modified and natural self-TAAs still raised very similar sets of CD8 T cells. Our structural studies herein show that the modification of the self-TAA resulted in a subtle change in the major histocompatibility complex I-TAA structure. This amino acid substitution allowed a dramatic conformational change in the peptide during subsequent TCR engagement, creating a large increase in TCR affinity and accounting for the efficacy of the modified self-TAA as a vaccine. These results show that carefully selected, well-characterized modifications to a poorly immunogenic self-TAA can rescue the immune response of the large repertoire of weakly responding natural self-TAA-specific CD8 T cells, driving them to proliferate and differentiate into functional effectors. Subsequently, the unmodified self-TAA on the tumor cells, while unable to drive this response, is nevertheless a sufficient target for the CD8 cytotoxic effectors. Our results suggest a pathway for more efficiently identifying variants of common self-TAAs, which could be useful in vaccine development, complementing other current nonantigen-specific immunotherapies.
Asunto(s)
Antígenos de Neoplasias/inmunología , Autoantígenos/inmunología , Linfocitos T CD8-positivos/inmunología , Neoplasias Experimentales/inmunología , Péptidos/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Animales , Vacunas contra el Cáncer/inmunología , Línea Celular Tumoral , Femenino , Ratones , Ratones Endogámicos BALB C , Neoplasias Experimentales/prevención & control , Células Sf9 , SpodopteraRESUMEN
Cytotoxic T lymphocytes, differentiated CD8+ T cells, use multiple mechanisms to mediate their function, including release of granules containing perforin and granzymes at target cells. Granzymes are a family of cytotoxic proteases that each act on unique sets of biological substrates within target cells, usually to induce cell death. Granzymes are differentially expressed within T cells, depending on their environment and activation state, making the granzyme cytotoxic pathway dynamic and responsive to individual circumstances. In this review, we describe what is currently known about granzyme structure, processing, and granzyme-induced cell death in the context of cancer and in some other inflammatory diseases.
Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Granzimas/metabolismo , Linfocitos T Citotóxicos/metabolismo , Animales , Regulación de la Expresión Génica , HumanosRESUMEN
The strength of the interaction between T-cell receptors (TCRs) and their ligands, peptide/major histocompatibility complex complexes (pMHCs), is one of the most frequently discussed and investigated features of T cells in immuno-oncology today. Although there are many molecules on the surface of T cells that interact with ligands on other cells, the TCR/pMHC is the only receptor-ligand pair that offers antigen specificity and dictates the functional response of the T cell. The strength of the TCR/pMHC interaction, along with the environment in which this interaction takes place, is key to how the T cell will respond. The TCR repertoire of T cells that interact with tumor-associated antigens is vast, although typically of low affinity. Here, we focus on the low-affinity interactions between TCRs from CD8+ T cells and different models used in immuno-oncology.
Asunto(s)
Neoplasias/inmunología , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Antígenos de Histocompatibilidad/inmunología , Humanos , Inmunoterapia/métodosRESUMEN
Sarcoidosis is a granulomatous disease that primarily affects the lungs and is characterized by an accumulation of CD4+ T cells in the bronchoalveolar lavage (BAL). Previous work has indicated that HLA-DRB1*03:01+ (DR3+) patients diagnosed with the acute form of the disease, Löfgren's syndrome (LS), have an accumulation of CD4+ T cells bearing TCRs using TRAV12-1 (formerly AV2S3). However, the importance of these α-chains in disease pathogenesis and the paired TCRß-chain remains unknown. This study aimed to identify expanded αßTCR pairs expressed on CD4+ T cells derived from the BAL of DR3+ LS patients. Using a deep-sequencing approach, we determined TCRα- and TCRß-chain usage, as well as αßTCR pairs expressed on BAL CD4+ T cells from LS patients. TRAV12-1 and TRBV2 (formerly BV22) were the most expanded V region gene segments in DR3+ LS patients relative to control subjects, and TRAV12-1 and TRBV2 CDR3 motifs were shared among multiple DR3+ LS patients. When assessing αßTCR pairing, TRAV12-1 preferentially paired with TRBV2, and these TRAV12-1/TRBV2 TCRs displayed CDR3 homology. These findings suggest that public CD4+ TCR repertoires exist among LS patients and that these T cells are recognizing the putative sarcoidosis-associated Ag(s) in the context of DR3.
Asunto(s)
Líquido del Lavado Bronquioalveolar/citología , Pulmón/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Sarcoidosis Pulmonar/inmunología , Enfermedad Aguda , Adulto , Anciano , Líquido del Lavado Bronquioalveolar/inmunología , Linfocitos T CD4-Positivos/inmunología , Femenino , Cadenas HLA-DRB1/genética , Cadenas HLA-DRB1/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Miembro 25 de Receptores de Factores de Necrosis Tumoral/genética , Miembro 25 de Receptores de Factores de Necrosis Tumoral/inmunologíaRESUMEN
Infiltration of T cells in breast tumors correlates with improved survival of patients with breast cancer, despite relatively few mutations in these tumors. To determine if T-cell specificity can be harnessed to augment immunotherapies of breast cancer, we sought to identify the alpha-beta paired T-cell receptors (TCRs) of tumor-infiltrating lymphocytes shared between multiple patients. Because TCRs function as heterodimeric proteins, we used an emulsion-based RT-PCR assay to link and amplify TCR pairs. Using this assay on engineered T-cell hybridomas, we observed â¼85% accurate pairing fidelity, although TCR recovery frequency varied. When we applied this technique to patient samples, we found that for any given TCR pair, the dominant alpha- or beta-binding partner comprised â¼90% of the total binding partners. Analysis of TCR sequences from primary tumors showed about fourfold more overlap in tumor-involved relative to tumor-free sentinel lymph nodes. Additionally, comparison of sequences from both tumors of a patient with bilateral breast cancer showed 10% overlap. Finally, we identified a panel of unique TCRs shared between patients' tumors and peripheral blood that were not found in the peripheral blood of controls. These TCRs encoded a range of V, J, and complementarity determining region 3 (CDR3) sequences on the alpha-chain, and displayed restricted V-beta use. The nucleotides encoding these shared TCR CDR3s varied, suggesting immune selection of this response. Harnessing these T cells may provide practical strategies to improve the shared antigen-specific response to breast cancer.
Asunto(s)
Neoplasias de la Mama/genética , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/metabolismo , Secuencia de Bases , Línea Celular , Emulsiones , Femenino , Humanos , Reacción en Cadena de la Polimerasa/métodosRESUMEN
Mechanisms of self-tolerance often result in CD8(+) tumor-infiltrating lymphocytes (TIL) with a hypofunctional phenotype incapable of tumor clearance. Using a transplantable colon carcinoma model, we found that CD8(+) T cells became tolerized in <24 h in an established tumor environment. To define the collective impact of pathways suppressing TIL function, we compared genome-wide mRNA expression of tumor-specific CD8(+) T cells from the tumor and periphery. Notably, gene expression induced during TIL hypofunction more closely resembled self-tolerance than viral exhaustion. Differential gene expression was refined to identify a core set of genes that defined hypofunctional TIL; these data comprise the first molecular profile of tumor-specific TIL that are naturally responding and represent a polyclonal repertoire. The molecular profile of TIL was further dissected to determine the extent of overlap and distinction between pathways that collectively restrict T cell functions. As suggested by the molecular profile of TIL, protein expression of inhibitory receptor LAG-3 was differentially regulated throughout prolonged late-G1/early-S phase of the cell cycle. Our data may accelerate efficient identification of combination therapies to boost anti-tumor function of TIL specifically against tumor cells.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias Experimentales/inmunología , Escape del Tumor/inmunología , Animales , Separación Celular , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Ratones Endogámicos BALB C , Análisis de Secuencia por Matrices de OligonucleótidosRESUMEN
RATIONALE: The pulmonary mononuclear phagocyte system is a critical host defense mechanism composed of macrophages, monocytes, monocyte-derived cells, and dendritic cells. However, our current characterization of these cells is limited because it is derived largely from animal studies and analysis of human mononuclear phagocytes from blood and small tissue resections around tumors. OBJECTIVES: Phenotypic and morphologic characterization of mononuclear phagocytes that potentially access inhaled antigens in human lungs. METHODS: We acquired and analyzed pulmonary mononuclear phagocytes from fully intact nondiseased human lungs (including the major blood vessels and draining lymph nodes) obtained en bloc from 72 individual donors. Differential labeling of hematopoietic cells via intrabronchial and intravenous administration of antibodies within the same lobe was used to identify extravascular tissue-resident mononuclear phagocytes and exclude cells within the vascular lumen. Multiparameter flow cytometry was used to identify mononuclear phagocyte populations among cells labeled by each route of antibody delivery. MEASUREMENTS AND MAIN RESULTS: We performed a phenotypic analysis of pulmonary mononuclear phagocytes isolated from whole nondiseased human lungs and lung-draining lymph nodes. Five pulmonary mononuclear phagocytes were observed, including macrophages, monocyte-derived cells, and dendritic cells that were phenotypically distinct from cell populations found in blood. CONCLUSIONS: Different mononuclear phagocytes, particularly dendritic cells, were labeled by intravascular and intrabronchial antibody delivery, countering the notion that tissue and blood mononuclear phagocytes are equivalent systems. Phenotypic descriptions of the mononuclear phagocytes in nondiseased lungs provide a precedent for comparative studies in diseased lungs and potential targets for therapeutics.
Asunto(s)
Citometría de Flujo , Pulmón/inmunología , Ganglios Linfáticos/inmunología , Sistema Mononuclear Fagocítico/inmunología , Fagocitos/inmunología , Adulto , Cadáver , Femenino , Humanos , MasculinoRESUMEN
Vaccines that incorporate peptide mimics of tumor antigens, or mimotope vaccines, are commonly used in cancer immunotherapy and function by eliciting increased numbers of T cells that cross-react with the native tumor antigen. Unfortunately, they often elicit T cells that do not cross-react with or that have low affinity for the tumor antigen. Using a high affinity tumor-specific T cell clone, we identified a panel of mimotope vaccines for the dominant peptide antigen from a mouse colon tumor that elicits a range of tumor protection following vaccination. The TCR from this high affinity T cell clone was rarely identified in ex vivo evaluation of tumor-specific T cells elicited by mimotope vaccination. Conversely, a low affinity clone found in the tumor and following immunization was frequently identified. Using peptide libraries, we determined if this frequently identified TCR improved the discovery of efficacious mimotopes. We demonstrated that the representative TCR identified more protective mimotopes than the high affinity TCR. These results suggest that targeting a dominant fraction of tumor-specific T cells generates potent immunity and that consideration of the available T cell repertoire is necessary for targeted T cell therapy. These results have important implications when optimizing mimotope vaccines for cancer immunotherapy.
Asunto(s)
Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer/inmunología , Inmunoterapia , Proteínas de Neoplasias/inmunología , Neoplasias/terapia , Biblioteca de Péptidos , Receptores de Antígenos de Linfocitos T/inmunología , Animales , Vacunas contra el Cáncer/farmacología , Ratones , Ratones Endogámicos BALB C , Neoplasias/inmunologíaRESUMEN
Most ER+ breast cancers (BC) express androgen receptors (AR). This randomized phase II trial of 4 months of neoadjuvant fulvestrant (Fulv) alone or with enzalutamide (Combo) assessed whether adding AR blockade to Fulv would limit residual tumor at the time of surgery, as measured by modified preoperative endocrine predictive index (PEPI) score. Eligible patients were women with ER+/HER2- primary BC cT2 or greater. Stratification factors were clinical node and T-stage. Fresh tumor biopsies were required at study entry, after 4 weeks on therapy (W5), and at surgery. Laboratory analyses on tumors included immunochemistry (IHC) for ER/PR/AR/GR and Ki67 protein, evaluation of gene expression, multiplex for myeloid lineage immune cells, reverse-phase protein array, and plasma metabolomic analyses. Of 69 consented patients, 59 were evaluable. Toxicity was as expected with endocrine therapy. Combo achieved PEPI = 0 more frequently (24%: 8/33) than Fulv (8%: 2/26). Ki67 was ≤10% across arms by W5 in 76% of tumors. Activation of mTOR pathway proteins was elevated in tumors with poor Ki67 response. Tumors in both arms showed decreased estrogen-regulated and cell division gene sets, while Combo arm tumors uniquely exhibited enrichment of immune activation gene sets, including interferon gamma, complement, inflammation, antigen processing, and B and T cell activation. Multiplex IHC showed significantly reduced tumor-associated macrophages and CD14+/HLADR-/CD68- MDSCs in Combo tumors at W5. In summary, Combo tumors showed a higher PEPI = 0 response, Ki67 response, and more activated tumor immune microenvironment than Fulv. The odds of response were 4.6-fold higher for patients with ILC versus IDC. (Trial registration: This trial is registered at Clinicaltrials.gov ( https://www.clinicaltrials.gov/study/NCT02955394?id=16-1042&rank=1 ). The trial registration number is NCT02955394. The full trial protocol is available under Study Details at the Clinicaltrials.gov link provided).
RESUMEN
Variant peptide vaccines are used clinically to expand T cells that cross-react with tumor-associated Ags (TAA). To investigate the effects of elevated endogenous TAA expression on variant peptide-induced responses, we used the GP70 TAA model. Although young BALB/c mice display T cell tolerance to the TAA GP70(423-431) (AH1), expression of GP70 and suppression of AH1-specific responses increases with age. We hypothesized that as TAA expression increases, the AH1 cross-reactivity of variant peptide-elicited T cell responses diminishes. Controlling for immunosenescence, we showed that elevated GP70 expression suppressed AH1 cross-reactive responses elicited by two AH1 peptide variants. A variant that elicited almost exclusively AH1 cross-reactive T cells in young mice elicited few or no T cells in aging mice with Ab-detectable GP70 expression. In contrast, a variant that elicited a less AH1 cross-reactive T cell response in young mice successfully expanded AH1 cross-reactive T cells in all aging mice tested. However, these T cells bound the AH1/MHC complex with a relatively short half-life and responded poorly to ex vivo stimulation with the AH1 peptide. Variant peptide vaccine responses were also suppressed when AH1 peptide is administered tolerogenically to young mice before vaccination. Analyses of variant-specific precursor T cells from naive mice with Ab-detectable GP70 expression determined that these T cells expressed PD-1 and had downregulated IL-7Rα expression, suggesting they were anergic or undergoing deletion. Although variant peptide vaccines were less effective as TAA expression increases, data presented in this article also suggest that complementary immunotherapies may induce the expansion of T cells with functional TAA recognition.
Asunto(s)
Variación Antigénica/inmunología , Vacunas contra el Cáncer/inmunología , Regulación Neoplásica de la Expresión Génica/inmunología , Virus de la Leucemia Murina de Moloney/inmunología , Regulación hacia Arriba/inmunología , Vacunas de Subunidad/inmunología , Proteínas del Envoltorio Viral/biosíntesis , Envejecimiento/inmunología , Animales , Vacunas contra el Cáncer/antagonistas & inhibidores , Células Cultivadas , Regulación hacia Abajo/inmunología , Epítopos de Linfocito T/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Regulación hacia Arriba/genética , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/antagonistas & inhibidores , Proteínas del Envoltorio Viral/deficiencia , Proteínas del Envoltorio Viral/genéticaRESUMEN
Peptide vaccines enhance the response of T cells toward tumor antigens and represent a strategy to augment antigen-independent immunotherapies of cancer. However, peptide vaccines that include native tumor antigens rarely prevent tumor growth. We have assembled a set of peptide variants for a mouse-colon tumor model to determine how to improve T-cell responses. These peptides have similar affinity for MHC molecules, but differ in the affinity of the peptide-MHC/T-cell receptor interaction with a tumor-specific T-cell clone. We systematically demonstrated that effective antitumor responses are generated after vaccination with variant peptides that stimulate the largest proportion of endogenous T cells specific for the native tumor antigen. Importantly, we found some variant peptides that strongly stimulated a specific T-cell clone in vitro, but elicited fewer tumor-specific T cells in vivo, and were not protective. The T cells expanded by the effective vaccines responded to the wild-type antigen by making cytokines and killing target cells, whereas most of the T cells expanded by the ineffective vaccines only responded to the peptide variants. We conclude that peptide-variant vaccines are most effective when the peptides react with a large responsive part of the tumor-specific T-cell repertoire.
Asunto(s)
Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer/inmunología , Neoplasias Colorrectales/inmunología , Linfocitos T/inmunología , Vacunas de Subunidad/inmunología , Animales , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/genética , Línea Celular , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/prevención & control , Citotoxicidad Inmunológica/inmunología , Femenino , Antígenos de Histocompatibilidad Clase I/inmunología , Epítopos Inmunodominantes/inmunología , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Biblioteca de Péptidos , Receptores de Antígenos de Linfocitos T/inmunología , Spodoptera , Linfocitos T/metabolismo , Vacunación , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/genéticaRESUMEN
T-cell receptor (TCR) binding strength to peptide-MHC antigen complex influences numerous T-cell functions. However, the vast diversity of a polyclonal T-cell repertoire for even a single antigen greatly increases the complexity of studying the impact of TCR affinity on T-cell function. Here, we determined how TCR binding strength affected the protein and transcriptional profile of an endogenous, polyclonal T-cell response to a known tumor-associated antigen (TAA) within the tumor microenvironment (TME). We confirmed that the staining intensity by flow cytometry and the counts by sequencing from MHC-tetramer labeling were reliable surrogates for the TCR-peptide-MHC steady-state binding affinity. We further demonstrated by single-cell RNA sequencing that tumor-infiltrating lymphocytes (TIL) with high and low binding affinity for a TAA can differentiate into cells with many antigen-specific transcriptional profiles within an established TME. However, more progenitor-like phenotypes were significantly biased towards lower affinity T cells, and proliferating phenotypes showed significant bias towards high-affinity TILs. In addition, we found that higher affinity T cells advanced more rapidly to terminal phases of T-cell exhaustion and exhibited better tumor control. We confirmed the polyclonal TIL results using a TCR transgenic mouse possessing a single low-affinity TCR targeting the same TAA. These T cells maintained a progenitor-exhausted phenotype and exhibited impaired tumor control. We propose that high-affinity TCR interactions drive T-cell fate decisions more rapidly than low-affinity interactions and that these cells differentiate faster. These findings illustrate divergent forms of T-cell dysfunction based on TCR affinity which may impact TIL therapies and antitumor responses.
Asunto(s)
Linfocitos Infiltrantes de Tumor , Neoplasias , Ratones , Animales , Receptores de Antígenos de Linfocitos T , Linfocitos T , Neoplasias/metabolismo , Antígenos de Neoplasias/metabolismo , Ratones Transgénicos , Linfocitos T CD8-positivos , Péptidos/metabolismo , Microambiente TumoralRESUMEN
A major goal of immunotherapy for cancer is the activation of T cell responses against tumor-associated antigens (TAAs). One important strategy for improving antitumor immunity is vaccination with peptide variants of TAAs. Understanding the mechanisms underlying the expansion of T cells that respond to the native tumor antigen is an important step in developing effective peptide-variant vaccines. Using an immunogenic mouse colon cancer model, we compare the binding properties and the TCR genes expressed by T cells elicited by peptide variants that elicit variable antitumor immunity directly ex vivo. The steady-state affinity of the natural tumor antigen for the T cells responding to effective peptide vaccines was higher relative to ineffective peptides, consistent with their improved function. Ex vivo analysis showed that T cells responding to the effective peptides expressed a CDR3ß motif, which was also shared by T cells responding to the natural antigen and not those responding to the less effective peptide vaccines. Importantly, these data demonstrate that peptide vaccines can expand T cells that naturally respond to tumor antigens, resulting in more effective antitumor immunity. Future immunotherapies may require similar stringent analysis of the responding T cells to select optimal peptides as vaccine candidates.
Asunto(s)
Vacunas contra el Cáncer/inmunología , Regiones Determinantes de Complementariedad/inmunología , Linfocitos T/inmunología , Animales , Antígenos de Neoplasias/inmunología , Neoplasias del Colon/inmunología , Femenino , Ratones , Ratones Endogámicos BALB C , Receptores de Antígenos de Linfocitos T/inmunología , Vacunas de Subunidad/inmunologíaRESUMEN
Certain CD8 T cell responses are particularly effective at controlling infection, as exemplified by elite control of HIV in individuals harboring HLA-B57. To understand the structural features that contribute to CD8 T cell elite control, we focused on a strongly protective CD8 T cell response directed against a parasite-derived peptide (HF10) presented by an atypical MHC-I molecule, H-2Ld. This response exhibits a focused TCR repertoire dominated by Vß2, and a representative TCR (TG6) in complex with Ld-HF10 reveals an unusual structure in which both MHC and TCR contribute extensively to peptide specificity, along with a parallel footprint of TCR on its pMHC ligand. The parallel footprint is a common feature of Vß2-containing TCRs and correlates with an unusual Vα-Vß interface, CDR loop conformations, and Vß2-specific germline contacts with peptides. Vß2 and Ld may represent "specialist" components for antigen recognition that allows for particularly strong and focused T cell responses.
Asunto(s)
Linfocitos T CD8-positivos , Péptidos , Receptores de Antígenos de Linfocitos T alfa-beta , Receptores de Antígenos de Linfocitos T , Linfocitos T CD8-positivos/inmunología , Células Germinativas/inmunología , Antígeno de Histocompatibilidad H-2D/inmunología , Conformación Molecular , Péptidos/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Transglutaminasas/inmunologíaRESUMEN
Antigenic differences formed by alterations in gene expression and alternative splicing are predicted in breast cancer cells undergoing epithelial to mesenchymal transition (EMT) and the reverse plasticity known as MET. How these antigenic differences impact immune interactions and the degree to which they can be exploited to enhance immune responses against mesenchymal cells is not fully understood. We utilized a master microRNA regulator of EMT to alter mesenchymal-like EO771 mammary carcinoma cells to a more epithelial phenotype. A computational approach was used to identify neoantigens derived from the resultant differentially expressed somatic variants (SNV) and alternative splicing events (neojunctions). Using whole cell vaccines and peptide-based vaccines, we find superior cytotoxicity against the more-epithelial cells and explore the potential of neojunction-derived antigens to elicit T cell responses through experiments designed to validate the computationally predicted neoantigens. Overall, results identify EMT-associated splicing factors common to both mouse and human breast cancer cells as well as immunogenic SNV- and neojunction-derived neoantigens in mammary carcinoma cells.
RESUMEN
Many immunotherapies rely on CD8+ effector T cells to recognize and kill cognate tumor cells. These T cell-based immunotherapies include adoptive cell therapy, such as CAR T cells or transgenic TCR T cells, and anti-cancer vaccines which expand endogenous T cell populations. Tumor mutation burden and the choice of antigen are among the most important aspects of T cell-based immunotherapies. Here, we highlight various classes of cancer antigens, including self, neojunction-derived, human endogenous retrovirus (HERV)-derived, and somatic nucleotide variant (SNV)-derived antigens, and consider their utility in T cell-based immunotherapies. We further discuss the respective anti-tumor/anti-self-properties that influence both the degree of immunotolerance and potential off-target effects associated with each antigen class.
RESUMEN
Many immune suppressive mechanisms utilized by triple negative breast cancer (TNBC) are regulated by oncogenic epithelial-to-mesenchymal transition (EMT). How TNBC EMT impacts innate immune cells is not fully understood. To determine how TNBC suppresses antitumor macrophages, we used microRNA-200c (miR-200c), a powerful repressor of EMT, to drive mesenchymal-like mouse mammary carcinoma and human TNBC cells toward a more epithelial state. MiR-200c restoration significantly decreased growth of mouse mammary carcinoma Met-1 cells in culture and in vivo. Cytokine profiling of Met-1 and human BT549 cells revealed that miR-200c upregulated cytokines, such as granulocyte-macrophage colony-stimulating factor (GM-CSF), promoted M1 antitumor macrophage polarization. Cytokines upregulated by miR-200c correlated with an epithelial gene signature and M1 macrophage polarization in BC patients and predicted a more favorable overall survival for TNBC patients. Our findings demonstrate that immunogenic cytokines (e.g., GM-CSF) are suppressed in aggressive TNBC, warranting further investigation of cytokine-based therapies to limit disease recurrence.