Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 175(7): 1917-1930.e13, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30550789

RESUMEN

Ebola virus (EBOV) infection often results in fatal illness in humans, yet little is known about how EBOV usurps host pathways during infection. To address this, we used affinity tag-purification mass spectrometry (AP-MS) to generate an EBOV-host protein-protein interaction (PPI) map. We uncovered 194 high-confidence EBOV-human PPIs, including one between the viral transcription regulator VP30 and the host ubiquitin ligase RBBP6. Domain mapping identified a 23 amino acid region within RBBP6 that binds to VP30. A crystal structure of the VP30-RBBP6 peptide complex revealed that RBBP6 mimics the viral nucleoprotein (NP) binding to the same interface of VP30. Knockdown of endogenous RBBP6 stimulated viral transcription and increased EBOV replication, whereas overexpression of either RBBP6 or the peptide strongly inhibited both. These results demonstrate the therapeutic potential of biologics that target this interface and identify additional PPIs that may be leveraged for novel therapeutic strategies.


Asunto(s)
Proteínas Portadoras , Proteínas de Unión al ADN , Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/metabolismo , Factores de Transcripción , Proteínas Virales , Replicación Viral/fisiología , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Células HeLa , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/patología , Humanos , Mapeo de Interacción de Proteínas , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
2.
Mol Cell ; 83(21): 3921-3930.e7, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37890482

RESUMEN

The enzymatic activity of the SARS-CoV-2 nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain is essential for viral propagation, with three distinct activities associated with modification of the nsp9 N terminus, NMPylation, RNAylation, and deRNAylation/capping via a GDP-polyribonucleotidyltransferase reaction. The latter two activities comprise an unconventional mechanism for initiating viral RNA 5' cap formation, while the role of NMPylation is unclear. The structural mechanisms for these diverse enzymatic activities have not been properly delineated. Here, we determine high-resolution cryoelectron microscopy (cryo-EM) structures of catalytic intermediates for the NMPylation and deRNAylation/capping reactions, revealing diverse nucleotide binding poses and divalent metal ion coordination sites to promote its repertoire of activities. The deRNAylation/capping structure explains why GDP is a preferred substrate for the capping reaction over GTP. Altogether, these findings enhance our understanding of the promiscuous coronaviral NiRAN domain, a therapeutic target, and provide an accurate structural platform for drug development.


Asunto(s)
COVID-19 , Nucleotidiltransferasas , Humanos , Nucleotidiltransferasas/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Microscopía por Crioelectrón , ARN Viral/genética
3.
EMBO J ; 40(18): e105658, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34260076

RESUMEN

The Ebola virus VP30 protein interacts with the viral nucleoprotein and with host protein RBBP6 via PPxPxY motifs that adopt non-canonical orientations, as compared to other proline-rich motifs. An affinity tag-purification mass spectrometry approach identified additional PPxPxY-containing host proteins hnRNP L, hnRNPUL1, and PEG10, as VP30 interactors. hnRNP L and PEG10, like RBBP6, inhibit viral RNA synthesis and EBOV infection, whereas hnRNPUL1 enhances. RBBP6 and hnRNP L modulate VP30 phosphorylation, increase viral transcription, and exert additive effects on viral RNA synthesis. PEG10 has more modest inhibitory effects on EBOV replication. hnRNPUL1 positively affects viral RNA synthesis but in a VP30-independent manner. Binding studies demonstrate variable capacity of the PPxPxY motifs from these proteins to bind VP30, define PxPPPPxY as an optimal binding motif, and identify the fifth proline and the tyrosine as most critical for interaction. Competition binding and hydrogen-deuterium exchange mass spectrometry studies demonstrate that each protein binds a similar interface on VP30. VP30 therefore presents a novel proline recognition domain that is targeted by multiple host proteins to modulate viral transcription.


Asunto(s)
Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/metabolismo , Fiebre Hemorrágica Ebola/virología , Prolina/metabolismo , Tirosina/metabolismo , Proteínas Portadoras , Regulación Viral de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Unión Proteica , Replicación Viral
4.
bioRxiv ; 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37808858

RESUMEN

The enzymatic activity of the SARS-CoV-2 nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain is essential for viral propagation, with three distinct activities associated with modification of the nsp9 N-terminus, NMPylation, RNAylation, and deRNAylation/capping via a GDP-polyribonucleotidyltransferase reaction. The latter two activities comprise an unconventional mechanism for initiating viral RNA 5'-cap formation, while the role of NMPylation is unclear. The structural mechanisms for these diverse enzymatic activities have not been properly delineated. Here we determine high-resolution cryo-electron microscopy structures of catalytic intermediates for the NMPylation and deRNAylation/capping reactions, revealing diverse nucleotide binding poses and divalent metal ion coordination sites to promote its repertoire of activities. The deRNAylation/capping structure explains why GDP is a preferred substrate for the capping reaction over GTP. Altogether, these findings enhance our understanding of the promiscuous coronaviral NiRAN domain, a therapeutic target, and provide an accurate structural platform for drug development.

5.
mSphere ; 6(6): e0071121, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34851166

RESUMEN

The COVID-19 pandemic has highlighted the need to identify additional antiviral small molecules to complement existing therapies. Although increasing evidence suggests that metabolites produced by the human microbiome have diverse biological activities, their antiviral properties remain poorly explored. Using a cell-based SARS-CoV-2 infection assay, we screened culture broth extracts from a collection of phylogenetically diverse human-associated bacteria for the production of small molecules with antiviral activity. Bioassay-guided fractionation uncovered three bacterial metabolites capable of inhibiting SARS-CoV-2 infection. This included the nucleoside analogue N6-(Δ2-isopentenyl)adenosine, the 5-hydroxytryptamine receptor agonist tryptamine, and the pyrazine 2,5-bis(3-indolylmethyl)pyrazine. The most potent of these, N6-(Δ2-isopentenyl)adenosine, had a 50% inhibitory concentration (IC50) of 2 µM. These natural antiviral compounds exhibit structural and functional similarities to synthetic drugs that have been clinically examined for use against COVID-19. Our discovery of structurally diverse metabolites with anti-SARS-CoV-2 activity from screening a small fraction of the bacteria reported to be associated with the human microbiome suggests that continued exploration of phylogenetically diverse human-associated bacteria is likely to uncover additional small molecules that inhibit SARS-CoV-2 as well as other viral infections. IMPORTANCE The continued prevalence of COVID-19 and the emergence of new variants has once again put the spotlight on the need for the identification of SARS-CoV-2 antivirals. The human microbiome produces an array of small molecules with bioactivities (e.g., host receptor ligands), but its ability to produce antiviral small molecules is relatively underexplored. Here, using a cell-based screening platform, we describe the isolation of three microbiome-derived metabolites that are able to prevent SARS-CoV-2 infection in vitro. These molecules display structural similarities to synthetic drugs that have been explored for the treatment of COVID-19, and these results suggest that the microbiome may be a fruitful source of the discovery of small molecules with antiviral activities.


Asunto(s)
Antivirales/farmacología , Bacterias/metabolismo , Medios de Cultivo/química , Redes y Vías Metabólicas , Microbiota/fisiología , SARS-CoV-2/efectos de los fármacos , Simbiosis/fisiología , Bacterias/química , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Bioensayo , Línea Celular Tumoral , Medios de Cultivo/farmacología , Humanos , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA