Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microsc Microanal ; 16(1): 1-12, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20030913

RESUMEN

Bulk silicon-germanium (SiGe) alloys and two SiGe thick films (4 and 5 microm) on Si wafers were tested with the electron probe microanalyzer (EPMA) using wavelength dispersive spectrometers (WDS) for heterogeneity and composition for use as reference materials needed by the microelectronics industry. One alloy with a nominal composition of Si0.86Ge0.14 and the two thick films with nominal compositions of Si0.90Ge0.10 and Si0.75Ge0.25 on Si, evaluated for micro- and macroheterogeneity, will make good microanalysis reference materials with an overall expanded heterogeneity uncertainty of 1.1% relative or less for Ge. The bulk Ge composition in the Si0.86Ge0.14 alloy was determined to be 30.228% mass fraction Ge with an expanded uncertainty of the mean of 0.195% mass fraction. The thick films were quantified with WDS-EPMA using both the Si0.86Ge0.14 alloy and element wafers as reference materials. The Ge concentration was determined to be 22.80% mass fraction with an expanded uncertainty of the mean of 0.12% mass fraction for the Si0.90Ge0.10 wafer and 43.66% mass fraction for the Si0.75Ge0.25 wafer with an expanded uncertainty of the mean of 0.25% mass fraction. The two thick SiGe films will be issued as National Institute of Standards and Technology Reference Materials (RM 8905).

2.
Magn Reson Imaging ; 25(7): 1095-104, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17707172

RESUMEN

Paramagnetic manganese (II) can be employed as a calcium surrogate to sensitize magnetic resonance microscopy (MRM) to the processing of calcium during bone formation. At high doses, osteoblasts can take up sufficient quantities of manganese, resulting in marked changes in water proton T(1), T(2) and magnetization transfer ratio values compared to those for untreated cells. Accordingly, inductively coupled plasma mass spectrometry (ICP-MS) results confirm that the manganese content of treated cell pellets was 10-fold higher than that for untreated cell pellets. To establish that manganese is processed like calcium and deposited as bone, calvaria from the skull of embryonic chicks were grown in culture medium supplemented with 1 mM MnCl(2) and 3 mM CaCl(2). A banding pattern of high and low T(2) values, consistent with mineral deposits with high and low levels of manganese, was observed radiating from the calvarial ridge. The results of ICP-MS studies confirm that manganese-treated calvaria take up increasing amounts of manganese with time in culture. Finally, elemental mapping studies with electron probe microanalysis confirmed local variations in the manganese content of bone newly deposited on the calvarial surface. This is the first reported use of manganese-enhanced MRM to study the process whereby calcium is taken up by osteoblasts cells and deposited as bone.


Asunto(s)
Calcificación Fisiológica , Cloruros/química , Espectroscopía de Resonancia Magnética/métodos , Compuestos de Manganeso/química , Osteoblastos/metabolismo , Animales , Embrión de Pollo , Pollos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA