Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Revista
Intervalo de año de publicación
1.
Nature ; 581(7807): 147-151, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32405022

RESUMEN

Asteroseismology probes the internal structures of stars by using their natural pulsation frequencies1. It relies on identifying sequences of pulsation modes that can be compared with theoretical models, which has been done successfully for many classes of pulsators, including low-mass solar-type stars2, red giants3, high-mass stars4 and white dwarfs5. However, a large group of pulsating stars of intermediate mass-the so-called δ Scuti stars-have rich pulsation spectra for which systematic mode identification has not hitherto been possible6,7. This arises because only a seemingly random subset of possible modes are excited and because rapid rotation tends to spoil regular patterns8-10. Here we report the detection of remarkably regular sequences of high-frequency pulsation modes in 60 intermediate-mass main-sequence stars, which enables definitive mode identification. The space motions of some of these stars indicate that they are members of known associations of young stars, as confirmed by modelling of their pulsation spectra.

2.
Nature ; 498(7455): 463-5, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23803845

RESUMEN

Low-mass white-dwarf stars are the remnants of disrupted red-giant stars in binary millisecond pulsars and other exotic binary star systems. Some low-mass white dwarfs cool rapidly, whereas others stay bright for millions of years because of stable fusion in thick surface hydrogen layers. This dichotomy is not well understood, so the potential use of low-mass white dwarfs as independent clocks with which to test the spin-down ages of pulsars or as probes of the extreme environments in which low-mass white dwarfs form cannot fully be exploited. Here we report precise mass and radius measurements for the precursor to a low-mass white dwarf. We find that only models in which this disrupted red-giant star has a thick hydrogen envelope can match the strong constraints provided by our data. Very cool low-mass white dwarfs must therefore have lost their thick hydrogen envelopes by irradiation from pulsar companions or by episodes of unstable hydrogen fusion (shell flashes). We also find that this low-mass white-dwarf precursor is a type of pulsating star not hitherto seen. The observed pulsation frequencies are sensitive to internal processes that determine whether this star will undergo shell flashes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA