Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Crit Care Med ; 52(8): 1228-1238, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38587420

RESUMEN

OBJECTIVES: The first aim was to investigate the combined effect of insult intensity and duration of the pressure reactivity index (PRx) and deviation from the autoregulatory cerebral perfusion pressure target (∆CPPopt = actual CPP - optimal CPP [CPPopt]) on outcome in traumatic brain injury. The second aim was to determine if PRx influenced the association between intracranial pressure (ICP), CPP, and ∆CPPopt with outcome. DESIGN: Observational cohort study. SETTING: Neurocritical care unit, Cambridge, United Kingdom. PATIENTS: Five hundred fifty-three traumatic brain injury patients with ICP and arterial blood pressure monitoring and 6-month outcome data (Glasgow Outcome Scale [GOS]). INTERVENTION: None. MEASUREMENTS AND MAIN RESULTS: The insult intensity (mm Hg or PRx coefficient) and duration (minutes) of ICP, PRx, CPP, and ∆CPPopt were correlated with GOS and visualized in heatmaps. In these plots, there was a transition from favorable to unfavorable outcome when PRx remained positive for 30 minutes and this was also the case for shorter durations when the intensity was higher. In a similar plot of ∆CPPopt, there was a gradual transition from favorable to unfavorable outcome when ∆CPPopt went below -5 mm Hg for 30-minute episodes of time and for shorter durations for more negative ∆CPPopt. Furthermore, the percentage of monitoring time with certain combinations of PRx with ICP, CPP, and ∆CPPopt were correlated with GOS and visualized in heatmaps. In the combined PRx/ICP heatmap, ICP above 20 mm Hg together with PRx above 0 correlated with unfavorable outcome. In a PRx/CPP heatmap, CPP below 70 mm Hg together with PRx above 0.2-0.4 correlated with unfavorable outcome. In the PRx-/∆CPPopt heatmap, ∆CPPopt below 0 together with PRx above 0.2-0.4 correlated with unfavorable outcome. CONCLUSIONS: Higher intensities for longer durations of positive PRx and negative ∆CPPopt correlated with worse outcome. Elevated ICP, low CPP, and negative ∆CPPopt were particularly associated with worse outcomes when the cerebral pressure autoregulation was concurrently impaired.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Circulación Cerebrovascular , Homeostasis , Presión Intracraneal , Lesiones Traumáticas del Encéfalo/fisiopatología , Lesiones Traumáticas del Encéfalo/complicaciones , Humanos , Homeostasis/fisiología , Presión Intracraneal/fisiología , Masculino , Femenino , Circulación Cerebrovascular/fisiología , Persona de Mediana Edad , Adulto , Escala de Consecuencias de Glasgow , Estudios de Cohortes
2.
Pediatr Res ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778228

RESUMEN

BACKGROUND AND AIM: Caffeine is routinely used for the prophylaxis of prematurity-related apnoeas. We aimed to evaluate the effect of caffeine maintenance on cardiovascular and cerebrovascular haemodynamics using a non-invasive multimodal monitoring in preterm infants during the transitional period. METHODS: Infants <32 weeks' gestational age (GA) were enrolled in this observational prospective study. The following parameters were recorded before and after the administration of caffeine citrate 5 mg/kg using near-infrared spectroscopy, pulse oximetry and electrical velocimetry: heart rate, cardiac output, stroke volume, cardiac contractility, systemic vascular resistance (SVR), perfusion index, peripheral and cerebral oxygenation, cerebral fractional oxygen extraction, correlation index between cerebral oxygenation and heart rate (TOHRx, marker of cerebrovascular reactivity). Multilevel mixed-effects linear models were used to assess the impact of caffeine and of relevant clinical covariates on each parameter. RESULTS: Seventy-seven infants (mean GA 29.3 ± 2.5 weeks, mean birthweight 1148 ± 353 g) were included. Caffeine administration was associated with increased SVR (B = 0.623, p = 0.004) and more negative TOHRx values (B = -0.036, p = 0.022), which suggest improved cerebrovascular reactivity. CONCLUSIONS: Caffeine administration at maintenance dosage during postnatal transition is associated with increased systemic vascular tone and improved cerebrovascular reactivity. A possible role for caffeine-mediated inhibition of adenosine receptors may be hypothesized. IMPACT: This study provides a thorough and comprehensive overview of multiple cerebrovascular and cardiovascular parameters, monitored non-invasively by combining near-infrared spectroscopy, electrical velocimetry and pulse oximetry, before and after the administration of caffeine at maintenance dosage in preterm infants during postnatal transition. Caffeine was associated with an improvement in cerebrovascular reactivity and with a slight but significant increase in systemic vascular resistance, with no additional effects on other cardiovascular and cerebrovascular parameters. Our results support the safety of caffeine treatment even during a phase at risk for haemodynamic instability such as postnatal transition and suggest potential beneficial effects on cerebral haemodynamics.

3.
Crit Care ; 28(1): 163, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745319

RESUMEN

BACKGROUND: Signal complexity (i.e. entropy) describes the level of order within a system. Low physiological signal complexity predicts unfavorable outcome in a variety of diseases and is assumed to reflect increased rigidity of the cardio/cerebrovascular system leading to (or reflecting) autoregulation failure. Aneurysmal subarachnoid hemorrhage (aSAH) is followed by a cascade of complex systemic and cerebral sequelae. In aSAH, the value of entropy has not been established yet. METHODS: aSAH patients from 2 prospective cohorts (Zurich-derivation cohort, Aachen-validation cohort) were included. Multiscale Entropy (MSE) was estimated for arterial blood pressure, intracranial pressure, heart rate, and their derivatives, and compared to dichotomized (1-4 vs. 5-8) or ordinal outcome (GOSE-extended Glasgow Outcome Scale) at 12 months using uni- and multivariable (adjusted for age, World Federation of Neurological Surgeons grade, modified Fisher (mFisher) grade, delayed cerebral infarction), and ordinal methods (proportional odds logistic regression/sliding dichotomy). The multivariable logistic regression models were validated internally using bootstrapping and externally by assessing the calibration and discrimination. RESULTS: A total of 330 (derivation: 241, validation: 89) aSAH patients were analyzed. Decreasing MSE was associated with a higher likelihood of unfavorable outcome independent of covariates and analysis method. The multivariable adjusted logistic regression models were well calibrated and only showed a slight decrease in discrimination when assessed in the validation cohort. The ordinal analysis revealed its effect to be linear. MSE remained valid when adjusting the outcome definition against the initial severity. CONCLUSIONS: MSE metrics and thereby complexity of physiological signals are independent, internally and externally valid predictors of 12-month outcome. Incorporating high-frequency physiological data as part of clinical outcome prediction may enable precise, individualized outcome prediction. The results of this study warrant further investigation into the cause of the resulting complexity as well as its association to important and potentially preventable complications including vasospasm and delayed cerebral ischemia.


Asunto(s)
Hemorragia Subaracnoidea , Humanos , Hemorragia Subaracnoidea/fisiopatología , Hemorragia Subaracnoidea/complicaciones , Estudios Prospectivos , Femenino , Masculino , Persona de Mediana Edad , Anciano , Estudios de Cohortes , Adulto , Escala de Consecuencias de Glasgow/estadística & datos numéricos , Modelos Logísticos , Pronóstico
4.
Br J Anaesth ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38644159

RESUMEN

OBJECTIVE: Cerebrovascular autoregulation is defined as the capacity of cerebral blood vessels to maintain stable cerebral blood flow despite changing blood pressure. It is assessed using the pressure reactivity index (the correlation coefficient between mean arterial blood pressure and intracranial pressure). The objective of this scoping review is to describe the existing evidence concerning the association of EEG and cerebrovascular autoregulation in order to identify key concepts and detect gaps in the current knowledge. METHODS: Embase, MEDLINE, SCOPUS, and Web of Science were searched considering articles between their inception up to September 2023. Inclusion criteria were human (paediatric and adult) and animal studies describing correlations between continuous EEG and cerebrovascular autoregulation assessments. RESULTS: Ten studies describing 481 human subjects (67% adult, 59% critically ill) were identified. Seven studies assessed qualitative (e.g. seizures, epileptiform potentials) and five evaluated quantitative (e.g. bispectral index, alpha-delta ratio) EEG metrics. Cerebrovascular autoregulation was evaluated based on intracranial pressure, transcranial Doppler, or near infrared spectroscopy. Specific combinations of cerebrovascular autoregulation and EEG metrics were evaluated by a maximum of two studies. Seizures, highly malignant patterns or burst suppression, alpha peak frequency, and bispectral index were associated with cerebrovascular autoregulation. The other metrics showed either no or inconsistent associations. CONCLUSION: There is a paucity of studies evaluating the link between EEG and cerebrovascular autoregulation. The studies identified included a variety of EEG and cerebrovascular autoregulation acquisition methods, age groups, and diseases allowing for few overarching conclusions. However, the preliminary evidence for the presence of an association between EEG metrics and cerebrovascular autoregulation prompts further in-depth investigations.

5.
Neurocrit Care ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351299

RESUMEN

BACKGROUND: Optimization of ventilatory settings is challenging for patients in the neurointensive care unit, requiring a balance between precise gas exchange control, lung protection, and managing hemodynamic effects of positive pressure ventilation. Although recruitment maneuvers (RMs) may enhance oxygenation, they could also exert profound undesirable systemic impacts. METHODS: The single-center, prospective study investigated the effects of RMs (up-titration of positive end-expiratory pressure) on multimodal neuromonitoring in patients with acute brain injury. Our primary focus was on intracranial pressure and secondarily on cerebral perfusion pressure (CPP) and other neurological parameters: cerebral autoregulation [pressure reactivity index (PRx)] and regional cerebral oxygenation (rSO2). We also assessed blood pressure and right ventricular (RV) function evaluated using tricuspid annular plane systolic excursion. Results are expressed as the difference (Δ) from baseline values obtained after completing the RMs. RESULTS: Thirty-two patients were enrolled in the study. RMs resulted in increased intracranial pressure (Δ = 4.8 mm Hg) and reduced CPP (ΔCPP = -12.8 mm Hg) and mean arterial pressure (difference in mean arterial pressure = -5.2 mm Hg) (all p < 0.001). Cerebral autoregulation worsened (ΔPRx = 0.31 a.u.; p < 0.001). Despite higher systemic oxygenation (difference in partial pressure of O2 = 4 mm Hg; p = 0.001) and unchanged carbon dioxide levels, rSO2 marginally decreased (ΔrSO2 = -0.5%; p = 0.031), with a significant drop in arterial content and increase in the venous content. RV systolic function decreased (difference in tricuspid annular plane systolic excursion = -0.1 cm; p < 0.001) with a tendency toward increased RV basal diameter (p = 0.06). Grouping patients according to ΔCPP or ΔPRx revealed that those with poorer tolerance to RMs had higher CPP (p = 0.040) and a larger RV basal diameter (p = 0.034) at baseline. CONCLUSIONS: In patients with acute brain injury, RMs appear to have adverse effects on cerebral hemodynamics. These findings might be partially explained by RM's impact on RV function. Further advanced echocardiography monitoring is required to prove this hypothesis.

6.
Neurocrit Care ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811514

RESUMEN

BACKGROUND: Numerous trials have addressed intracranial pressure (ICP) management in neurocritical care. However, identifying its harmful thresholds and controlling ICP remain challenging in terms of improving outcomes. Evidence suggests that an individualized approach is necessary for establishing tolerance limits for ICP, incorporating factors such as ICP waveform (ICPW) or pulse morphology along with additional data provided by other invasive (e.g., brain oximetry) and noninvasive monitoring (NIM) methods (e.g., transcranial Doppler, optic nerve sheath diameter ultrasound, and pupillometry). This study aims to assess current ICP monitoring practices among experienced clinicians and explore whether guidelines should incorporate ancillary parameters from NIM and ICPW in future updates. METHODS: We conducted a survey among experienced professionals involved in researching and managing patients with severe injury across low-middle-income countries (LMICs) and high-income countries (HICs). We sought their insights on ICP monitoring, particularly focusing on the impact of NIM and ICPW in various clinical scenarios. RESULTS: From October to December 2023, 109 professionals from the Americas and Europe participated in the survey, evenly distributed between LMIC and HIC. When ICP ranged from 22 to 25 mm Hg, 62.3% of respondents were open to considering additional information, such as ICPW and other monitoring techniques, before adjusting therapy intensity levels. Moreover, 77% of respondents were inclined to reassess patients with ICP in the 18-22 mm Hg range, potentially escalating therapy intensity levels with the support of ICPW and NIM. Differences emerged between LMIC and HIC participants, with more LMIC respondents preferring arterial blood pressure transducer leveling at the heart and endorsing the use of NIM techniques and ICPW as ancillary information. CONCLUSIONS: Experienced clinicians tend to personalize ICP management, emphasizing the importance of considering various monitoring techniques. ICPW and noninvasive techniques, particularly in LMIC settings, warrant further exploration and could potentially enhance individualized patient care. The study suggests updating guidelines to include these additional components for a more personalized approach to ICP management.

7.
J Clin Monit Comput ; 38(3): 649-662, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38238636

RESUMEN

Poor postoperative outcomes may be associated with cerebral ischaemia or hyperaemia, caused by episodes of arterial blood pressure (ABP) being outside the range of cerebral autoregulation (CA). Monitoring CA using COx (correlation between slow changes in mean ABP and regional cerebral O2 saturation-rSO2) could allow to individualise the management of ABP to preserve CA. We aimed to explore a continuous automated assessment of ABPOPT (ABP where CA is best preserved) and ABP at the lower limit of autoregulation (LLA) in elective neurosurgery patients. Retrospective analysis of prospectively collected data of 85 patients [median age 60 (IQR 51-68)] undergoing elective neurosurgery. ABPBASELINE was the mean of 3 pre-operative non-invasive measurements. ABP and rSO2 waveforms were processed to estimate COx-derived ABPOPT and LLA trend-lines. We assessed: availability (number of patients where ABPOPT/LLA were available); time required to achieve first values; differences between ABPOPT/LLA and ABP. ABPOPT and LLA availability was 86 and 89%. Median (IQR) time to achieve the first value was 97 (80-155) and 93 (78-122) min for ABPOPT and LLA respectively. Median ABPOPT [75 (69-84)] was lower than ABPBASELINE [90 (84-95)] (p < 0.001, Mann-U test). Patients spent 72 (56-86) % of recorded time with ABP above or below ABPOPT ± 5 mmHg. ABPOPT and ABP time trends and variability were not related to each other within patients. 37.6% of patients had at least 1 hypotensive insult (ABP < LLA) during the monitoring time. It seems possible to assess individualised automated ABP targets during elective neurosurgery.


Asunto(s)
Presión Arterial , Presión Sanguínea , Circulación Cerebrovascular , Procedimientos Quirúrgicos Electivos , Homeostasis , Procedimientos Neuroquirúrgicos , Humanos , Femenino , Persona de Mediana Edad , Masculino , Anciano , Estudios Retrospectivos , Procedimientos Neuroquirúrgicos/métodos , Determinación de la Presión Sanguínea/métodos , Saturación de Oxígeno , Monitoreo Intraoperatorio/métodos , Isquemia Encefálica/fisiopatología , Encéfalo , Monitoreo Fisiológico/métodos
8.
Crit Care ; 27(1): 115, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36941683

RESUMEN

INTRODUCTION: Lung protective ventilation (LPV) comprising low tidal volume (VT) and high positive end-expiratory pressure (PEEP) may compromise cerebral perfusion in acute brain injury (ABI). In patients with ABI, we investigated whether LPV is associated with increased intracranial pressure (ICP) and/or deranged cerebral autoregulation (CA), brain compensatory reserve and oxygenation. METHODS: In a prospective, crossover study, 30 intubated ABI patients with normal ICP and no lung injury were randomly assigned to receive low VT [6 ml/kg/predicted (pbw)]/at either low (5 cmH2O) or high PEEP (12 cmH2O). Between each intervention, baseline ventilation (VT 9 ml/kg/pbw and PEEP 5 cmH2O) were resumed. The safety limit for interruption of the intervention was ICP above 22 mmHg for more than 5 min. Airway and transpulmonary pressures were continuously monitored to assess respiratory mechanics. We recorded ICP by using external ventricular drainage or a parenchymal probe. CA and brain compensatory reserve were derived from ICP waveform analysis. RESULTS: We included 27 patients (intracerebral haemorrhage, traumatic brain injury, subarachnoid haemorrhage), of whom 6 reached the safety limit, which required interruption of at least one intervention. For those without intervention interruption, the ICP change from baseline to "low VT/low PEEP" and "low VT/high PEEP" were 2.2 mmHg and 2.3 mmHg, respectively, and considered clinically non-relevant. None of the interventions affected CA or oxygenation significantly. Interrupted events were associated with high baseline ICP (p < 0.001), low brain compensatory reserve (p < 0.01) and mechanical power (p < 0.05). The transpulmonary driving pressure was 5 ± 2 cmH2O in both interventions. Partial arterial pressure of carbon dioxide was kept in the range 34-36 mmHg by adjusting the respiratory rate, hence, changes in carbon dioxide were not associated with the increase in ICP. CONCLUSIONS: The present study found that most patients did not experience any adverse effects of LPV, neither on ICP nor CA. However, in almost a quarter of patients, the ICP rose above the safety limit for interrupting the interventions. Baseline ICP, brain compensatory reserve, and mechanical power can predict a potentially deleterious effect of LPV and can be used to personalize ventilator settings. Trial registration NCT03278769 . Registered September 12, 2017.


Asunto(s)
Lesiones Encefálicas , Lesión Pulmonar , Humanos , Frecuencia Respiratoria , Dióxido de Carbono , Estudios Prospectivos , Estudios Cruzados , Volumen de Ventilación Pulmonar/fisiología , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/terapia , Encéfalo
9.
Crit Care ; 27(1): 339, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37653526

RESUMEN

BACKGROUND: The primary aim was to explore the association of global cerebral physiological variables including intracranial pressure (ICP), cerebrovascular reactivity (PRx), cerebral perfusion pressure (CPP), and deviation from the PRx-based optimal CPP value (∆CPPopt; actual CPP-CPPopt) in relation to brain tissue oxygenation (pbtO2) in traumatic brain injury (TBI). METHODS: A total of 425 TBI patients with ICP- and pbtO2 monitoring for at least 12 h, who had been treated at the neurocritical care unit, Addenbrooke's Hospital, Cambridge, UK, between 2002 and 2022 were included. Generalized additive models (GAMs) and linear mixed effect models were used to explore the association of ICP, PRx, CPP, and CPPopt in relation to pbtO2. PbtO2 < 20 mmHg, ICP > 20 mmHg, PRx > 0.30, CPP < 60 mmHg, and ∆CPPopt < - 5 mmHg were considered as cerebral insults. RESULTS: PbtO2 < 20 mmHg occurred in median during 17% of the monitoring time and in less than 5% in combination with ICP > 20 mmHg, PRx > 0.30, CPP < 60 mmHg, or ∆CPPopt < - 5 mmHg. In GAM analyses, pbtO2 remained around 25 mmHg over a large range of ICP ([0;50] mmHg) and PRx [- 1;1], but deteriorated below 20 mmHg for extremely low CPP below 30 mmHg and ∆CPPopt below - 30 mmHg. In linear mixed effect models, ICP, CPP, PRx, and ∆CPPopt were significantly associated with pbtO2, but the fixed effects could only explain a very small extent of the pbtO2 variation. CONCLUSIONS: PbtO2 below 20 mmHg was relatively frequent and often occurred in the absence of disturbances in ICP, PRx, CPP, and ∆CPPopt. There were significant, but weak associations between the global cerebral physiological variables and pbtO2, suggesting that hypoxic pbtO2 is often a complex and independent pathophysiological event. Thus, other variables may be more crucial to explain pbtO2 and, likewise, pbtO2 may not be a suitable outcome measure to determine whether global cerebral blood flow optimization such as CPPopt therapy is successful.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Oxígeno , Humanos , Encéfalo , Hipoxia , Circulación Cerebrovascular
10.
Crit Care ; 27(1): 194, 2023 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-37210526

RESUMEN

BACKGROUND: A previous retrospective single-centre study suggested that the percentage of time spent with cerebral perfusion pressure (CPP) below the individual lower limit of reactivity (LLR) is associated with mortality in traumatic brain injury (TBI) patients. We aim to validate this in a large multicentre cohort. METHODS: Recordings from 171 TBI patients from the high-resolution cohort of the CENTER-TBI study were processed with ICM+ software. We derived LLR as a time trend of CPP at a level for which the pressure reactivity index (PRx) indicates impaired cerebrovascular reactivity with low CPP. The relationship with mortality was assessed with Mann-U test (first 7-day period), Kruskal-Wallis (daily analysis for 7 days), univariate and multivariate logistic regression models. AUCs (CI 95%) were calculated and compared using DeLong's test. RESULTS: Average LLR over the first 7 days was above 60 mmHg in 48% of patients. %time with CPP < LLR could predict mortality (AUC 0.73, p = < 0.001). This association becomes significant starting from the third day post injury. The relationship was maintained when correcting for IMPACT covariates or for high ICP. CONCLUSIONS: Using a multicentre cohort, we confirmed that CPP below LLR was associated with mortality during the first seven days post injury.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Circulación Cerebrovascular , Humanos , Estudios Retrospectivos , Modelos Logísticos , Área Bajo la Curva , Presión Intracraneal
11.
Crit Care ; 27(1): 370, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752602

RESUMEN

BACKGROUND: The primary aim was to explore the concept of isolated and combined threshold-insults for brain tissue oxygenation (pbtO2) in relation to outcome in traumatic brain injury (TBI). METHODS: A total of 239 TBI patients with data on clinical outcome (GOS) and intracranial pressure (ICP) and pbtO2 monitoring for at least 12 h, who had been treated at the neurocritical care unit, Addenbrooke's Hospital, Cambridge, UK, between 2002 and 2022 were included. Outcome was dichotomised into favourable/unfavourable (GOS 4-5/1-3) and survival/mortality (GOS 2-5/1). PbtO2 was studied over the entire monitoring period. Thresholds were analysed in relation to outcome based on median and mean values, percentage of time and dose per hour below critical values and visualised as the combined insult intensity and duration. RESULTS: Median pbtO2 was slightly, but not significantly, associated with outcome. A pbtO2 threshold at 25 and 20 mmHg, respectively, yielded the highest x2 when dichotomised for favourable/unfavourable outcome and mortality/survival in chi-square analyses. A higher dose and higher percentage of time spent with pbtO2 below 25 mmHg as well as lower thresholds were associated with unfavourable outcome, but not mortality. In a combined insult intensity and duration analysis, there was a transition from favourable towards unfavourable outcome when pbtO2 went below 25-30 mmHg for 30 min and similar transitions occurred for shorter durations when the intensity was higher. Although these insults were rare, pbtO2 under 15 mmHg was more strongly associated with unfavourable outcome if, concurrently, ICP was above 20 mmHg, cerebral perfusion pressure below 60 mmHg, or pressure reactivity index above 0.30 than if these variables were not deranged. In a multiple logistic regression, a higher percentage of monitoring time with pbtO2 < 15 mmHg was associated with a higher rate of unfavourable outcome. CONCLUSIONS: Low pbtO2, under 25 mmHg and particularly below 15 mmHg, for longer durations and in combination with disturbances in global cerebral physiological variables were associated with poor outcome and may indicate detrimental ischaemic hypoxia. Prospective trials are needed to determine if pbtO2-directed therapy is beneficial, at what individualised pbtO2 threshold therapies are warranted, and how this may depend on the presence/absence of concurrent cerebral physiological disturbances.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Humanos , Oxígeno , Lesiones Encefálicas/terapia , Estudios Prospectivos , Encéfalo , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/terapia , Presión Intracraneal/fisiología
12.
Neurocrit Care ; 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853235

RESUMEN

How continuous cerebral autoregulation (CCA) knowledge should be optimally gained and interpreted is still an active area of research and refinement. We now experience a unique situation of having indices clinically available before definitive evidence of benefit or practice guidelines, in a moment when high rates of institutional variability exist both in the application of monitoring as well as in monitoring-guided treatments. Responses from 47 international clinicians, experts in this field, were collected with polling and discussion of the results. The clinical use of CCA in critical illness was not universal among experts, with 34% not using it. Of those who use a CCA index in clinical practice, 64% use intracranial pressure-based Pressure Reactivity index (PRx). There seems to exist a considerable trust in the physiologic plausibility of CCA to guide individual arterial blood pressure and cerebral perfusion pressure therapy and provide benefit, regardless of the difficulty of proving this. A total of 59% feel the need for phase II and III prospective studies but would continue to use CCA information in their practice even if randomized controlled trials (RCTs) did not show clear clinical benefit. There was nearly universal interest to participate in an RCT, with agreement that the research community must together determine end points and interventions to reduce wasted effort and time, and that investigations should include the following: the most appropriate way of inclusion of CCA into the clinical workflow; whether CCA-guided interventions should be prophylactic, proactive; or reactive; and whether a CCA-centric (unimodal) or a multimodal monitoring-integrated tiered therapy approach should be adopted. Pediatric and neonatal populations were highlighted as having urgent need and even more plausibility than adults. On the whole, the initiative was enthusiastically embraced by the experts, with the general feeling that a strong push should be now made by the community to convert the plausible benefits of CCA monitoring, already implemented in some centers, into a more standardized and RCT-validated clinical reality.

13.
Neurocrit Care ; 38(3): 781-790, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36922475

RESUMEN

BACKGROUND: Monitoring intracranial pressure (ICP) and cerebral perfusion pressure (CPP) is crucial in the management of the patient with severe traumatic brain injury (TBI). In several institutions ICP and CPP are summarized hourly and entered manually on bedside charts; these data have been used in large observational and interventional trials. However, ICP and CPP may change rapidly and frequently, so data recorded in medical charts might underestimate actual ICP and CPP shifts. The aim of this study was to evaluate the accuracy of manual data annotation for proper capturing of ICP and CPP. For this aim, we (1) compared end-hour ICP and CPP values manually recorded (MR) with values recorded continuously by computerized high-resolution (HR) systems and (2) analyzed whether MR ICP and MR CPP are reliable indicators of the burden of intracranial hypertension and low CPP. METHODS: One hundred patients were included. First, we compared the MR data with the values stored in the computerized system during the first 7 days after admission. For this point-to-point analysis, we calculated the difference between end-hour MR and HR ICP and CPP. Then we analyzed the burden of high ICP (> 20 mm Hg) and low CPP (< 60 mm Hg) measured by the computerized system, in which continuous data were stored, compared with the pressure-time dose based on end-hour measurements. RESULTS: The mean difference between MR and HR end-hour values was 0.02 mm Hg for ICP (SD 3.86 mm Hg) and 1.54 mm Hg for CPP (SD 8.81 mm Hg). ICP > 20 mm Hg and CPP < 60 mm Hg were not detected by MR in 1.6% and 5.8% of synchronized measurements, respectively. Analysis of the pathological ICP and CPP throughout the recording, however, indicated that calculations based on manual recording seriously underestimated the ICP and CPP burden (in 42% and 28% of patients, respectively). CONCLUSIONS: Manual entries fairly represent end-hour HR ICP and CPP. However, compared with a computerized system, they may prove inadequate, with a serious risk of underestimation of the ICP and CPP burden.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Hipertensión Intracraneal , Humanos , Lesiones Traumáticas del Encéfalo/diagnóstico , Circulación Cerebrovascular , Hospitalización , Hipertensión Intracraneal/diagnóstico , Presión Intracraneal
14.
Neurocrit Care ; 39(3): 593-599, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37704934

RESUMEN

BACKGROUND: The implementation of multimodality monitoring in the clinical management of patients with disorders of consciousness (DoC) results in physiological measurements that can be collected in a continuous and regular fashion or even at waveform resolution. Such data are considered part of the "Big Data" available in intensive care units and are potentially suitable for health care-focused artificial intelligence research. Despite the richness in content of the physiological measurements, and the clinical implications shown by derived metrics based on those measurements, they have been largely neglected from previous attempts in harmonizing data collection and standardizing reporting of results as part of common data elements (CDEs) efforts. CDEs aim to provide a framework for unifying data in clinical research and help in implementing a systematic approach that can facilitate reliable comparison of results from clinical studies in DoC as well in international research collaborations. METHODS: To address this need, the Neurocritical Care Society's Curing Coma Campaign convened a multidisciplinary panel of DoC "Physiology and Big Data" experts to propose CDEs for data collection and reporting in this field. RESULTS: We report the recommendations of this CDE development panel and disseminate CDEs to be used in physiologic and big data studies of patients with DoC. CONCLUSIONS: These CDEs will support progress in the field of DoC physiologic and big data and facilitate international collaboration.


Asunto(s)
Investigación Biomédica , Elementos de Datos Comunes , Humanos , Inteligencia Artificial , Macrodatos , Trastornos de la Conciencia/diagnóstico , Trastornos de la Conciencia/terapia
15.
J Clin Monit Comput ; 37(4): 963-976, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37119323

RESUMEN

PURPOSE: CPPopt denotes a Cerebral Perfusion Pressure (CPP) value at which the Pressure-Reactivity index, reflecting the global state of Cerebral Autoregulation, is best preserved. CPPopt has been investigated as a potential dynamically individualised CPP target in traumatic brain injury patients admitted in intensive care unit. The prospective bedside use of the concept requires ensured safety and reliability of the CPP recommended targets based on the automatically-generated CPPopt. We aimed to: Increase stability and reliability of the CPPopt automated algorithm by fine-tuning; perform outcome validation of the adjusted algorithm in a multi-centre TBI cohort. METHODS: ICM + software was used to derive CPPopt and fine-tune the algorithm. Parameters for improvement of the algorithm were selected based on qualitative and quantitative assessment of stability and reliability metrics. Patients enrolled in the Collaborative European Neuro Trauma Effectiveness Research in TBI (CENTER-TBI) high-resolution cohort were included for retrospective validation. Yield and stability of the new algorithm were compared to the previous algorithm using Mann-U test. Area under the curves for mortality prediction at 6 months were compared with the DeLong Test. RESULTS: CPPopt showed higher stability (p < 0.0001), but lower yield compared to the previous algorithm [80.5% (70-87.5) vs 85% (75.7-91.2), p < 0.001]. Deviation of CPPopt could predict mortality with an AUC of [AUC = 0.69 (95% CI 0.59-0.78), p < 0.001] and was comparable with the previous algorithm. CONCLUSION: The CPPopt calculation algorithm was fine-tuned and adapted for prospective use with acceptable lower yield, improved stability and maintained prognostic power.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Presión Intracraneal , Humanos , Estudios Retrospectivos , Reproducibilidad de los Resultados , Presión Intracraneal/fisiología , Circulación Cerebrovascular/fisiología , Lesiones Traumáticas del Encéfalo/terapia , Algoritmos , Homeostasis/fisiología
16.
Pediatr Res ; 92(1): 135-141, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35513715

RESUMEN

BACKGROUND: Preterm infants are at enhanced risk of brain injury due to altered cerebral haemodynamics during postnatal transition. This observational study aimed to assess the clinical determinants of transitional cerebrovascular reactivity and its association with intraventricular haemorrhage (IVH). METHODS: Preterm infants <32 weeks underwent continuous monitoring of cerebral oxygenation and heart rate over the first 72 h after birth. Serial cranial and cardiac ultrasound assessments were performed to evaluate the ductal status and to diagnose IVH onset. The moving correlation coefficient between cerebral oxygenation and heart rate (TOHRx) was calculated. Linear mixed-effect models were used to analyse the impact of relevant clinical variables on TOHRx. The association between TOHRx and IVH development was also assessed. RESULTS: Seventy-seven infants were included. A haemodynamically significant patent ductus arteriosus (hsPDA) (ß = 0.044, 95% CI: 0.007-0.081) and ongoing dopamine treatment (ß = 0.096, 95% CI: 0.032-0.159) were associated with increasing TOHRx, indicating impaired cerebrovascular reactivity. A significant association between TOHRx, mean arterial blood pressure (ß = -0.004, 95% CI: -0.007, -0.001) and CRIB-II score (ß = 0.007, 95% CI: 0.001-0.015) was also observed. TOHRx was significantly higher in infants developing high-grade IVH compared to those without IVH. CONCLUSIONS: Dopamine treatment, low blood pressure, hsPDA and high CRIB-II are associated with impaired cerebrovascular reactivity during postnatal transition, with potential implications on IVH development. IMPACT: The correlation coefficient between cerebral oxygenation and heart rate (TOHRx) provides a non-invasive estimation of cerebrovascular reactivity, whose failure has a potential pathogenic role in the development of IVH in preterm infants. This study shows that cerebrovascular reactivity during the transitional period improves over time and is affected by specific clinical and therapeutic factors, whose knowledge could support the development of individualized neuroprotective strategies in at-risk preterm infants. The evidence of increased TOHRx in infants developing high-grade compared to low-grade or no IVH during the transitional period further supports the role of impaired cerebrovascular reactivity in IVH pathophysiology.


Asunto(s)
Conducto Arterioso Permeable , Enfermedades del Prematuro , Hemorragia Cerebral , Circulación Cerebrovascular/fisiología , Dopamina , Femenino , Retardo del Crecimiento Fetal , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro
17.
Br J Anaesth ; 129(1): 22-32, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35597624

RESUMEN

BACKGROUND: Cardiac surgery studies have established the clinical relevance of personalised arterial blood pressure management based on cerebral autoregulation. However, variabilities exist in autoregulation evaluation. We compared the association of several cerebral autoregulation metrics, calculated using different methods, with outcomes after cardiac surgery. METHODS: Autoregulation was measured during cardiac surgery in 240 patients. Mean flow index and cerebral oximetry index were calculated as Pearson's correlations between mean arterial pressure (MAP) and transcranial Doppler blood flow velocity or near-infrared spectroscopy signals. The lower limit of autoregulation and optimal mean arterial pressure were identified using mean flow index and cerebral oximetry index. Regression models were used to examine associations of area under curve and duration of mean arterial pressure below thresholds with stroke, acute kidney injury (AKI), and major morbidity and mortality. RESULTS: Both mean flow index and cerebral oximetry index identified the cerebral lower limit of autoregulation below which MAP was associated with a higher incidence of AKI and major morbidity and mortality. Based on magnitude and significance of the estimates in adjusted models, the area under curve of MAP < lower limit of autoregulation had the strongest association with AKI and major morbidity and mortality. The odds ratio for area under the curve of MAP < lower limit of autoregulation was 1.05 (95% confidence interval, 1.01-1.09), meaning every 1 mm Hg h increase of area under the curve was associated with an average increase in the odds of AKI by 5%. CONCLUSIONS: For cardiac surgery patients, area under curve of MAP < lower limit of autoregulation using mean flow index or cerebral oximetry index had the strongest association with AKI and major morbidity and mortality. Trials are necessary to evaluate this target for MAP management.


Asunto(s)
Lesión Renal Aguda , Procedimientos Quirúrgicos Cardíacos , Lesión Renal Aguda/etiología , Benchmarking , Presión Sanguínea/fisiología , Puente Cardiopulmonar/métodos , Circulación Cerebrovascular/fisiología , Homeostasis/fisiología , Humanos , Monitoreo Intraoperatorio/métodos , Morbilidad , Oximetría/métodos
18.
Neurocrit Care ; 36(3): 738-750, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34642842

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) is an extremely heterogeneous and complex pathology that requires the integration of different physiological measurements for the optimal understanding and clinical management of patients. Information derived from intracranial pressure (ICP) monitoring can be coupled with information obtained from heart rate (HR) monitoring to assess the interplay between brain and heart. The goal of our study is to investigate events of simultaneous increases in HR and ICP and their relationship with patient mortality.. METHODS: In our previous work, we introduced a novel measure of brain-heart interaction termed brain-heart crosstalks (ctnp), as well as two additional brain-heart crosstalks indicators [mutual information ([Formula: see text]) and average edge overlap (ωct)] obtained through a complex network modeling of the brain-heart system. These measures are based on identification of simultaneous increase of HR and ICP. In this article, we investigated the relationship of these novel indicators with respect to mortality in a multicenter TBI cohort, as part of the Collaborative European Neurotrauma Effectiveness Research in TBI high-resolution work package. RESULTS: A total of 226 patients with TBI were included in this cohort. The data set included monitored parameters (ICP and HR), as well as laboratory, demographics, and clinical information. The number of detected brain-heart crosstalks varied (mean 58, standard deviation 57). The Kruskal-Wallis test comparing brain-heart crosstalks measures of survivors and nonsurvivors showed statistically significant differences between the two distributions (p values: 0.02 for [Formula: see text], 0.005 for ctnp and 0.006 for ωct). An inverse correlation was found, computed using the point biserial correlation technique, between the three new measures and mortality: - 0.13 for ctnp (p value 0.04), - 0.19 for ωct (p value 0.002969) and - 0.09 for [Formula: see text] (p value 0.1396). The measures were then introduced into the logistic regression framework, along with a set of input predictors made of clinical, demographic, computed tomography (CT), and lab variables. The prediction models were obtained by dividing the original cohort into four age groups (16-29, 30-49, 50-65, and 65-85 years of age) to properly treat with the age confounding factor. The best performing models were for age groups 16-29, 50-65, and 65-85, with the deviance of ratio explaining more than 80% in all the three cases. The presence of an inverse relationship between brain-heart crosstalks and mortality was also confirmed. CONCLUSIONS: The presence of a negative relationship between mortality and brain-heart crosstalks indicators suggests that a healthy brain-cardiovascular interaction plays a role in TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/fisiopatología , Encéfalo/fisiopatología , Frecuencia Cardíaca/fisiología , Corazón/fisiología , Presión Intracraneal/fisiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/mortalidad , Estudios de Cohortes , Humanos , Persona de Mediana Edad , Monitoreo Fisiológico , Adulto Joven
19.
J Clin Monit Comput ; 36(6): 1805-1815, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35230559

RESUMEN

PURPOSE: To assess the feasibility of Transcranial Doppler ultrasonography (TCD) neuromonitoring in a general intensive care environment, in the prognosis and outcome prediction of patients who are in coma due to a variety of critical conditions. METHODS: The prospective trial was performed between March 2017 and March 2019 Addenbrooke's Hospital, Cambridge, UK. Forty adult patients who failed to awake appropriately after resuscitation from cardiac arrest or were in coma due to conditions such as meningitis, seizures, sepsis, metabolic encephalopathies, overdose, multiorgan failure or transplant were eligible for inclusion. Gathered data included admission diagnosis, duration of ventilation, length of stay in the ICU, length of stay in hospital, discharge status using Cerebral Performance Categories (CPC). All patients received intermittent extended TCD monitoring following inclusion in the study. Parameters of interest included TCD-based indices of cerebral autoregulation, non-invasive intracranial pressure, autonomic system parameters (based on heart rate variability), critical closing pressure, the cerebrovascular time constant and indices describing the shape of the TCD pulse waveform. RESULTS: Thirty-seven patients were included in the final analysis, with 21 patients classified as good outcome (CPC 1-2) and 16 as poor neurological outcomes (CPC 3-5). Three patients were excluded due to inadequacies identified in the TCD acquisition. The results indicated that irrespective of the primary diagnosis, non-survivors had significantly disturbed cerebral autoregulation, a shorter cerebrovascular time constant and a more distorted TCD pulse waveform (all p<0.05). CONCLUSIONS: Preliminary results from the trial indicate that multi-parameter TCD neuromonitoring increases outcome-predictive power and TCD-based indices can be applied to general intensive care monitoring.


Asunto(s)
Coma , Ultrasonografía Doppler Transcraneal , Adulto , Humanos , Circulación Cerebrovascular/fisiología , Cuidados Críticos , Estudios de Factibilidad , Estudios Prospectivos , Ultrasonografía Doppler Transcraneal/métodos
20.
Crit Care Med ; 49(4): 650-660, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33278074

RESUMEN

OBJECTIVES: Monitoring cerebral autoregulation may help identify the lower limit of autoregulation in individual patients. Mean arterial blood pressure below lower limit of autoregulation appears to be a risk factor for postoperative acute kidney injury. Cerebral autoregulation can be monitored in real time using correlation approaches. However, the precise thresholds for different cerebral autoregulation indexes that identify the lower limit of autoregulation are unknown. We identified thresholds for intact autoregulation in patients during cardiopulmonary bypass surgery and examined the relevance of these thresholds to postoperative acute kidney injury. DESIGN: A single-center retrospective analysis. SETTING: Tertiary academic medical center. PATIENTS: Data from 59 patients was used to determine precise cerebral autoregulation thresholds for identification of the lower limit of autoregulation. These thresholds were validated in a larger cohort of 226 patients. METHODS AND MAIN RESULTS: Invasive mean arterial blood pressure, cerebral blood flow velocities, regional cortical oxygen saturation, and total hemoglobin were recorded simultaneously. Three cerebral autoregulation indices were calculated, including mean flow index, cerebral oximetry index, and hemoglobin volume index. Cerebral autoregulation curves for the three indices were plotted, and thresholds for each index were used to generate threshold- and index-specific lower limit of autoregulations. A reference lower limit of autoregulation could be identified in 59 patients by plotting cerebral blood flow velocity against mean arterial blood pressure to generate gold-standard Lassen curves. The lower limit of autoregulations defined at each threshold were compared with the gold-standard lower limit of autoregulation determined from Lassen curves. The results identified the following thresholds: mean flow index (0.45), cerebral oximetry index (0.35), and hemoglobin volume index (0.3). We then calculated the product of magnitude and duration of mean arterial blood pressure less than lower limit of autoregulation in a larger cohort of 226 patients. When using the lower limit of autoregulations identified by the optimal thresholds above, mean arterial blood pressure less than lower limit of autoregulation was greater in patients with acute kidney injury than in those without acute kidney injury. CONCLUSIONS: This study identified thresholds of intact and impaired cerebral autoregulation for three indices and showed that mean arterial blood pressure below lower limit of autoregulation is a risk factor for acute kidney injury after cardiac surgery.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Circulación Cerebrovascular/fisiología , Homeostasis/fisiología , Monitoreo Intraoperatorio/métodos , Lesión Renal Aguda/diagnóstico , Presión Arterial/fisiología , Velocidad del Flujo Sanguíneo/fisiología , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Oximetría/métodos , Estudios Retrospectivos , Espectroscopía Infrarroja Corta/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA