Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 240(6): 2276-2287, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37897071

RESUMEN

Climate warming advances the onset of tree growth in spring, but above- and belowground phenology are not always synchronized. These differences in growth responses may result from differences in root and bud dormancy dynamics, but root dormancy is largely unexplored. We measured dormancy in roots and leaf buds of Fagus sylvatica and Populus nigra by quantifying the warming sum required to initiate above- and belowground growth in October, January and February. We furthermore carried out seven experiments, manipulating only the soil and not air temperature before or during tree leaf-out to evaluate the potential of warmer roots to influence budburst timing using seedlings and adult trees of F. sylvatica and seedlings of Betula pendula. Root dormancy was virtually absent in comparison with the much deeper winter bud dormancy. Roots were able to start growing immediately as soils were warmed during the winter. Interestingly, higher soil temperature advanced budburst across all experiments, with soil temperature possibly accounting for c. 44% of the effect of air temperature in advancing aboveground spring phenology per growing degree hour. Therefore, differences in root and bud dormancy dynamics, together with their interaction, likely explain the nonsynchronized above- and belowground plant growth responses to climate warming.


Asunto(s)
Betula , Árboles , Estaciones del Año , Temperatura , Suelo , Hojas de la Planta
2.
New Phytol ; 233(6): 2429-2441, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35000201

RESUMEN

Understanding the effects of temperature and moisture on radial growth is vital for assessing the impacts of climate change on carbon and water cycles. However, studies observing growth at sub-daily temporal scales remain scarce. We analysed sub-daily growth dynamics and its climatic drivers recorded by point dendrometers for 35 trees of three temperate broadleaved species during the years 2015-2020. We isolated irreversible growth driven by cambial activity from the dendrometer records. Next, we compared the intra-annual growth patterns among species and delimited their climatic optima. The growth of all species peaked at air temperatures between 12 and 16°C and vapour pressure deficit (VPD) below 0.1 kPa. Acer pseudoplatanus and Fagus sylvatica, both diffuse-porous, sustained growth under suboptimal VPD. Ring-porous Quercus robur experienced a steep decline of growth rates with reduced air humidity. This resulted in multiple irregular growth peaks of Q. robur during the year. By contrast, the growth patterns of the diffuse-porous species were always right-skewed unimodal with a peak in June between day of the year 150-170. Intra-annual growth patterns are shaped more by VPD than temperature. The different sensitivity of radial growth to VPD is responsible for unimodal growth patterns in both diffuse-porous species and multimodal growth pattern in Q. robur.


Asunto(s)
Fagus , Porosidad , Estaciones del Año , Árboles , Presión de Vapor
3.
Glob Chang Biol ; 26(6): 3212-3220, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32124523

RESUMEN

Tree-ring records provide global high-resolution information on tree-species responses to global change, forest carbon and water dynamics, and past climate variability and extremes. The underlying assumption is a stationary (time-stable), quasi-linear relationship between tree growth and environment, which however conflicts with basic ecological and evolutionary theory. Indeed, our global assessment of the relevant tree-ring literature demonstrates non-stationarity in the majority of tested cases, not limited to specific proxies, environmental parameters, regions or species. Non-stationarity likely represents the general nature of the relationship between tree-growth proxies and environment. Studies assuming stationarity however score two times more citations influencing other fields of science and the science-policy interface. To reconcile ecological reality with the application of tree-ring proxies for climate or environmental estimates, we provide a clarification of the stationarity concept, propose a simple confidence framework for the re-evaluation of existing studies and recommend the use of a new statistical tool to detect non-stationarity in tree-ring proxies. Our contribution is meant to stimulate and facilitate discussion in light of our results to help increase confidence in tree-ring-based climate and environmental estimates for science, the public and policymakers.


Asunto(s)
Clima , Árboles , Carbono , Cambio Climático , Bosques
4.
Glob Chang Biol ; 26(4): 2505-2518, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31860143

RESUMEN

The role of future forests in global biogeochemical cycles will depend on how different tree species respond to climate. Interpreting the response of forest growth to climate change requires an understanding of the temporal and spatial patterns of seasonal climatic influences on the growth of common tree species. We constructed a new network of 310 tree-ring width chronologies from three common tree species (Quercus robur, Pinus sylvestris and Fagus sylvatica) collected for different ecological, management and climate purposes in the south Baltic Sea region at the border of three bioclimatic zones (temperate continental, oceanic, southern boreal). The major climate factors (temperature, precipitation, drought) affecting tree growth at monthly and seasonal scales were identified. Our analysis documents that 20th century Scots pine and deciduous species growth is generally controlled by different climate parameters, and that summer moisture availability is increasingly important for the growth of deciduous species examined. We report changes in the influence of winter climate variables over the last decades, where a decreasing influence of late winter temperature on deciduous tree growth and an increasing influence of winter temperature on Scots pine growth was found. By comparing climate-growth responses for the 1943-1972 and 1973-2002 periods and characterizing site-level growth response stability, a descriptive application of spatial segregation analysis distinguished sites with stable responses to dominant climate parameters (northeast of the study region), and sites that collectively showed unstable responses to winter climate (southeast of the study region). The findings presented here highlight the temporally unstable and nonuniform responses of tree growth to climate variability, and that there are geographical coherent regions where these changes are similar. Considering continued climate change in the future, our results provide important regional perspectives on recent broad-scale climate-growth relationships for trees across the temperate to boreal forest transition around the south Baltic Sea.

5.
Int J Biometeorol ; 59(11): 1567-75, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25620645

RESUMEN

The climate of Central and Northern Europe is highly influenced by the North Atlantic Ocean due to heat transfer from lower latitudes. Detailed knowledge about spatio-temporal variability of sea surface temperature (SST) in that region is thus of high interest for climate and environmental research. Because of the close relations between ocean and coastal climate and the climate sensitivity of plant growth, annual rings of woody plants in coastal regions might be used as a proxy for SST. We show here for the first time the proxy potential of the common and widespread evergreen dwarf shrub Calluna vulgaris (heather), using the Faroe Islands as our case study. Despite its small and irregular ring structure, the species seems suitable for dendroecological investigations. Ring width showed high and significant correlations with summer and winter air temperatures and SST. The C. vulgaris chronology from the Faroe Islands, placed directly within the North Atlantic Current, clearly reflects variations in summer SSTs over an area between Iceland and Scotland. Utilising shrubs like C. vulgaris as easy accessible and annually resolved proxies offers an interesting possibility for reconstruction of the coupled climate-ocean system at high latitudes.


Asunto(s)
Calluna/crecimiento & desarrollo , Tallos de la Planta/crecimiento & desarrollo , Océano Atlántico , Clima , Dinamarca , Agua de Mar , Temperatura
6.
Front Psychiatry ; 15: 1411761, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39391080

RESUMEN

Introduction: Prenatal mental health problems are associated with morbidity for the pregnant person, and their infants are at long-term risk for poor health outcomes. We aim to explore how the SARS-CoV-2 pandemic affected the mental health of pregnant people in the United Kingdom (UK), and to further identify resilience factors which may have contributed to varying mental health outcomes. We also aim to examine the quality of antenatal care provided during the pandemic in the UK and to identify potential inadequacies to enhance preparedness for future events. Methods: During June-November 2020, we recruited 3666 individuals in the UK for the EPPOCH pregnancy cohort (Maternal mental health during the COVID-19 pandemic: Effect of the Pandemic on Pregnancy Outcomes and Childhood Health). Participants were assessed for depression, anxiety, anger and pregnancy-related anxiety using validated scales. Additionally, physical activity, social support, individualized support and personal coping ability of the respondents were assessed as potential resilience factors. Results: Participants reported high levels of depression (57.05%), anxiety (58.04%) and anger (58.05%). Higher levels of social and individualized support and personal coping ability were associated with lower mental health challenges. Additionally, pregnant individuals in the UK experienced higher depression during the pandemic than that reported in Canada. Finally, qualitative analysis revealed that restrictions for partners and support persons during medical appointments as well as poor public health communication led to increased mental health adversities and hindered ability to make medical decisions. Discussion: This study revealed increased mental health challenges among pregnant individuals in the UK during the SARS-CoV-2 pandemic. These results highlight the need for reassessing the mental health support measures available to pregnant people in the UK, both during times of crisis and in general.

7.
Sci Rep ; 13(1): 19904, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37963987

RESUMEN

Wood is a sustainable natural resource and an important global commodity. According to the 'moon wood theory', the properties of wood, including its growth and water content, are believed to oscillate with the lunar cycle. Despite contradicting our current understanding of plant functioning, this theory is commonly exploited for marketing wooden products. To examine the moon wood theory, we applied a wavelet power transformation to series of 2,000,000 hourly stem radius records from dendrometers. We separated the influence of 74 consecutive lunar cycles and meteorological conditions on the stem variation of 62 trees and six species. We show that the dynamics of stem radius consist of overlapping oscillations with periods of 1 day, 6 months, and 1 year. These oscillations in stem dimensions were tightly coupled to oscillations in the series of air temperature and vapour pressure deficit. By contrast, we revealed no imprint of the lunar cycle on the stem radius variation of any species. We call for scepticism towards the moon wood theory, at least as far as the stem water content and radial growth are concerned. We foresee that similar studies employing robust scientific approaches will be increasingly needed in the future to cope with misleading concepts.

8.
Nat Commun ; 13(1): 28, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013178

RESUMEN

Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes.


Asunto(s)
Cambio Climático , Deshidratación , Ecología , Bosques , Rayos Infrarrojos , Clima , Sequías , Ecosistema , Noruega , Picea , Pinus sylvestris , Suelo , Árboles , Agua
9.
Front Plant Sci ; 12: 788106, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095962

RESUMEN

Human-driven peatland drainage has occurred in Europe for centuries, causing habitat degradation and leading to the emission of greenhouse gases. As such, in the last decades, there has been an increase in policies aiming at restoring these habitats through rewetting. Alder (Alnus glutinosa L.) is a widespread species in temperate forest peatlands with a seemingly high waterlogging tolerance. Yet, little is known about its specific response in growth and wood traits relevant for tree functioning when dealing with changing water table levels. In this study, we investigated the effects of rewetting and extreme flooding on alder growth and wood traits in a peatland forest in northern Germany. We took increment cores from several trees at a drained and a rewetted stand and analyzed changes in ring width, wood density, and xylem anatomical traits related to the hydraulic functioning, growth, and mechanical support for the period 1994-2018. This period included both the rewetting action and an extreme flooding event. We additionally used climate-growth and climate-density correlations to identify the stand-specific responses to climatic conditions. Our results showed that alder growth declined after an extreme flooding in the rewetted stand, whereas the opposite occurred in the drained stand. These changes were accompanied by changes in wood traits related to growth (i.e., number of vessels), but not in wood density and hydraulic-related traits. We found poor climate-growth and climate-density correlations, indicating that water table fluctuations have a stronger effect than climate on alder growth. Our results show detrimental effects on the growth of sudden water table changes leading to permanent waterlogging, but little implications for its wood density and hydraulic architecture. Rewetting actions should thus account for the loss of carbon allocation into wood and ensure suitable conditions for alder growth in temperate peatland forests.

10.
Sci Rep ; 9(1): 2509, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30792495

RESUMEN

In many parts of the world, especially in the temperate regions of Europe and North-America, accelerated tree growth rates have been observed over the last decades. This widespread phenomenon is presumably caused by a combination of factors like atmospheric fertilization or changes in forest structure and/or management. If not properly acknowledged in the calibration of tree-ring based climate reconstructions, considerable bias concerning amplitudes and trends of reconstructed climatic parameters might emerge or low frequency information is lost. Here we present a simple but effective, data-driven approach to remove the recent non-climatic growth increase in tree-ring data. Accounting for the no-analogue calibration problem, a new hydroclimatic reconstruction for northern-central Europe revealed considerably drier conditions during the medieval climate anomaly (MCA) compared with standard reconstruction methods and other existing reconstructions. This demonstrates the necessity to account for fertilization effects in modern tree-ring data from affected regions before calibrating reconstruction models, to avoid biased results.


Asunto(s)
Cambio Climático , Bosques , Árboles/crecimiento & desarrollo , Sequías , Europa (Continente) , Humanos , América del Norte , Temperatura , Agua
11.
Tree Physiol ; 38(12): 1820-1828, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29718395

RESUMEN

Dendrometers offer a useful tool for long-term, high-resolution monitoring of tree responses to environmental fluctuations and climate change. Here, we analyze a 4-year dendrometer dataset (2014-17) on European beech (Fagus sylvatica L.), common hornbeam (Carpinus betulus L.) and pedunculate oak (Quercus robur L.), co-occuring in a mixed broadleaved forest in northeastern Germany. In our analyses, we focus both on seasonal growth dynamics as well as on the environmental forcing of daily stem-size variations. Over the study period with contrasting weather conditions, we observed species- and year-specific differences in growth phenology (i.e., growth onset, cessation and duration). Oak was characterized by early growth onset and long growth duration in all years as compared with beech and hornbeam. The analysis on the environmental forcing of daily stem dynamics revealed, however, highly similar responses for the studied species, with current-day vapor pressure deficit and sunshine duration negatively, and relative humidity and precipitation positively affecting stem size. When considering lagged effects, environmental conditions often oppositely affected stem-size changes. No consistent seasonality in environmental responses was detected, though specific weather conditions were found to affect temporal patterns in individual years. We suggest that the high similarity in environmental forcing observed between tree species can be explained by daily stem-size changes mainly reflecting tree water status rather than tree growth. Our results stress that correcting dendrometer series for reversible stem hydrological changes is of utmost importance to better quantify tree growth from dendrometers in future.


Asunto(s)
Betulaceae/crecimiento & desarrollo , Fagus/crecimiento & desarrollo , Tallos de la Planta/crecimiento & desarrollo , Quercus/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Cambio Climático , Estaciones del Año , Especificidad de la Especie
12.
Sci Total Environ ; 500-501: 52-63, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25217744

RESUMEN

Dendrochronological investigations of Scots pine (Pinus sylvestris L.) growing on Männikjärve peatland in central Estonia showed that annual tree growth of peatland pines can be used as a proxy for past variations of water table levels. Reconstruction of past water table levels can help us to better understand the dynamics of various ecological processes in peatlands, e.g. the formation of vegetation patterns or carbon and nitrogen cycling. Männikjärve bog has one of the longest water table records in the boreal zone, continuously monitored since 1956. Common uncertainties encountered while working with peatland trees (e.g. narrow, missing and wedging rings) were in our case exacerbated with difficulties related to the instability of the relationship between tree growth and peatland environment. We hypothesized that the instable relationship was mainly due to a significant change of the limiting factor, i.e. the rise of the water table level due to human activity. To test our hypothesis we had to use several novel methods of tree-ring chronology analysis as well as to test explicitly whether undetected missing rings biased our results. Since the hypothesis that the instable relationship between tree growth and environment was caused by a change in limiting factor could not be rejected, we proceeded to find possible significant changes of past water table levels using structural analysis of the tree-ring chronologies. Our main conclusions were that peatland pines can be proxies to water table levels and that there were several shifting periods of high and low water table levels in the past 200 years.


Asunto(s)
Monitoreo del Ambiente/métodos , Pinus sylvestris/crecimiento & desarrollo , Humedales , Ciclo del Carbono , Estonia , Agua Subterránea/análisis , Hidrología , Ciclo del Nitrógeno , Abastecimiento de Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA