Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 222: 115351, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36709030

RESUMEN

Wastewater surveillance has proven to be a useful tool for evidence-based epidemiology in the fight against the SARS-CoV-2 virus. It is particularly useful at the population level where acquisition of individual test samples may be time or cost-prohibitive. Wastewater surveillance for SARS-CoV-2 has typically been performed at wastewater treatment plants; however, this study was designed to sample on a local level to monitor the spread of the virus among three communities with distinct social vulnerability indices in Shreveport, Louisiana, located in a socially vulnerable region of the United States. Twice-monthly grab samples were collected from September 30, 2020, to March 23, 2021, during the Beta wave of the pandemic. The goals of the study were to examine whether: 1) concentrations of SARS-CoV-2 RNA in wastewater varied with social vulnerability indices and, 2) the time lag of spikes differed during wastewater monitoring in the distinct communities. The size of the population contributing to each sample was assessed via the quantification of the pepper mild mottle virus (PMMoV), which was significantly higher in the less socially vulnerable community. We found that the communities with higher social vulnerability exhibited greater viral loads as assessed by wastewater when normalized with PMMoV (Kruskal-Wallis, p < 0.05). The timing of the spread of the virus through the three communities appeared to be similar. These results suggest that interconnected communities within a municipality experienced the spread of the SARS-CoV-2 virus at similar times, but areas of high social vulnerability experienced more intense wastewater viral loads.


Asunto(s)
COVID-19 , Humanos , ARN Viral , SARS-CoV-2 , Carga Viral , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales
2.
GeoJournal ; 88(3): 3239-3248, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36531533

RESUMEN

Using data from the Louisiana Department of Public Health, we explored the spatial relationships between the Social Vulnerability Index (SVI) and COVID-19-related vaccination and mortality rates. Publicly available COVID-19 vaccination and mortality data accrued from December 2020 to October 2021 was downloaded from the Louisiana Department of Health website and merged with the SVI data; geospatial analysis was then performed to identify the spatial association between the SVI and vaccine uptake and mortality rate. Bivariate Moran's I analysis revealed significant clustering of high SVI ranking with low COVID-19 vaccination rates (1.00, p < 0.001) and high smoothed mortality rates (0.61, p < 0.001). Regression revealed that for each 10% increase in SVI ranking, COVID-19 vaccination rates decreased by 3.02-fold (95% CI = 3.73-2.30), and mortality rates increased by a factor of 1.19 (95% CI = 0.99-1.43). SVI values are spatially linked and significantly associated with Louisiana's COVID-19-related vaccination and mortality rates. We also found that vaccination uptake was higher in whites than in blacks. These findings can help identify regions with low vaccination rates and high mortality, enabling the necessary steps to increase vaccination rates in disadvantaged neighborhoods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA