Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Biol Chem ; 295(31): 10749-10765, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32482893

RESUMEN

Compartmentalization of macromolecules is a ubiquitous molecular mechanism that drives numerous cellular functions. The appropriate organization of enzymes in space and time enables the precise transmission and integration of intracellular signals. Molecular scaffolds constrain signaling enzymes to influence the regional modulation of these physiological processes. Mitochondrial targeting of protein kinases and protein phosphatases provides a means to locally control the phosphorylation status and action of proteins on the surface of this organelle. Dual-specificity protein kinase A anchoring protein 1 (dAKAP1) is a multivalent binding protein that targets protein kinase A (PKA), RNAs, and other signaling enzymes to the outer mitochondrial membrane. Many AKAPs recruit a diverse set of binding partners that coordinate a broad range of cellular processes. Here, results of MS and biochemical analyses reveal that dAKAP1 anchors additional components, including the ribonucleoprotein granule components La-related protein 4 (LARP4) and polyadenylate-binding protein 1 (PABPC1). Local translation of mRNAs at organelles is a means to spatially control the synthesis of proteins. RNA-Seq data demonstrate that dAKAP1 binds mRNAs encoding proteins required for mitochondrial metabolism, including succinate dehydrogenase. Functional studies suggest that the loss of dAKAP1-RNA interactions reduces mitochondrial electron transport chain activity. Hence, dAKAP1 plays a previously unappreciated role as a molecular interface between second messenger signaling and local protein synthesis machinery.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Sistemas de Mensajero Secundario , Proteínas de Anclaje a la Quinasa A/genética , Autoantígenos/genética , Autoantígenos/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/biosíntesis , Células HEK293 , Humanos , Mitocondrias/genética , Proteína I de Unión a Poli(A)/genética , Proteína I de Unión a Poli(A)/metabolismo , RNA-Seq , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Antígeno SS-B
2.
Proc Natl Acad Sci U S A ; 115(49): E11465-E11474, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30455320

RESUMEN

A-kinase anchoring proteins (AKAPs) shape second-messenger signaling responses by constraining protein kinase A (PKA) at precise intracellular locations. A defining feature of AKAPs is a helical region that binds to regulatory subunits (RII) of PKA. Mining patient-derived databases has identified 42 nonsynonymous SNPs in the PKA-anchoring helices of five AKAPs. Solid-phase RII binding assays confirmed that 21 of these amino acid substitutions disrupt PKA anchoring. The most deleterious side-chain modifications are situated toward C-termini of AKAP helices. More extensive analysis was conducted on a valine-to-methionine variant in the PKA-anchoring helix of AKAP18. Molecular modeling indicates that additional density provided by methionine at position 282 in the AKAP18γ isoform deflects the pitch of the helical anchoring surface outward by 6.6°. Fluorescence polarization measurements show that this subtle topological change reduces RII-binding affinity 8.8-fold and impairs cAMP responsive potentiation of L-type Ca2+ currents in situ. Live-cell imaging of AKAP18γ V282M-GFP adducts led to the unexpected discovery that loss of PKA anchoring promotes nuclear accumulation of this polymorphic variant. Targeting proceeds via a mechanism whereby association with the PKA holoenzyme masks a polybasic nuclear localization signal on the anchoring protein. This led to the discovery of AKAP18ε: an exclusively nuclear isoform that lacks a PKA-anchoring helix. Enzyme-mediated proximity-proteomics reveal that compartment-selective variants of AKAP18 associate with distinct binding partners. Thus, naturally occurring PKA-anchoring-defective AKAP variants not only perturb dissemination of local second-messenger responses, but also may influence the intracellular distribution of certain AKAP18 isoforms.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas de la Membrana/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación Enzimológica de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Proteínas de la Membrana/genética , Modelos Moleculares , Polimorfismo de Nucleótido Simple , Unión Proteica , Conformación Proteica , Isoformas de Proteínas , Transporte de Proteínas
3.
J Biol Chem ; 294(9): 3152-3168, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30598507

RESUMEN

Breast cancer screening and new precision therapies have led to improved patient outcomes. Yet, a positive prognosis is less certain when primary tumors metastasize. Metastasis requires a coordinated program of cellular changes that promote increased survival, migration, and energy consumption. These pathways converge on mitochondrial function, where distinct signaling networks of kinases, phosphatases, and metabolic enzymes regulate these processes. The protein kinase A-anchoring protein dAKAP1 compartmentalizes protein kinase A (PKA) and other signaling enzymes at the outer mitochondrial membrane and thereby controls mitochondrial function and dynamics. Modulation of these processes occurs in part through regulation of dynamin-related protein 1 (Drp1). Here, we report an inverse relationship between the expression of dAKAP1 and mesenchymal markers in breast cancer. Molecular, cellular, and in silico analyses of breast cancer cell lines confirmed that dAKAP1 depletion is associated with impaired mitochondrial function and dynamics, as well as with increased glycolytic potential and invasiveness. Furthermore, disruption of dAKAP1-PKA complexes affected cell motility and mitochondrial movement toward the leading edge in invasive breast cancer cells. We therefore propose that depletion of dAKAP1-PKA "signaling islands" from the outer mitochondrial membrane augments progression toward metastatic breast cancer.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Neoplasias de la Mama/patología , Movimiento Celular , Membranas Mitocondriales/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Mesodermo/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Dinámicas Mitocondriales , Invasividad Neoplásica
4.
EMBO J ; 33(5): 437-49, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24446487

RESUMEN

Pathogenic bacteria introduce effector proteins directly into the cytosol of eukaryotic cells to promote invasion and colonization. OspG, a Shigella spp. effector kinase, plays a role in this process by helping to suppress the host inflammatory response. OspG has been reported to bind host E2 ubiquitin-conjugating enzymes activated with ubiquitin (E2~Ub), a key enzyme complex in ubiquitin transfer pathways. A co-crystal structure of the OspG/UbcH5c~Ub complex reveals that complex formation has important ramifications for the activity of both OspG and the UbcH5c~Ub conjugate. OspG is a minimal kinase domain containing only essential elements required for catalysis. UbcH5c~Ub binding stabilizes an active conformation of the kinase, greatly enhancing OspG kinase activity. In contrast, interaction with OspG stabilizes an extended, less reactive form of UbcH5c~Ub. Recognizing conserved E2 features, OspG can interact with at least ten distinct human E2s~Ub. Mouse oral infection studies indicate that E2~Ub conjugates act as novel regulators of OspG effector kinase function in eukaryotic host cells.


Asunto(s)
Proteínas Quinasas/metabolismo , Shigella flexneri/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina/metabolismo , Factores de Virulencia/metabolismo , Animales , Línea Celular , Cristalografía por Rayos X , Humanos , Ratones , Modelos Moleculares , Conformación Proteica , Proteínas Quinasas/química , Multimerización de Proteína , Ubiquitina/química , Enzimas Ubiquitina-Conjugadoras/química , Factores de Virulencia/química
5.
Mol Cell ; 32(2): 169-79, 2008 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-18951085

RESUMEN

Elevated catecholamines in the heart evoke transcriptional activation of the Myocyte Enhancer Factor (MEF) pathway to induce a cellular response known as pathological myocardial hypertrophy. We have discovered that the A-Kinase Anchoring Protein (AKAP)-Lbc is upregulated in hypertrophic cardiomyocytes. It coordinates activation and movement of signaling proteins that initiate MEF2-mediated transcriptional reprogramming events. Live-cell imaging, fluorescent kinase activity reporters, and RNA interference techniques show that AKAP-Lbc couples activation of protein kinase D (PKD) with the phosphorylation-dependent nuclear export of the class II histone deacetylase HDAC5. These studies uncover a role for AKAP-Lbc in which increased expression of the anchoring protein selectively amplifies a signaling pathway that drives cardiac myocytes toward a pathophysiological outcome.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/fisiología , Cardiomegalia/metabolismo , Factores de Intercambio de Guanina Nucleótido/fisiología , Proteínas Proto-Oncogénicas/fisiología , Transducción de Señal , Proteínas 14-3-3/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Transporte Activo de Núcleo Celular , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Ventrículos Cardíacos/efectos de los fármacos , Histona Desacetilasas/metabolismo , Humanos , Factores de Transcripción MEF2 , Antígenos de Histocompatibilidad Menor , Modelos Biológicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Factores Reguladores Miogénicos/metabolismo , Fenilefrina/farmacología , Fosforilación , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , Ratas
6.
Cell Rep ; 43(2): 113678, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38236773

RESUMEN

The DNAJ-PKAc fusion kinase is a defining feature of fibrolamellar carcinoma (FLC). FLC tumors are notoriously resistant to standard chemotherapies, with aberrant kinase activity assumed to be a contributing factor. By combining proximity proteomics, biochemical analyses, and live-cell photoactivation microscopy, we demonstrate that DNAJ-PKAc is not constrained by A-kinase anchoring proteins. Consequently, the fusion kinase phosphorylates a unique array of substrates, including proteins involved in translation and the anti-apoptotic factor Bcl-2-associated athanogene 2 (BAG2), a co-chaperone recruited to the fusion kinase through association with Hsp70. Tissue samples from patients with FLC exhibit increased levels of BAG2 in primary and metastatic tumors. Furthermore, drug studies implicate the DNAJ-PKAc/Hsp70/BAG2 axis in potentiating chemotherapeutic resistance. We find that the Bcl-2 inhibitor navitoclax enhances sensitivity to etoposide-induced apoptosis in cells expressing DNAJ-PKAc. Thus, our work indicates BAG2 as a marker for advanced FLC and a chemotherapeutic resistance factor in DNAJ-PKAc signaling scaffolds.


Asunto(s)
Carcinoma Hepatocelular , Humanos , Supervivencia Celular , Carcinoma Hepatocelular/tratamiento farmacológico , Apoptosis , Proteínas HSP70 de Choque Térmico , Proteínas Proto-Oncogénicas c-bcl-2 , Chaperonas Moleculares
7.
Nat Commun ; 15(1): 2917, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575562

RESUMEN

VISTA, an inhibitory myeloid-T-cell checkpoint, holds promise as a target for cancer immunotherapy. However, its effective targeting has been impeded by issues such as rapid clearance and cytokine release syndrome observed with previous VISTA antibodies. Here we demonstrate that SNS-101, a newly developed pH-selective VISTA antibody, addresses these challenges. Structural and biochemical analyses confirmed the pH-selectivity and unique epitope targeted by SNS-101. These properties confer favorable pharmacokinetic and safety profiles on SNS-101. In syngeneic tumor models utilizing human VISTA knock-in mice, SNS-101 shows in vivo efficacy when combined with a PD-1 inhibitor, modulates cytokine and chemokine signaling, and alters the tumor microenvironment. In summary, SNS-101, currently in Phase I clinical trials, emerges as a promising therapeutic biologic for a wide range of patients whose cancer is refractory to current immunotherapy regimens.


Asunto(s)
Neoplasias , Receptor de Muerte Celular Programada 1 , Humanos , Ratones , Animales , Antígenos B7 , Anticuerpos , Neoplasias/tratamiento farmacológico , Inmunoterapia , Concentración de Iones de Hidrógeno , Microambiente Tumoral
8.
Antibodies (Basel) ; 12(3)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37753969

RESUMEN

Immune checkpoints and other immunoregulatory targets can be difficult to precisely target due to expression on non-tumor immune cells critical to maintaining immune homeostasis in healthy tissues. On-target/off-tumor binding of therapeutics results in significant pharmacokinetic and pharmacodynamic problems. Target-mediated drug disposition (TMDD) significantly limits effective intratumoral drug levels and adversely affects anti-tumor efficacy. Target engagement outside the tumor environment may lead to severe immune-related adverse events (irAEs), resulting in a narrowing of the therapeutic window, sub-optimal dosing, or cessation of drug development altogether. Overcoming these challenges has become tractable through recent advances in antibody engineering and screening approaches. Here, we review the discovery and development of conditionally active antibodies with minimal binding to target at physiologic pH but high-affinity target binding at the low pH of the tumor microenvironment by focusing on the discovery and improved properties of pH-dependent mAbs targeting two T cell checkpoints, VISTA and CTLA-4.

9.
bioRxiv ; 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37425703

RESUMEN

The DNAJ-PKAc fusion kinase is a defining feature of the adolescent liver cancer fibrolamellar carcinoma (FLC). A single lesion on chromosome 19 generates this mutant kinase by creating a fused gene encoding the chaperonin binding domain of Hsp40 (DNAJ) in frame with the catalytic core of protein kinase A (PKAc). FLC tumors are notoriously resistant to standard chemotherapies. Aberrant kinase activity is assumed to be a contributing factor. Yet recruitment of binding partners, such as the chaperone Hsp70, implies that the scaffolding function of DNAJ- PKAc may also underlie pathogenesis. By combining proximity proteomics with biochemical analyses and photoactivation live-cell imaging we demonstrate that DNAJ-PKAc is not constrained by A-kinase anchoring proteins. Consequently, the fusion kinase phosphorylates a unique array of substrates. One validated DNAJ-PKAc target is the Bcl-2 associated athanogene 2 (BAG2), a co-chaperone recruited to the fusion kinase through association with Hsp70. Immunoblot and immunohistochemical analyses of FLC patient samples correlate increased levels of BAG2 with advanced disease and metastatic recurrences. BAG2 is linked to Bcl-2, an anti-apoptotic factor that delays cell death. Pharmacological approaches tested if the DNAJ- PKAc/Hsp70/BAG2 axis contributes to chemotherapeutic resistance in AML12 DNAJ-PKAc hepatocyte cell lines using the DNA damaging agent etoposide and the Bcl-2 inhibitor navitoclax. Wildtype AML12 cells were susceptible to each drug alone and in combination. In contrast, AML12 DNAJ-PKAc cells were moderately affected by etoposide, resistant to navitoclax, but markedly susceptible to the drug combination. These studies implicate BAG2 as a biomarker for advanced FLC and a chemotherapeutic resistance factor in DNAJ-PKAc signaling scaffolds.

10.
Biochem J ; 438(1): 103-10, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21644927

RESUMEN

Post-translational modification of proteins is a universal form of cellular regulation. Phosphorylation on serine, threonine, tyrosine or histidine residues by protein kinases is the most widespread and versatile form of covalent modification. Resultant changes in activity, localization or stability of phosphoproteins drives cellular events. MS and bioinformatic analyses estimate that ~30% of intracellular proteins are phosphorylated at any given time. Multiple approaches have been developed to systematically define targets of protein kinases; however, it is likely that we have yet to catalogue the full complement of the phosphoproteome. The amino acids that surround a phosphoacceptor site are substrate determinants for protein kinases. For example, basophilic enzymes such as PKA (protein kinase A), protein kinase C and calmodulin-dependent kinases recognize basic side chains preceding the target serine or threonine residues. In the present paper we describe a strategy using peptide arrays and motif-specific antibodies to identify and characterize previously unrecognized substrate sequences for protein kinase A. We found that the protein kinases PKD (protein kinase D) and MARK3 [MAP (microtubule-associated protein)-regulating kinase 3] can both be phosphorylated by PKA. Furthermore, we show that the adapter protein RIL [a product of PDLIM4 (PDZ and LIM domain protein 4)] is a PKA substrate that is phosphorylated on Ser(119) inside cells and that this mode of regulation may control its ability to affect cell growth.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al ADN/metabolismo , Neoplasias de la Próstata/metabolismo , Análisis por Matrices de Proteínas , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Western Blotting , Proliferación Celular , Humanos , Proteínas con Dominio LIM , Masculino , Datos de Secuencia Molecular , Fosforilación , Neoplasias de la Próstata/patología , Procesamiento Proteico-Postraduccional , Homología de Secuencia de Aminoácido , Serina , Especificidad por Sustrato , Treonina , Células Tumorales Cultivadas
11.
Cell Rep ; 40(2): 111073, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35830806

RESUMEN

Mutations in the catalytic subunit of protein kinase A (PKAc) drive the stress hormone disorder adrenal Cushing's syndrome. We define mechanisms of action for the PKAc-L205R and W196R variants. Proximity proteomic techniques demonstrate that both Cushing's mutants are excluded from A kinase-anchoring protein (AKAP)-signaling islands, whereas live-cell photoactivation microscopy reveals that these kinase mutants indiscriminately diffuse throughout the cell. Only cAMP analog drugs that displace native PKAc from AKAPs enhance cortisol release. Rescue experiments that incorporate PKAc mutants into AKAP complexes abolish cortisol overproduction, indicating that kinase anchoring restores normal endocrine function. Analyses of adrenal-specific PKAc-W196R knockin mice and Cushing's syndrome patient tissue reveal defective signaling mechanisms of the disease. Surprisingly each Cushing's mutant engages a different mitogenic-signaling pathway, with upregulation of YAP/TAZ by PKAc-L205R and ERK kinase activation by PKAc-W196R. Thus, aberrant spatiotemporal regulation of each Cushing's variant promotes the transmission of distinct downstream pathogenic signals.


Asunto(s)
Síndrome de Cushing , Animales , Dominio Catalítico/genética , Síndrome de Cushing/genética , Síndrome de Cushing/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Hidrocortisona/metabolismo , Ratones , Proteómica
12.
Trends Biochem Sci ; 31(6): 316-23, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16690317

RESUMEN

Kinase anchoring has gained acceptance as a means to synchronize spatial and temporal aspects of cell signaling. A-kinase anchoring proteins (AKAPs) are a diverse group of functionally related proteins that target protein kinase A and other enzymes to coordinate a range of signaling events. Recent advances in this field have shown that incorporating phosphodiesterases into AKAP signaling complexes exerts local control of cAMP metabolism, that phosphorylation of some AKAPs potentiates downstream signaling events, that anchoring of distinct enzyme combinations functions as a mechanism to expand the repertoire of cellular events controlled by a single AKAP, and that fluorescent biosensors can be used to visualize dynamic aspects of localized cAMP signaling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Transducción de Señal/fisiología , Animales , Humanos
13.
Cell Rep ; 31(2): 107509, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32294439

RESUMEN

Fibrolamellar carcinoma (FLC) is a rare, therapeutically intractable liver cancer that disproportionately affects youth. Although FLC tumors exhibit a distinct gene expression profile, the chromatin regulatory landscape and the genes most critical for tumor cell survival remain unclear. Here, we use chromatin run-on sequencing to discover ∼7,000 enhancers and 141 enhancer hotspots activated in FLC relative to nonmalignant liver. Bioinformatic analyses reveal aberrant ERK/MEK signaling and candidate master transcriptional regulators. We also define the genes most strongly associated with hotspots of FLC enhancer activity, including CA12 and SLC16A14. Treatment of FLC cell models with inhibitors of CA12 or SLC16A14 independently reduce cell viability and/or significantly enhance the effect of the MEK inhibitor cobimetinib. These findings highlight molecular targets for drug development, as well as drug combination approaches.


Asunto(s)
Carcinoma Hepatocelular/genética , Elementos de Facilitación Genéticos/genética , Adolescente , Antígeno Ca-125/genética , Carcinogénesis/patología , Proliferación Celular/genética , Cromatina/genética , Biología Computacional/métodos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Hígado/patología , Neoplasias Hepáticas/patología , Sistema de Señalización de MAP Quinasas/genética , Proteínas de la Membrana/genética , Transportadores de Ácidos Monocarboxílicos/genética , Oncogenes/genética , Análisis de Secuencia de ADN/métodos , Transducción de Señal/genética
14.
Elife ; 82019 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-31872801

RESUMEN

Deciphering how signaling enzymes operate within discrete microenvironments is fundamental to understanding biological processes. A-kinase anchoring proteins (AKAPs) restrict the range of action of protein kinases within intracellular compartments. We exploited the AKAP targeting concept to create genetically encoded platforms that restrain kinase inhibitor drugs at distinct subcellular locations. Local Kinase Inhibition (LoKI) allows us to ascribe organelle-specific functions to broad specificity kinases. Using chemical genetics, super resolution microscopy, and live-cell imaging we discover that centrosomal delivery of Polo-like kinase 1 (Plk1) and Aurora A (AurA) inhibitors attenuates kinase activity, produces spindle defects, and prolongs mitosis. Targeted inhibition of Plk1 in zebrafish embryos illustrates how centrosomal Plk1 underlies mitotic spindle assembly. Inhibition of kinetochore-associated pools of AurA blocks phosphorylation of microtubule-kinetochore components. This versatile precision pharmacology tool enhances investigation of local kinase biology.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/genética , Aurora Quinasa A/genética , Proteínas de Ciclo Celular/genética , Mitosis/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Animales , Aurora Quinasa A/química , Proteínas de Ciclo Celular/química , Centrosoma/química , Centrosoma/ultraestructura , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Cinetocoros/química , Microtúbulos/genética , Fosforilación/genética , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/química , Proteínas Proto-Oncogénicas/química , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Quinasa Tipo Polo 1
15.
Elife ; 82019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31063128

RESUMEN

Fibrolamellar carcinoma (FLC) is a rare liver cancer. FLCs uniquely produce DNAJ-PKAc, a chimeric enzyme consisting of a chaperonin-binding domain fused to the Cα subunit of protein kinase A. Biochemical analyses of clinical samples reveal that a unique property of this fusion enzyme is the ability to recruit heat shock protein 70 (Hsp70). This cellular chaperonin is frequently up-regulated in cancers. Gene-editing of mouse hepatocytes generated disease-relevant AML12DNAJ-PKAc cell lines. Further analyses indicate that the proto-oncogene A-kinase anchoring protein-Lbc is up-regulated in FLC and functions to cluster DNAJ-PKAc/Hsp70 sub-complexes with a RAF-MEK-ERK kinase module. Drug screening reveals Hsp70 and MEK inhibitor combinations that selectively block proliferation of AML12DNAJ-PKAc cells. Phosphoproteomic profiling demonstrates that DNAJ-PKAc biases the signaling landscape toward ERK activation and engages downstream kinase cascades. Thus, the oncogenic action of DNAJ-PKAc involves an acquired scaffolding function that permits recruitment of Hsp70 and mobilization of local ERK signaling.


Asunto(s)
Carcinoma Hepatocelular/fisiopatología , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Proteínas Fetales/metabolismo , Neoplasias Hepáticas/fisiopatología , Chaperonas Moleculares/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Anclaje a la Quinasa A/metabolismo , Animales , Línea Celular , Proliferación Celular , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética , Proteínas Fetales/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Hepatocitos/patología , Humanos , Ratones , Modelos Teóricos , Chaperonas Moleculares/genética , Unión Proteica , Proto-Oncogenes Mas , Proteínas Recombinantes de Fusión/genética , Transducción de Señal
16.
J Cell Biol ; 217(6): 1895-1897, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29773583

RESUMEN

The role of autophosphorylation of the type II regulatory subunit in activation of protein kinase A (PKA) has been a longstanding question. In this issue, Isensee et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201708053) use antibody tools that selectively recognize phosphorylated RII and the catalytic subunit active site to reexamine PKA holoenzyme activation mechanisms in neurons.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Animales , Activación Enzimática , Humanos , Modelos Biológicos , Fosforilación
17.
Curr Biol ; 12(1): R32-40, 2002 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-11790323

RESUMEN

An enigmatic yet fundamental principle of signal transduction is that parallel signaling pathways assembled from a common repertoire of enzymes are able to propagate diverse physiological responses. A key feature of such a mechanism is that separate signaling pathways are organized into localized transduction units, each tailored to respond optimally to a particular signal. Protein-protein interactions maintained by anchoring, adapter and scaffolding proteins provide the molecular glue that holds these signal transduction units together. A major objective of the signaling community is to ascertain how signals flow through compartmentalized transduction units that contain transmembrane receptors, protein kinases, phosphatases and their substrates.


Asunto(s)
Transducción de Señal , Animales , Arrestinas/fisiología , Compartimento Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citoplasma/metabolismo , Proteínas de Unión al GTP Heterotriméricas/fisiología , Sistema de Señalización de MAP Quinasas , Sustancias Macromoleculares , Modelos Biológicos , Levaduras/enzimología , beta-Arrestinas
18.
Curr Biol ; 14(16): 1436-50, 2004 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-15324660

RESUMEN

BACKGROUND: 14-3-3 proteins are abundant and conserved polypeptides that mediate the cellular effects of basophilic protein kinases through their ability to bind specific peptide motifs phosphorylated on serine or threonine. RESULTS: We have used mass spectrometry to analyze proteins that associate with 14-3-3 isoforms in HEK293 cells. This identified 170 unique 14-3-3-associated proteins, which show only modest overlap with previous 14-3-3 binding partners isolated by affinity chromatography. To explore this large set of proteins, we developed a domain-based hierarchical clustering technique that distinguishes structurally and functionally related subsets of 14-3-3 target proteins. This analysis revealed a large group of 14-3-3 binding partners that regulate cytoskeletal architecture. Inhibition of 14-3-3 phosphoprotein recognition in vivo indicates the general importance of such interactions in cellular morphology and membrane dynamics. Using tandem proteomic and biochemical approaches, we identify a phospho-dependent 14-3-3 binding site on the A kinase anchoring protein (AKAP)-Lbc, a guanine nucleotide exchange factor (GEF) for the Rho GTPase. 14-3-3 binding to AKAP-Lbc, induced by PKA, suppresses Rho activation in vivo. CONCLUSION: 14-3-3 proteins can potentially engage around 0.6% of the human proteome. Domain-based clustering has identified specific subsets of 14-3-3 targets, including numerous proteins involved in the dynamic control of cell architecture. This notion has been validated by the broad inhibition of 14-3-3 phosphorylation-dependent binding in vivo and by the specific analysis of AKAP-Lbc, a RhoGEF that is controlled by its interaction with 14-3-3.


Asunto(s)
Citoesqueleto/fisiología , Estructura Terciaria de Proteína/fisiología , Proteínas/fisiología , Tirosina 3-Monooxigenasa/metabolismo , Proteínas 14-3-3 , Actinas/fisiología , Animales , Diferenciación Celular/genética , Tamaño de la Célula/genética , Células Cultivadas , Análisis por Conglomerados , Biología Computacional , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citoesqueleto/genética , Cartilla de ADN , ADN Complementario/genética , Perros , Técnica del Anticuerpo Fluorescente , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Espectrometría de Masas , Ratones , Fosforilación , Pruebas de Precipitina , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas/metabolismo , Proteómica/métodos , Factores de Intercambio de Guanina Nucleótido Rho , Transfección
19.
Science ; 356(6344): 1288-1293, 2017 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-28642438

RESUMEN

Hormones can transmit signals through adenosine 3',5'-monophosphate (cAMP) to precise intracellular locations. The fidelity of these responses relies on the activation of localized protein kinase A (PKA) holoenzymes. Association of PKA regulatory type II (RII) subunits with A-kinase-anchoring proteins (AKAPs) confers location, and catalytic (C) subunits phosphorylate substrates. Single-particle electron microscopy demonstrated that AKAP79 constrains RII-C subassemblies within 150 to 250 angstroms of its targets. Native mass spectrometry established that these macromolecular assemblies incorporated stoichiometric amounts of cAMP. Chemical-biology- and live cell-imaging techniques revealed that catalytically active PKA holoenzymes remained intact within the cytoplasm. These findings indicate that the parameters of anchored PKA holoenzyme action are much more restricted than originally anticipated.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Holoenzimas/metabolismo , Transducción de Señal , Proteínas de Anclaje a la Quinasa A/metabolismo , Animales , Línea Celular Tumoral , AMP Cíclico/química , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Holoenzimas/química , Humanos , Ratones , Microscopía Electrónica , Mitocondrias/enzimología , Fosforilación , Unión Proteica , Estabilidad Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
20.
Eur J Cell Biol ; 85(7): 585-92, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16524641

RESUMEN

Intracellular signal transduction pathways require a high degree of spatial and temporal resolution in order to deliver the appropriate outputs. Specific signaling mediated by the ubiquitous second messenger cAMP and its effector, the cAMP-dependent protein kinase (PKA), is governed by the spatial organization of different pathway components by A-kinase anchoring proteins (AKAPs). This review discusses the history and future of anchored cAMP signaling pathways.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Compartimento Celular , AMP Cíclico/historia , AMP Cíclico/metabolismo , Transducción de Señal , Animales , Historia del Siglo XX , Historia del Siglo XXI , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA