Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proteomics ; 24(8): e2300234, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38487981

RESUMEN

The identification of proteoforms by top-down proteomics requires both high quality fragmentation spectra and the neutral mass of the proteoform from which the fragments derive. Intact proteoform spectra can be highly complex and may include multiple overlapping proteoforms, as well as many isotopic peaks and charge states. The resulting lower signal-to-noise ratios for intact proteins complicates downstream analyses such as deconvolution. Averaging multiple scans is a common way to improve signal-to-noise, but mass spectrometry data contains artifacts unique to it that can degrade the quality of an averaged spectra. To overcome these limitations and increase signal-to-noise, we have implemented outlier rejection algorithms to remove outlier measurements efficiently and robustly in a set of MS1 scans prior to averaging. We have implemented averaging with rejection algorithms in the open-source, freely available, proteomics search engine MetaMorpheus. Herein, we report the application of the averaging with rejection algorithms to direct injection and online liquid chromatography mass spectrometry data. Averaging with rejection algorithms demonstrated a 45% increase in the number of proteoforms detected in Jurkat T cell lysate. We show that the increase is due to improved spectral quality, particularly in regions surrounding isotopic envelopes.


Asunto(s)
Proteoma , Proteómica , Proteoma/análisis , Proteómica/métodos , Procesamiento Proteico-Postraduccional , Algoritmos , Espectrometría de Masas
2.
J Proteome Res ; 23(9): 4128-4138, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39078123

RESUMEN

A critical part of the hepatitis B virus (HBV) life cycle is the packaging of the pregenomic RNA (pgRNA) into nucleocapsids. While this process is known to involve several viral elements, much less is known about the identities and roles of host proteins in this process. To better understand the role of host proteins, we isolated pgRNA and characterized its protein interactome in cells expressing either packaging-competent or packaging-incompetent HBV genomes. We identified over 250 host proteins preferentially associated with pgRNA from the packaging-competent version of the virus. These included proteins already known to support capsid formation, enhance viral gene expression, catalyze nucleocapsid dephosphorylation, and bind to the viral genome, demonstrating the ability of the approach to effectively reveal functionally significant host-virus interactors. Three of these host proteins, AURKA, YTHDF2, and ATR, were selected for follow-up analysis. RNA immunoprecipitation qPCR (RIP-qPCR) confirmed pgRNA-protein association in cells, and siRNA knockdown of the proteins showed decreased encapsidation efficiency. This study provides a template for the use of comparative RNA-protein interactome analysis in conjunction with virus engineering to reveal functionally significant host-virus interactions.


Asunto(s)
Virus de la Hepatitis B , ARN Viral , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/fisiología , Humanos , ARN Viral/genética , ARN Viral/metabolismo , Genoma Viral , Interacciones Huésped-Patógeno/genética , Empaquetamiento del Genoma Viral/genética , Ensamble de Virus/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , ARN
3.
J Proteome Res ; 23(1): 149-160, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38043095

RESUMEN

Host RNA binding proteins recognize viral RNA and play key roles in virus replication and antiviral mechanisms. SARS-CoV-2 generates a series of tiered subgenomic RNAs (sgRNAs), each encoding distinct viral protein(s) that regulate different aspects of viral replication. Here, for the first time, we demonstrate the successful isolation of SARS-CoV-2 genomic RNA and three distinct sgRNAs (N, S, and ORF8) from a single population of infected cells and characterize their protein interactomes. Over 500 protein interactors (including 260 previously unknown) were identified as associated with one or more target RNA. These included protein interactors unique to a single RNA pool and others present in multiple pools, highlighting our ability to discriminate between distinct viral RNA interactomes despite high sequence similarity. Individual interactomes indicated viral associations with cell response pathways, including regulation of cytoplasmic ribonucleoprotein granules and posttranscriptional gene silencing. We tested the significance of three protein interactors in these pathways (APOBEC3F, PPP1CC, and MSI2) using siRNA knockdowns, with several knockdowns affecting viral gene expression, most consistently PPP1CC. This study describes a new technology for high-resolution studies of SARS-CoV-2 RNA regulation and reveals a wealth of new viral RNA-associated host factors of potential functional significance to infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , ARN Subgenómico , ARN Viral/genética , ARN Viral/metabolismo , COVID-19/genética , Replicación Viral/genética , Genómica , Proteínas de Unión al ARN/genética
4.
Anal Bioanal Chem ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877149

RESUMEN

Identification of O-glycopeptides from tandem mass spectrometry data is complicated by the near complete dissociation of O-glycans from the peptide during collisional activation and by the combinatorial explosion of possible glycoforms when glycans are retained intact in electron-based activation. The recent O-Pair search method provides an elegant solution to these problems, using a collisional activation scan to identify the peptide sequence and total glycan mass, and a follow-up electron-based activation scan to localize the glycosite(s) using a graph-based algorithm in a reduced search space. Our previous O-glycoproteomics methods with MSFragger-Glyco allowed for extremely fast and sensitive identification of O-glycopeptides from collisional activation data but had limited support for site localization of glycans and quantification of glycopeptides. Here, we report an improved pipeline for O-glycoproteomics analysis that provides proteome-wide, site-specific, quantitative results by incorporating the O-Pair method as a module within FragPipe. In addition to improved search speed and sensitivity, we add flexible options for oxonium ion-based filtering of glycans and support for a variety of MS acquisition methods and provide a comparison between all software tools currently capable of O-glycosite localization in proteome-wide searches.

5.
Am J Physiol Lung Cell Mol Physiol ; 325(1): L30-L44, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37130807

RESUMEN

Despite recent technological advances such as ex vivo lung perfusion (EVLP), the outcome of lung transplantation remains unsatisfactory with ischemic injury being a common cause for primary graft dysfunction. New therapeutic developments are hampered by limited understanding of pathogenic mediators of ischemic injury to donor lung grafts. Here, to identify novel proteomic effectors underlying the development of lung graft dysfunction, using bioorthogonal protein engineering, we selectively captured and identified newly synthesized glycoproteins (NewS-glycoproteins) produced during EVLP with unprecedented temporal resolution of 4 h. Comparing the NewS-glycoproteomes in lungs with and without warm ischemic injury, we discovered highly specific proteomic signatures with altered synthesis in ischemic lungs, which exhibited close association to hypoxia response pathways. Inspired by the discovered protein signatures, pharmacological modulation of the calcineurin pathway during EVLP of ischemic lungs offered graft protection and improved posttransplantation outcome. In summary, the described EVLP-NewS-glycoproteomics strategy delivers an effective new means to reveal molecular mediators of donor lung pathophysiology and offers the potential to guide future therapeutic development.NEW & NOTEWORTHY This study developed and implemented a bioorthogonal strategy to chemoselectively label, enrich, and characterize newly synthesized (NewS-)glycoproteins during 4-h ex vivo lung perfusion (EVLP). Through this approach, the investigators uncovered specific proteomic signatures associated with warm ischemic injury in donor lung grafts. These signatures exhibit high biological relevance to ischemia-reperfusion injury, validating the robustness of the presented approach.


Asunto(s)
Trasplante de Pulmón , Daño por Reperfusión , Humanos , Perfusión , Proteómica , Isquemia Tibia , Pulmón/metabolismo , Daño por Reperfusión/metabolismo , Glicoproteínas/metabolismo
6.
Anal Chem ; 95(41): 15245-15253, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37791746

RESUMEN

Top-down proteomics, the tandem mass spectrometric analysis of intact proteoforms, is the dominant method for proteoform characterization in complex mixtures. While this strategy produces detailed molecular information, it also requires extensive instrument time per mass spectrum obtained and thus compromises the depth of proteoform coverage that is accessible on liquid chromatography time scales. Such a top-down analysis is necessary for making original proteoform identifications, but once a proteoform has been confidently identified, the extensive characterization it provides may no longer be required for a subsequent identification of the same proteoform. We present a strategy to identify proteoforms in tissue samples on the basis of the combination of an intact mass determination with a measured count of the number of cysteine residues present in each proteoform. We developed and characterized a cysteine tagging chemistry suitable for the efficient and specific labeling of cysteine residues within intact proteoforms and for providing a count of the cysteine amino acids present. On simple protein mixtures, the tagging chemistry yields greater than 98% labeling of all cysteine residues, with a labeling specificity of greater than 95%. Similar results are observed on more complex samples. In a proof-of-principle study, proteoforms present in a human prostate tumor biopsy were characterized. Observed proteoforms, each characterized by an intact mass and a cysteine count, were grouped into proteoform families (groups of proteoforms originating from the same gene). We observed 2190 unique experimental proteoforms, 703 of which were grouped into 275 proteoform families.


Asunto(s)
Cisteína , Espectrometría de Masas en Tándem , Humanos , Cisteína/metabolismo , Espectrometría de Masas en Tándem/métodos , Proteínas/metabolismo , Cromatografía Liquida , Proteómica/métodos , Proteoma/análisis , Procesamiento Proteico-Postraduccional
7.
Anal Chem ; 95(18): 7087-7092, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37093976

RESUMEN

RNA-protein interactions are key to many aspects of cellular homeostasis and their identification is important to understanding cellular function. Multiple strategies have been developed for the RNA-centric characterization of RNA-protein complexes. However, these studies have all been done in immortalized cell lines that do not capture the complexity of heterogeneous tissue samples. Here, we develop hybridization purification of RNA-protein complexes followed by mass spectrometry (HyPR-MS) for use in tissue samples. We isolated both polyadenylated RNA and the specific long noncoding RNA MALAT1 and characterized their protein interactomes. These results demonstrate the feasibility of HyPR-MS in tissue for the multiplexed characterization of specific RNA-protein complexes.


Asunto(s)
ARN Largo no Codificante , ARN Largo no Codificante/genética , Línea Celular , ARN Mensajero
8.
Nat Methods ; 17(11): 1133-1138, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33106676

RESUMEN

We report O-Pair Search, an approach to identify O-glycopeptides and localize O-glycosites. Using paired collision- and electron-based dissociation spectra, O-Pair Search identifies O-glycopeptides via an ion-indexed open modification search and localizes O-glycosites using graph theory and probability-based localization. O-Pair Search reduces search times more than 2,000-fold compared to current O-glycopeptide processing software, while defining O-glycosite localization confidence levels and generating more O-glycopeptide identifications. Beyond the mucin-type O-glycopeptides discussed here, O-Pair Search also accepts user-defined glycan databases, making it compatible with many types of O-glycosylation. O-Pair Search is freely available within the open-source MetaMorpheus platform at https://github.com/smith-chem-wisc/MetaMorpheus .


Asunto(s)
Glicopéptidos , Proteómica/métodos , Espectrometría de Masas en Tándem , Bases de Datos de Proteínas , Glicopéptidos/análisis , Glicopéptidos/química , Glicosilación , Proteómica/instrumentación , Programas Informáticos , Flujo de Trabajo
9.
Analyst ; 148(3): 475-486, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36383138

RESUMEN

Proteins are the key biological actors within cells, driving many biological processes integral to both healthy and diseased states. Understanding the depth of complexity represented within the proteome is crucial to our scientific understanding of cellular biology and to provide disease specific insights for clinical applications. Mass spectrometry-based proteomics is the premier method for proteome analysis, with the ability to both identify and quantify proteins. Although proteomics continues to grow as a robust field of bioanalytical chemistry, advances are still necessary to enable a more comprehensive view of the proteome. In this review, we provide a broad overview of mass spectrometry-based proteomics in general, and highlight four developing areas of bottom-up proteomics: (1) protein inference, (2) alternative proteases, (3) sample-specific databases and (4) post-translational modification discovery.


Asunto(s)
Proteoma , Proteómica , Proteómica/métodos , Proteoma/metabolismo , Procesamiento Proteico-Postraduccional , Espectrometría de Masas/métodos , Péptido Hidrolasas/metabolismo
10.
J Proteome Res ; 21(11): 2609-2618, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36206157

RESUMEN

Tandem mass spectrometry (MS/MS) is widely employed for the analysis of complex proteomic samples. While protein sequence database searching and spectral library searching are both well-established peptide identification methods, each has shortcomings. Protein sequence databases lack fragment peak intensity information, which can result in poor discrimination between correct and incorrect spectrum assignments. Spectral libraries usually contain fewer peptides than protein sequence databases, which limits the number of peptides that can be identified. Notably, few post-translationally modified peptides are represented in spectral libraries. This is because few search engines can both identify a broad spectrum of PTMs and create corresponding spectral libraries. Also, programs that generate spectral libraries using deep learning approaches are not yet able to accurately predict spectra for the vast majority of PTMs. Here, we address these limitations through use of a hybrid search strategy that combines protein sequence database and spectral library searches to improve identification success rates and sensitivity. This software uses Global PTM Discovery (G-PTM-D) to produce spectral libraries for a wide variety of different PTMs. These features, along with a new spectrum annotation and visualization tool, have been integrated into the freely available and open-source search engine MetaMorpheus.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Bases de Datos de Proteínas , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Análisis de Datos , Programas Informáticos , Péptidos/análisis , Biblioteca de Péptidos , Algoritmos
11.
J Proteome Res ; 21(4): 993-1001, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35192358

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) remains a deadly infectious disease despite existing antiretroviral therapies. A comprehensive understanding of the specific mechanisms of viral infectivity remains elusive and currently limits the development of new and effective therapies. Through in-depth proteomic analysis of HIV-1 virions, we discovered the novel post-translational modification of highly conserved residues within the viral matrix and capsid proteins to the dehydroamino acids, dehydroalanine and dehydrobutyrine. We further confirmed their presence by labeling the reactive alkene, characteristic of dehydroamino acids, with glutathione via Michael addition. Dehydroamino acids are rare, understudied, and have been observed mainly in select bacterial and fungal species. Until now, they have not been observed in HIV proteins. We hypothesize that these residues are important in viral particle maturation and could provide valuable insight into HIV infectivity mechanisms.


Asunto(s)
VIH-1 , Cápside/química , Cápside/metabolismo , Proteínas de la Cápside/análisis , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , VIH-1/genética , Humanos , Proteómica , Virión
12.
J Proteome Res ; 21(2): 410-419, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35073098

RESUMEN

Interpreting proteomics data remains challenging due to the large number of proteins that are quantified by modern mass spectrometry methods. Weighted gene correlation network analysis (WGCNA) can identify groups of biologically related proteins using only protein intensity values by constructing protein correlation networks. However, WGCNA is not widespread in proteomic analyses due to challenges in implementing workflows. To facilitate the adoption of WGCNA by the proteomics field, we created MetaNetwork, an open-source, R-based application to perform sophisticated WGCNA workflows with no coding skill requirements for the end user. We demonstrate MetaNetwork's utility by employing it to identify groups of proteins associated with prostate cancer from a proteomic analysis of tumor and adjacent normal tissue samples. We found a decrease in cytoskeleton-related protein expression, a known hallmark of prostate tumors. We further identified changes in module eigenproteins indicative of dysregulation in protein translation and trafficking pathways. These results demonstrate the value of using MetaNetwork to improve the biological interpretation of quantitative proteomics experiments with 15 or more samples.


Asunto(s)
Proteínas , Proteómica , Análisis por Conglomerados , Humanos , Masculino , Espectrometría de Masas , Flujo de Trabajo
13.
J Proteome Res ; 21(4): 891-898, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35220718

RESUMEN

Bottom-up proteomics provides peptide measurements and has been invaluable for moving proteomics into large-scale analyses. Commonly, a single quantitative value is reported for each protein-coding gene by aggregating peptide quantities into protein groups following protein inference or parsimony. However, given the complexity of both RNA splicing and post-translational protein modification, it is overly simplistic to assume that all peptides that map to a singular protein-coding gene will demonstrate the same quantitative response. By assuming that all peptides from a protein-coding sequence are representative of the same protein, we may miss the discovery of important biological differences. To capture the contributions of existing proteoforms, we need to reconsider the practice of aggregating protein values to a single quantity per protein-coding gene.


Asunto(s)
Proteínas , Proteómica , Péptidos/genética , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Proteoma/genética , Proteoma/metabolismo
14.
J Biol Chem ; 297(3): 101049, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34375640

RESUMEN

Fused in sarcoma (FUS) encodes an RNA-binding protein with diverse roles in transcriptional activation and RNA splicing. While oncogenic fusions of FUS and transcription factor DNA-binding domains are associated with soft tissue sarcomas, dominant mutations in FUS can cause amyotrophic lateral sclerosis. FUS has also been implicated in genome maintenance. However, the underlying mechanisms of its actions in genome stability are unknown. Here, we applied gene editing, functional reconstitution, and integrated proteomics and transcriptomics to illuminate roles for FUS in DNA replication and repair. Consistent with a supportive role in DNA double-strand break repair, FUS-deficient cells exhibited subtle alterations in the recruitment and retention of double-strand break-associated factors, including 53BP1 and BRCA1. FUS-/- cells also exhibited reduced proliferative potential that correlated with reduced speed of replication fork progression, diminished loading of prereplication complexes, enhanced micronucleus formation, and attenuated expression and splicing of S-phase-associated genes. Finally, FUS-deficient cells exhibited genome-wide alterations in DNA replication timing that were reversed upon re-expression of FUS complementary DNA. We also showed that FUS-dependent replication domains were enriched in transcriptionally active chromatin and that FUS was required for the timely replication of transcriptionally active DNA. These findings suggest that alterations in DNA replication kinetics and programming contribute to genome instability and functional defects in FUS-deficient cells.


Asunto(s)
Momento de Replicación del ADN , Proteína FUS de Unión a ARN/metabolismo , Sarcoma/genética , Sarcoma/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proliferación Celular , Roturas del ADN de Doble Cadena , Reparación del ADN , Humanos , Cinética , Proteína FUS de Unión a ARN/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
15.
Nat Methods ; 16(7): 587-594, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31249407

RESUMEN

One gene can give rise to many functionally distinct proteoforms, each of which has a characteristic molecular mass. Top-down mass spectrometry enables the analysis of intact proteins and proteoforms. Here members of the Consortium for Top-Down Proteomics provide a decision tree that guides researchers to robust protocols for mass analysis of intact proteins (antibodies, membrane proteins and others) from mixtures of varying complexity. We also present cross-platform analytical benchmarks using a protein standard sample, to allow users to gauge their proficiency.


Asunto(s)
Benchmarking , Espectrometría de Masas/métodos , Proteínas/química , Desnaturalización Proteica , Procesamiento Proteico-Postraduccional , Proteómica
16.
Int J Mol Sci ; 23(2)2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35055128

RESUMEN

RNA-binding proteins are crucial to the function of coding and non-coding RNAs. The disruption of RNA-protein interactions is involved in many different pathological states. Several computational and experimental strategies have been developed to identify protein binders of selected RNA molecules. Amongst these, 'in cell' hybridization methods represent the gold standard in the field because they are designed to reveal the proteins bound to specific RNAs in a cellular context. Here, we compare the technical features of different 'in cell' hybridization approaches with a focus on their advantages, limitations, and current and potential future applications.


Asunto(s)
Proteínas de Unión al ARN/aislamiento & purificación , ARN/metabolismo , Animales , Humanos , Unión Proteica , ARN Mensajero/metabolismo , ARN no Traducido/metabolismo , Proteínas de Unión al ARN/metabolismo
17.
J Proteome Res ; 20(8): 4101-4105, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34181432

RESUMEN

Proteoform identification is required to fully understand the biological diversity present in a sample. However, these identifications are often ambiguous because of the challenges in analyzing full length proteins by mass spectrometry. A five-level proteoform classification system was recently developed to delineate the ambiguity of proteoform identifications and to allow for comparisons across software platforms and acquisition methods. Widespread adoption of this system requires software tools to provide classification of the proteoform identifications. We describe here an implementation of the five-level classification system in the software program MetaMorpheus, which provides both bottom-up and top-down identifications. Additionally, we developed a stand-alone program called ProteoformClassifier that allows users to classify proteoform results from any search program, provided that the program writes output that includes the information necessary to evaluate proteoform ambiguity. This stand-alone program includes a small test file and database to evaluate if a given program provides sufficient information to evaluate ambiguity. If the program does not, then ProteoformClassifier provides meaningful feedback to assist developers with implementing the classification system. We tested currently available top-down software programs and found that none of them (other than MetaMorpheus) provided sufficient information regarding identification ambiguity to permit classification.


Asunto(s)
Proteoma , Proteómica , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Programas Informáticos , Espectrometría de Masas en Tándem
18.
J Proteome Res ; 20(12): 5412-5418, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34738820

RESUMEN

A large fraction of observed fragment ion intensity remains unidentified in top-down proteomics. The elucidation of these unknown fragment ions could enable researchers to identify additional proteoforms and reduce proteoform ambiguity in their analyses. Internal fragment ions have received considerable attention as a major source of these unidentified fragment ions. Internal fragments are product ions that contain neither protein terminus, in contrast with terminal ions that contain a single terminus. There are many more possible internal fragments than terminal fragments, and the resulting computational complexity has historically limited the application of internal fragment ions to low-complexity samples containing only one or a few proteins of interest. We implemented internal fragment ion functionality in MetaMorpheus to allow the proteome-wide annotation of internal fragment ions. MetaMorpheus first uses terminal fragment ions to identify putative proteoforms and then employs internal fragment ions to disambiguate similar proteoforms. In the analysis of mammalian cell lysates, we found that MetaMorpheus could disambiguate over half of its previously ambiguous proteoforms while also providing up to a 7% increase in proteoform-spectrum matches identified at a 1% false discovery rate.


Asunto(s)
Proteoma , Proteómica , Animales , Iones , Proteoma/análisis , Proteómica/métodos
19.
J Proteome Res ; 20(4): 1936-1942, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33661641

RESUMEN

Bottom-up proteomics is currently the dominant strategy for proteome analysis. It relies critically upon the use of a protease to digest proteins into peptides, which are then identified by liquid chromatography-mass spectrometry (LC-MS). The choice of protease(s) has a substantial impact upon the utility of the bottom-up results obtained. Protease selection determines the nature of the peptides produced, which in turn affects the ability to infer the presence and quantities of the parent proteins and post-translational modifications in the sample. We present here the software tool ProteaseGuru, which provides in silico digestions by candidate proteases, allowing evaluation of their utility for bottom-up proteomic experiments. This information is useful for both studies focused on a single or small number of proteins, and for analysis of entire complex proteomes. ProteaseGuru provides a convenient user interface, valuable peptide information, and data visualizations enabling the comparison of digestion results of different proteases. The information provided includes data tables of theoretical peptide sequences and their biophysical properties, results summaries outlining the numbers of shared and unique peptides per protease, histograms facilitating the comparison of proteome-wide proteolytic data, protein-specific summaries, and sequence coverage maps. Examples are provided of its use to inform analysis of variant-containing proteins in the human proteome, as well as for studies requiring the use of multiple proteomic databases such as a human:mouse xenograft model, and microbiome metaproteomics.


Asunto(s)
Péptido Hidrolasas , Proteómica , Secuencia de Aminoácidos , Animales , Cromatografía Liquida , Ratones , Proteoma/genética
20.
J Proteome Res ; 20(4): 1997-2004, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33683901

RESUMEN

MetaMorpheus is a free, open-source software program for the identification of peptides and proteoforms from data-dependent acquisition tandem MS experiments. There is inherent uncertainty in these assignments for several reasons, including the limited overlap between experimental and theoretical peaks, the m/z uncertainty, and noise peaks or peaks from coisolated peptides that produce false matches. False discovery rates provide only a set-wise approximation for incorrect spectrum matches. Here we implemented a binary decision tree calculation within MetaMorpheus to compute a posterior error probability, which provides a measure of uncertainty for each peptide-spectrum match. We demonstrate its utility for increasing identifications and resolving ambiguities in bottom-up, top-down, proteogenomic, and nonspecific digestion searches.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Algoritmos , Bases de Datos de Proteínas , Péptidos , Probabilidad , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA