Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 102: 129680, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38428537

RESUMEN

Dihydroquinolizinones (DHQs) that inhibit cellular polyadenylating polymerases 5 and 7 (PAPD5 & 7), such as RG7834, have been shown to inhibit both hepatitis A (HAV) and hepatitis B virus (HBV) in vitro and in vivo. In this report, we describe RG7834-based proteolysis-targeting chimeras (PROTACs), such as compound 12b, (6S)-9-((1-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)-21-oxo-3,6,9,12,15,18-hexaoxa-22-azapentacosan-25-yl)oxy)-6-isopropyl-10-methoxy-2-oxo-6,7-dihydro-2H-pyrido[2,1-a]isoquinoline-3-carboxylic acid. The PROTAC DHQs described here inhibited an HAV reporter virus in vitro with an IC50 of 277 nM. Although the PROTAC DHQs were also inhibitory to HBV, their activities were substantially less potent against HBV in vitro, being in the 10 to 20 µM range, based on the reduction of HBsAg and HBV mRNA levels. Importantly, unlike RG7834, the incubation of cells in vitro with PROTAC DHQ 12b resulted in the degradation of PAPD5, as expected for a PROTAC compound, but curiously not PAPD7. PAPD5 polypeptide degradation was prevented when a proteasome inhibitor, epoxomicin, was used, indicating that proteasome mediated proteolysis was associated with the observed activities of 12b. Taken together, these data show that 12b is the first example of a PROTAC that suppresses both HAV and HBV that is based on a small molecule warhead. The possibility that it has mechanisms that differ from its parent compound, RG7834, and has clinical value, is discussed.


Asunto(s)
Virus de la Hepatitis A , Virus de la Hepatitis B , Proteolisis , Complejo de la Endopetidasa Proteasomal
2.
Antiviral Res ; 226: 105888, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641024

RESUMEN

296 million people worldwide are predisposed to developing severe end-stage liver diseases due to chronic hepatitis B virus (HBV) infection. HBV forms covalently closed circular DNA (cccDNA) molecules that persist as episomal DNA in the nucleus of infected hepatocytes and drive viral replication. Occasionally, the HBV genome becomes integrated into host chromosomal DNA, a process that is believed to significantly contribute to circulating HBsAg levels and HCC development. Neither cccDNA accumulation nor expression from integrated HBV DNA are directly targeted by current antiviral treatments. In this study, we investigated the antiviral properties of a newly described allosteric modulator, FLS-359, that targets sirtuin 2 (SIRT2), an NAD+-dependent deacylase. Our results demonstrate that SIRT2 modulation by FLS-359 and by other tool compounds inhibits cccDNA synthesis following de novo infection of primary human hepatocytes and HepG2 (C3A)-NTCP cells, and FLS-359 substantially reduces cccDNA recycling in HepAD38 cells. While pre-existing cccDNA is not eradicated by short-term treatment with FLS-359, its transcriptional activity is substantially impaired, likely through inhibition of viral promoter activities. Consistent with the inhibition of viral transcription, HBsAg production by HepG2.2.15 cells, which contain integrated HBV genomes, is also suppressed by FLS-359. Our study provides further insights on SIRT2 regulation of HBV infection and supports the development of potent SIRT2 inhibitors as HBV antivirals.


Asunto(s)
Antivirales , ADN Circular , ADN Viral , Virus de la Hepatitis B , Hepatocitos , Sirtuina 2 , Replicación Viral , Humanos , ADN Circular/metabolismo , Sirtuina 2/antagonistas & inhibidores , Sirtuina 2/metabolismo , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/fisiología , Hepatocitos/virología , Hepatocitos/efectos de los fármacos , Antivirales/farmacología , Replicación Viral/efectos de los fármacos , Células Hep G2 , Regulación Alostérica/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA