Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Development ; 150(8)2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36971487

RESUMEN

Our understanding of the molecular events driving cell specification in early mammalian development relies mainly on mouse studies, and it remains unclear whether these mechanisms are conserved across mammals, including humans. We have shown that the establishment of cell polarity via aPKC is a conserved event in the initiation of the trophectoderm (TE) placental programme in mouse, cow and human embryos. However, the mechanisms transducing cell polarity into cell fate in cow and human embryos are unknown. Here, we have examined the evolutionary conservation of Hippo signalling, which is thought to function downstream of aPKC activity, in four different mammalian species: mouse, rat, cow and human. In all four species, inhibition of the Hippo pathway by targeting LATS kinases is sufficient to drive ectopic TE initiation and downregulation of SOX2. However, the timing and localisation of molecular markers differ across species, with rat embryos more closely recapitulating human and cow developmental dynamics, compared with the mouse. Our comparative embryology approach uncovered intriguing differences as well as similarities in a fundamental developmental process among mammals, reinforcing the importance of cross-species investigations.


Asunto(s)
Vía de Señalización Hippo , Transducción de Señal , Bovinos , Humanos , Femenino , Embarazo , Ratones , Ratas , Animales , Transducción de Señal/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Blastocisto/metabolismo , Placenta/metabolismo , Mamíferos/metabolismo , Linaje de la Célula
2.
Nature ; 587(7834): 443-447, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32968278

RESUMEN

Current understandings of cell specification in early mammalian pre-implantation development are based mainly on mouse studies. The first lineage differentiation event occurs at the morula stage, with outer cells initiating a trophectoderm (TE) placental progenitor program. The inner cell mass arises from inner cells during subsequent developmental stages and comprises precursor cells of the embryo proper and yolk sac1. Recent gene-expression analyses suggest that the mechanisms that regulate early lineage specification in the mouse may differ in other mammals, including human2-5 and cow6. Here we show the evolutionary conservation of a molecular cascade that initiates TE segregation in human, cow and mouse embryos. At the morula stage, outer cells acquire an apical-basal cell polarity, with expression of atypical protein kinase C (aPKC) at the contact-free domain, nuclear expression of Hippo signalling pathway effectors and restricted expression of TE-associated factors such as GATA3, which suggests initiation of a TE program. Furthermore, we demonstrate that inhibition of aPKC by small-molecule pharmacological modulation or Trim-Away protein depletion impairs TE initiation at the morula stage. Our comparative embryology analysis provides insights into early lineage specification and suggests that a similar mechanism initiates a TE program in human, cow and mouse embryos.


Asunto(s)
Evolución Biológica , Ectodermo/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Transcripción Genética , Trofoblastos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Masa Celular Interna del Blastocisto/citología , Masa Celular Interna del Blastocisto/metabolismo , Bovinos , Linaje de la Célula , Polaridad Celular , Ectodermo/citología , Embrión de Mamíferos/enzimología , Femenino , Factor de Transcripción GATA3/metabolismo , Vía de Señalización Hippo , Humanos , Ratones , Mórula/citología , Mórula/enzimología , Mórula/metabolismo , Placenta/citología , Placenta/metabolismo , Embarazo , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Trofoblastos/citología , Proteínas Señalizadoras YAP , Saco Vitelino/citología , Saco Vitelino/metabolismo
3.
Development ; 148(22)2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34661235

RESUMEN

Current knowledge of the transcriptional regulation of human pluripotency is incomplete, with lack of interspecies conservation observed. Single-cell transcriptomics analysis of human embryos previously enabled us to identify transcription factors, including the zinc-finger protein KLF17, that are enriched in the human epiblast and naïve human embryonic stem cells (hESCs). Here, we show that KLF17 is expressed coincident with the known pluripotency-associated factors NANOG and SOX2 across human blastocyst development. We investigate the function of KLF17 using primed and naïve hESCs for gain- and loss-of-function analyses. We find that ectopic expression of KLF17 in primed hESCs is sufficient to induce a naïve-like transcriptome and that KLF17 can drive transgene-mediated resetting to naïve pluripotency. This implies a role for KLF17 in establishing naïve pluripotency. However, CRISPR-Cas9-mediated knockout studies reveal that KLF17 is not required for naïve pluripotency acquisition in vitro. Transcriptome analysis of naïve hESCs identifies subtle effects on metabolism and signalling pathways following KLF17 loss of function, and possible redundancy with other KLF paralogues. Overall, we show that KLF17 is sufficient, but not necessary, for naïve pluripotency under the given in vitro conditions.


Asunto(s)
Blastocisto/metabolismo , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Factores de Transcripción/metabolismo , Humanos , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción/genética
4.
Life Sci Alliance ; 7(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37879938

RESUMEN

Recent advances in single-cell omics have transformed characterisation of cell types in challenging-to-study biological contexts. In contexts with limited single-cell samples, such as the early human embryo inference of transcription factor-gene regulatory network (GRN) interactions is especially difficult. Here, we assessed application of different linear or non-linear GRN predictions to single-cell simulated and human embryo transcriptome datasets. We also compared how expression normalisation impacts on GRN predictions, finding that transcripts per million reads outperformed alternative methods. GRN inferences were more reproducible using a non-linear method based on mutual information (MI) applied to single-cell transcriptome datasets refined with chromatin accessibility (CA) (called MICA), compared with alternative network prediction methods tested. MICA captures complex non-monotonic dependencies and feedback loops. Using MICA, we generated the first GRN inferences in early human development. MICA predicted co-localisation of the AP-1 transcription factor subunit proto-oncogene JUND and the TFAP2C transcription factor AP-2γ in early human embryos. Overall, our comparative analysis of GRN prediction methods defines a pipeline that can be applied to single-cell multi-omics datasets in especially challenging contexts to infer interactions between transcription factor expression and target gene regulation.


Asunto(s)
Redes Reguladoras de Genes , Multiómica , Humanos , Redes Reguladoras de Genes/genética , Factores de Transcripción/metabolismo , Transcriptoma/genética , Embrión de Mamíferos
5.
Nat Commun ; 11(1): 764, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32034154

RESUMEN

Our understanding of the signalling pathways regulating early human development is limited, despite their fundamental biological importance. Here, we mine transcriptomics datasets to investigate signalling in the human embryo and identify expression for the insulin and insulin growth factor 1 (IGF1) receptors, along with IGF1 ligand. Consequently, we generate a minimal chemically-defined culture medium in which IGF1 together with Activin maintain self-renewal in the absence of fibroblast growth factor (FGF) signalling. Under these conditions, we derive several pluripotent stem cell lines that express pluripotency-associated genes, retain high viability and a normal karyotype, and can be genetically modified or differentiated into multiple cell lineages. We also identify active phosphoinositide 3-kinase (PI3K)/AKT/mTOR signalling in early human embryos, and in both primed and naïve pluripotent culture conditions. This demonstrates that signalling insights from human blastocysts can be used to define culture conditions that more closely recapitulate the embryonic niche.


Asunto(s)
Autorrenovación de las Células/fisiología , Células Madre Embrionarias Humanas/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Activinas/metabolismo , Animales , Blastocisto/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Medios de Cultivo/farmacología , Endodermo/citología , Endodermo/metabolismo , Membranas Extraembrionarias/citología , Membranas Extraembrionarias/metabolismo , Fibroblastos/citología , Regulación del Desarrollo de la Expresión Génica , Células Madre Embrionarias Humanas/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/fisiología , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor IGF Tipo 1/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Transcriptoma , Inactivación del Cromosoma X/fisiología
6.
PLoS Biol ; 3(1): e7, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15630479

RESUMEN

In addition to protein coding sequence, the human genome contains a significant amount of regulatory DNA, the identification of which is proving somewhat recalcitrant to both in silico and functional methods. An approach that has been used with some success is comparative sequence analysis, whereby equivalent genomic regions from different organisms are compared in order to identify both similarities and differences. In general, similarities in sequence between highly divergent organisms imply functional constraint. We have used a whole-genome comparison between humans and the pufferfish, Fugu rubripes, to identify nearly 1,400 highly conserved non-coding sequences. Given the evolutionary divergence between these species, it is likely that these sequences are found in, and furthermore are essential to, all vertebrates. Most, and possibly all, of these sequences are located in and around genes that act as developmental regulators. Some of these sequences are over 90% identical across more than 500 bases, being more highly conserved than coding sequence between these two species. Despite this, we cannot find any similar sequences in invertebrate genomes. In order to begin to functionally test this set of sequences, we have used a rapid in vivo assay system using zebrafish embryos that allows tissue-specific enhancer activity to be identified. Functional data is presented for highly conserved non-coding sequences associated with four unrelated developmental regulators (SOX21, PAX6, HLXB9, and SHH), in order to demonstrate the suitability of this screen to a wide range of genes and expression patterns. Of 25 sequence elements tested around these four genes, 23 show significant enhancer activity in one or more tissues. We have identified a set of non-coding sequences that are highly conserved throughout vertebrates. They are found in clusters across the human genome, principally around genes that are implicated in the regulation of development, including many transcription factors. These highly conserved non-coding sequences are likely to form part of the genomic circuitry that uniquely defines vertebrate development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Genoma Humano , Secuencias Reguladoras de Ácidos Nucleicos , Takifugu/genética , Animales , Secuencia Conservada , Bases de Datos Genéticas , Elementos de Facilitación Genéticos , Proteínas del Ojo/metabolismo , Genoma , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Hedgehog , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Datos de Secuencia Molecular , Familia de Multigenes , Proteínas de Neoplasias/metabolismo , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción SOXB2 , Análisis de Secuencia de ADN , Especificidad de la Especie , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
7.
Physiol Genomics ; 32(1): 1-15, 2007 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-17940200

RESUMEN

Myosin heavy chain genes (MYHs) are the most important functional domains of myosins, which are highly conserved throughout evolution. The human genome contains 15 MYHs, whereas the corresponding number in teleost appears to be much higher. Although teleosts comprise more than one-half of all vertebrate species, our knowledge of MYHs in teleosts is rather limited. A comprehensive analysis of the torafugu (Takifugu rubripes) genome database enabled us to detect at least 28 MYHs, almost twice as many as in humans. RT-PCR revealed that at least 16 torafugu MYH representatives (5 fast skeletal, 3 cardiac, 2 slow skeletal, 1 superfast, 2 smooth, and 3 nonmuscle types) are actually transcribed. Among these, MYH(M743-2) and MYH(M5) of fast and slow skeletal types, respectively, are expressed during development of torafugu embryos. Syntenic analysis reveals that torafugu fast skeletal MYHs are distributed across five genomic regions, three of which form clusters. Interestingly, while human fast skeletal MYHs form one cluster, its syntenic region in torafugu is duplicated, although each locus contains just a single MYH in torafugu. The results of the syntenic analysis were further confirmed by corresponding analysis of MYHs based on databases from Tetraodon, zebrafish, and medaka genomes. Phylogenetic analysis suggests that fast skeletal MYHs evolved independently in teleosts and tetrapods after fast skeletal MYHs had diverged from four ancestral MYHs.


Asunto(s)
Evolución Molecular , Familia de Multigenes , Cadenas Pesadas de Miosina/genética , Takifugu/genética , Animales , Clonación Molecular , Secuencia Conservada , Regulación de la Expresión Génica , Variación Genética , Humanos , Mamíferos/genética , Filogenia , Takifugu/clasificación
8.
BMC Dev Biol ; 7: 100, 2007 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-17760977

RESUMEN

BACKGROUND: Comparative genomics is currently one of the most popular approaches to study the regulatory architecture of vertebrate genomes. Fish-mammal genomic comparisons have proved powerful in identifying conserved non-coding elements likely to be distal cis-regulatory modules such as enhancers, silencers or insulators that control the expression of genes involved in the regulation of early development. The scientific community is showing increasing interest in characterizing the function, evolution and language of these sequences. Despite this, there remains little in the way of user-friendly access to a large dataset of such elements in conjunction with the analysis and the visualization tools needed to study them. DESCRIPTION: Here we present CONDOR (COnserved Non-coDing Orthologous Regions) available at: http://condor.fugu.biology.qmul.ac.uk. In an interactive and intuitive way the website displays data on > 6800 non-coding elements associated with over 120 early developmental genes and conserved across vertebrates. The database regularly incorporates results of ongoing in vivo zebrafish enhancer assays of the CNEs carried out in-house, which currently number approximately 100. Included and highlighted within this set are elements derived from duplication events both at the origin of vertebrates and more recently in the teleost lineage, thus providing valuable data for studying the divergence of regulatory roles between paralogs. CONDOR therefore provides a number of tools and facilities to allow scientists to progress in their own studies on the function and evolution of developmental cis-regulation. CONCLUSION: By providing access to data with an approachable graphics interface, the CONDOR database presents a rich resource for further studies into the regulation and evolution of genes involved in early development.


Asunto(s)
Secuencia Conservada , Bases de Datos de Ácidos Nucleicos , Regulación del Desarrollo de la Expresión Génica , Genómica , Vertebrados/genética , Animales , Secuencia de Bases , Biología Computacional , Evolución Molecular , Filogenia
9.
Artículo en Inglés | MEDLINE | ID: mdl-20483234

RESUMEN

We recently identified approximately 1400 conserved non-coding elements (CNEs) shared by the genomes of fugu (Takifugu rubripes) and human that appear to be associated with developmental regulation in vertebrates [Woolfe, A., Goodson, M., Goode, D.K., Snell, P., McEwen, G.K., Vavouri, T., Smith, S.F., North, P., Callaway, H., Kelly, K., Walter, K., Abnizova, I., Gilks, W., Edwards, Y.J.K., Cooke, J.E., Elgar, G., 2005. Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol. 3 (1), e7]. This study encompassed a multi-disciplinary approach using bioinformatics, statistical methods and functional assays to identify and characterise the CNEs. Using an in vivo enhancer assay, over 90% of tested CNEs up-regulate tissue-specific GFP expression. Here we review our group's research in the field of characterising non-coding sequences conserved in vertebrates. We take this opportunity to discuss our research in progress and present some results of new and additional analyses. These include a phylogenomics analysis of CNEs, sequence conservation patterns in vertebrate CNEs and the distribution of human SNPs in the CNEs. We highlight the usefulness of the CNE dataset to help correlate genetic variation in health and disease. We also discuss the functional analysis using the enhancer assay and the enrichment of predicted transcription factor binding sites for two CNEs. Public access to the CNEs plus annotation is now possible and is described. The content of this review was presented by Dr. Y.J.K. Edwards at the TODAI International Symposium on Functional Genomics of the Pufferfish, Tokyo, Japan, 3-6 November 2004.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA