Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 607(7918): 276-280, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35831597

RESUMEN

One of the main developments in unconventional superconductivity in the past two decades has been the discovery that most unconventional superconductors form phase diagrams that also contain other strongly correlated states. Many systems of interest are therefore close to more than one instability, and tuning between the resultant ordered phases is the subject of intense research1. In recent years, uniaxial pressure applied using piezoelectric-based devices has been shown to be a particularly versatile new method of tuning2,3, leading to experiments that have advanced our understanding of the fascinating unconventional superconductor Sr2RuO4 (refs. 4-9). Here we map out its phase diagram using high-precision measurements of the elastocaloric effect in what we believe to be the first such study including both the normal and the superconducting states. We observe a strong entropy quench on entering the superconducting state, in excellent agreement with a model calculation for pairing at the Van Hove point, and obtain a quantitative estimate of the entropy change associated with entry to a magnetic state that is observed in proximity to the superconductivity. The phase diagram is intriguing both for its similarity to those seen in other families of unconventional superconductors and for extra features unique, so far, to Sr2RuO4.

2.
Curr Issues Mol Biol ; 46(8): 8945-8957, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39194745

RESUMEN

Natural killer cells (NK cells) exert cytotoxicity towards target cells in several ways, including the expression of apoptosis-mediating ligands (TRAIL, FasL). In addition, NK cells themselves may be susceptible to apoptosis due to the expression of TRAIL receptors. These receptors include TRAIL-R1 (DR4), TRAIL-R2 (DR5), capable of inducing apoptosis, and TRAIL-R3 (DcR1), TRAIL-R4 (DcR2), the so-called "decoy receptors", which lack an intracellular domain initiating activation of caspases. Of particular interest is the interaction of uterine NK cells with cells of fetal origin, trophoblasts, which are potential targets for natural killer cells to carry out cytotoxicity. The aim of this work was to evaluate the expression of proapoptotic receptors and their ligands as well as CD107a expression by NK cells in a model of interaction with trophoblast cells. To evaluate NK cells, we used cells of the NK-92 line; cells of the JEG-3 line were used as target cells. The cytokines IL-1ß, IL-15, IL-18, TNFα, IL-10, TGFß and conditioned media (CM) of the first and third trimester chorionic villi explants were used as inducers. We established that cytokines changed the expression of apoptotic receptors by NK cells: in the presence of TNFα, the amount and intensity of Fas expression increased, while in the presence of TGFß, the amount and intensity of expression of the DR5 receptor decreased. Soluble chorionic villi factors alter the expression of TRAIL and FasL by NK-92 cells, which can reflect the suppression of the TRAIL-dependent mechanism of apoptosis in the first trimester and stimulating the Fas-dependent mechanism in the third trimester. In the presence of trophoblast cells, the expression of TRAIL and DcR1 by NK cells was reduced compared to intact cells, indicating an inhibitory effect of trophoblast cells on NK cell cytotoxicity. In the presence of chorionic villi CM and trophoblast cells, a reduced number of NK-92 cells expressing DR4 and DR5 was found. Therefore, soluble factors secreted by chorionic villi cells regulate the resistance of NK cells to death by binding TRAIL, likely maintaining their activity at a certain level in case of contact with trophoblast cells.

3.
Proc Natl Acad Sci U S A ; 118(25)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34161272

RESUMEN

Unambiguous identification of the superconducting order parameter symmetry in [Formula: see text] has remained elusive for more than a quarter century. While a chiral p-wave ground state analogue to superfluid 3He-A was ruled out only very recently, other proposed triplet-pairing scenarios are still viable. Establishing the condensate magnetic susceptibility reveals a sharp distinction between even-parity (singlet) and odd-parity (triplet) pairing since the superconducting condensate is magnetically polarizable only in the latter case. Here field-dependent 17O Knight shift measurements, being sensitive to the spin polarization, are compared to previously reported specific heat measurements for the purpose of distinguishing the condensate contribution from that due to quasiparticles. We conclude that the shift results can be accounted for entirely by the expected field-induced quasiparticle response. An upper bound for the condensate magnetic response of <10% of the normal state susceptibility is sufficient to exclude all purely odd-parity candidates.

4.
Proc Natl Acad Sci U S A ; 118(10)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33653958

RESUMEN

A key question regarding the unconventional superconductivity of [Formula: see text] remains whether the order parameter is single- or two-component. Under a hypothesis of two-component superconductivity, uniaxial pressure is expected to lift their degeneracy, resulting in a split transition. The most direct and fundamental probe of a split transition is heat capacity. Here, we report measurement of heat capacity of samples subject to large and highly homogeneous uniaxial pressure. We place an upper limit on the heat-capacity signature of any second transition of a few percent of that of the primary superconducting transition. The normalized jump in heat capacity, [Formula: see text], grows smoothly as a function of uniaxial pressure, favoring order parameters which are allowed to maximize in the same part of the Brillouin zone as the well-studied van Hove singularity. Thanks to the high precision of our measurements, these findings place stringent constraints on theories of the superconductivity of [Formula: see text].

5.
Proc Natl Acad Sci U S A ; 118(49)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34873053

RESUMEN

The term Fermi liquid is almost synonymous with the metallic state. The association is known to break down at quantum critical points (QCPs), but these require precise values of tuning parameters, such as pressure and applied magnetic field, to exactly suppress a continuous phase transition temperature to the absolute zero. Three-dimensional non-Fermi liquid states, apart from superconductivity, that are unshackled from a QCP are much rarer and are not currently well understood. Here, we report that the triangular lattice system uranium diauride (UAu2) forms such a state with a non-Fermi liquid low-temperature heat capacity [Formula: see text] and electrical resistivity [Formula: see text] far below its Néel temperature. The magnetic order itself has a novel structure and is accompanied by weak charge modulation that is not simply due to magnetostriction. The charge modulation continues to grow in amplitude with decreasing temperature, suggesting that charge degrees of freedom play an important role in the non-Fermi liquid behavior. In contrast with QCPs, the heat capacity and resistivity we find are unusually resilient in magnetic field. Our results suggest that a combination of magnetic frustration and Kondo physics may result in the emergence of this novel state.

6.
Phys Rev Lett ; 131(3): 036301, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37540856

RESUMEN

The largest Fermi surface sheet of the correlated metal Sr_{2}RuO_{4} can be driven through a Lifshitz transition between an electronlike and an open geometry by uniaxial stress applied along the [100] lattice direction. Here, we investigate the effect of this transition on the longitudinal resistivity ρ_{xx} and the Hall coefficient R_{H}. ρ_{xx}(T), when Sr_{2}RuO_{4} is tuned to this transition, is found to have a T^{2}logT form, as expected for a Fermi liquid tuned to a Lifshitz transition. R_{H} is found to become more negative as the Fermi surface transitions from an electronlike to an open geometry, opposite to general expectations from this change in topology. The magnitude of the change in R_{H} implies that scattering changes throughout the Brillouin zone, not just at the point in k space where the transition occurs. In a model of orbital-dependent scattering, the electron-electron scattering rate on sections of Fermi surface with xy orbital weight is found to decrease dramatically.

7.
Phys Rev Lett ; 131(23): 236001, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38134793

RESUMEN

We report on measurements of the in-plane magnetic penetration depth (λ_{ab}) in single crystals of Sr_{2}RuO_{4} down to ≃0.015 K by means of muon-spin rotation-relaxation. The linear temperature dependence of λ_{ab}^{-2} for T≲0.7 K suggests the presence of nodes in the superconducting gap. This statement is further substantiated by observation of the Volovik effect, i.e., the reduction of λ_{ab}^{-2} as a function of the applied magnetic field. The experimental zero-field and zero-temperature value of λ_{ab}=124(3) nm agrees with λ_{ab}≃130 nm, calculated based on results of electronic structure measurements reported in A. Tamai et al. [High-resolution photoemission on Sr_{2}RuO_{4} reveals correlation-enhanced effective spin-orbit coupling and dominantly local self-energies, Phys. Rev. X 9, 021048 (2019)PRXHAE2160-330810.1103/PhysRevX.9.021048]. Our analysis reveals that a simple nodal superconducting energy gap, described by the lowest possible harmonic of a gap function, does not capture the dependence of λ_{ab}^{-2} on T, so the higher angular harmonics of the energy gap function need to be introduced.

8.
Phys Rev Lett ; 130(9): 096401, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36930931

RESUMEN

We report the evolution of the electronic structure at the surface of the layered perovskite Sr_{2}RuO_{4} under large in-plane uniaxial compression, leading to anisotropic B_{1g} strains of ϵ_{xx}-ϵ_{yy}=-0.9±0.1%. From angle-resolved photoemission, we show how this drives a sequence of Lifshitz transitions, reshaping the low-energy electronic structure and the rich spectrum of van Hove singularities that the surface layer of Sr_{2}RuO_{4} hosts. From comparison to tight-binding modeling, we find that the strain is accommodated predominantly by bond-length changes rather than modifications of octahedral tilt and rotation angles. Our study sheds new light on the nature of structural distortions at oxide surfaces, and how targeted control of these can be used to tune density of state singularities to the Fermi level, in turn paving the way to the possible realization of rich collective states at the Sr_{2}RuO_{4} surface.

9.
Proc Natl Acad Sci U S A ; 117(27): 15524-15529, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32576687

RESUMEN

The interplay between spin-orbit coupling and structural inversion symmetry breaking in solids has generated much interest due to the nontrivial spin and magnetic textures which can result. Such studies are typically focused on systems where large atomic number elements lead to strong spin-orbit coupling, in turn rendering electronic correlations weak. In contrast, here we investigate the temperature-dependent electronic structure of [Formula: see text], a [Formula: see text] oxide metal for which both correlations and spin-orbit coupling are pronounced and in which octahedral tilts and rotations combine to mediate both global and local inversion symmetry-breaking polar distortions. Our angle-resolved photoemission measurements reveal the destruction of a large hole-like Fermi surface upon cooling through a coupled structural and spin-reorientation transition at 48 K, accompanied by a sudden onset of quasiparticle coherence. We demonstrate how these result from band hybridization mediated by a hidden Rashba-type spin-orbit coupling. This is enabled by the bulk structural distortions and unlocked when the spin reorients perpendicular to the local symmetry-breaking potential at the Ru sites. We argue that the electronic energy gain associated with the band hybridization is actually the key driver for the phase transition, reflecting a delicate interplay between spin-orbit coupling and strong electronic correlations and revealing a route to control magnetic ordering in solids.

10.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37373391

RESUMEN

Glioblastoma (GB) is an aggressive cancer with a high probability of recurrence, despite active chemoradiotherapy with temozolomide (TMZ) and dexamethasone (DXM). These systemic drugs affect the glycosylated components of brain tissue involved in GB development; however, their effects on heparan sulfate (HS) remain unknown. Here, we used an animal model of GB relapse in which SCID mice first received TMZ and/or DXM (simulating postoperative treatment) with a subsequent inoculation of U87 human GB cells. Control, peritumor and U87 xenograft tissues were investigated for HS content, HS biosynthetic system and glucocorticoid receptor (GR, Nr3c1). In normal and peritumor brain tissues, TMZ/DXM administration decreased HS content (5-6-fold) but did not affect HS biosynthetic system or GR expression. However, the xenograft GB tumors grown in the pre-treated animals demonstrated a number of molecular changes, despite the fact that they were not directly exposed to TMZ/DXM. The tumors from DXM pre-treated animals possessed decreased HS content (1.5-2-fold), the inhibition of HS biosynthetic system mainly due to the -3-3.5-fold down-regulation of N-deacetylase/N-sulfotransferases (Ndst1 and Ndst2) and sulfatase 2 (Sulf2) expression and a tendency toward a decreased expression of the GRalpha but not the GRbeta isoform. The GRalpha expression levels in tumors from DXM or TMZ pre-treated mice were positively correlated with the expression of a number of HS biosynthesis-involved genes (Ext1/2, Ndst1/2, Glce, Hs2st1, Hs6st1/2), unlike tumors that have grown in intact SCID mice. The obtained data show that DXM affects HS content in mouse brain tissues, and GB xenografts grown in DXM pre-treated animals demonstrate attenuated HS biosynthesis and decreased HS content.


Asunto(s)
Glioblastoma , Humanos , Ratones , Animales , Glioblastoma/metabolismo , Ratones SCID , Recurrencia Local de Neoplasia , Heparitina Sulfato/metabolismo , Temozolomida/farmacología , Temozolomida/uso terapéutico , Dexametasona/farmacología , Dexametasona/uso terapéutico , Sulfotransferasas/genética , Sulfotransferasas/metabolismo
11.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36674617

RESUMEN

Angiogenesis is the development of new blood vessels from pre-existing ones. It is a complex multifaceted process that is essential for the adequate functioning of human organisms. The investigation of angiogenesis is conducted using various methods. One of the most popular and most serviceable of these methods in vitro is the short-term culture of endothelial cells on Matrigel. However, a significant disadvantage of this method is the manual analysis of a large number of microphotographs. In this regard, it is necessary to develop a technique for automating the annotation of images of capillary-like structures. Despite the increasing use of deep learning in biomedical image analysis, as far as we know, there still has not been a study on the application of this method to angiogenesis images. To the best of our knowledge, this article demonstrates the first tool based on a convolutional Unet++ encoder-decoder architecture for the semantic segmentation of in vitro angiogenesis simulation images followed by the resulting mask postprocessing for data analysis by experts. The first annotated dataset in this field, AngioCells, is also being made publicly available. To create this dataset, participants were recruited into a markup group, an annotation protocol was developed, and an interparticipant agreement study was carried out.


Asunto(s)
Células Endoteliales , Semántica , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Simulación por Computador , Venas
12.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35216502

RESUMEN

During pregnancy, uterine NK cells interact with trophoblast cells. In addition to contact interactions, uterine NK cells are influenced by cytokines, which are secreted by the cells of the decidua microenvironment. Cytokines can affect the phenotypic characteristics of NK cells and change their functional activity. An imbalance of pro- and anti-inflammatory signals can lead to the development of reproductive pathology. The aim of this study was to assess the effects of cytokines on NK cells in the presence of trophoblast cells in an in vitro model. We used TNFα, IFNγ, TGFß and IL-10; the NK-92 cell line; and peripheral blood NK cells (pNKs) from healthy, non-pregnant women. For trophoblast cells, the JEG-3 cell line was used. In the monoculture of NK-92 cells, TNFα caused a decrease in CD56 expression. In the coculture of NK cells with JEG-3 cells, TNFα increased the expression of NKG2C and NKG2A by NK-92 cells. Under the influence of TGFß, the expression of CD56 increased and the expression of NKp30 decreased in the monoculture. After the preliminary cultivation of NK-92 cells in the presence of TGFß, their cytotoxicity increased. In the case of adding TGFß to the PBMC culture, as well as coculturing PBMCs and JEG-3 cells, the expression of CD56 and NKp44 by pNK cells was reduced. The differences in the effects of TGFß in the model using NK-92 cells and pNK cells may be associated with the possible influence of monocytes or other lymphoid cells from the mononuclear fraction.


Asunto(s)
Antiinflamatorios/metabolismo , Citocinas/metabolismo , Células Asesinas Naturales/metabolismo , Trofoblastos/metabolismo , Adulto , Línea Celular , Línea Celular Tumoral , Técnicas de Cocultivo/métodos , Femenino , Humanos , Leucocitos Mononucleares/metabolismo , Embarazo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Útero/metabolismo
13.
Curr Opin Crit Care ; 27(6): 553-559, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34535002

RESUMEN

PURPOSE OF REVIEW: The current definition and classification of acute kidney injury (AKI) has limitations and shortcomings, which impact clinical management. The aim of this review is to highlight recent advances in our understanding of the pathophysiology and epidemiology of AKI, which impacts management and offers opportunities. RECENT FINDINGS: Kidney damage varies according to the type of primary insult, secondary effects and mitigating responses and leads to distinct molecular, cellular and functional changes. Different sub-types of AKI with varying clinical phenotypes, recovery patterns and responses to therapeutic interventions have been identified. New tools to identify and characterize these AKI sub-types are available with the potential opportunity for individualized timely aetiology-based management of AKI. SUMMARY: The identification of different sub-phenotypes of AKI based on genetic, molecular, cellular and functional pathophysiological changes following potential nephrotoxic exposures is possible with new technologies. This offers opportunities for personalized management of AKI and supports the call for a refinement of the existing AKI criteria.


Asunto(s)
Lesión Renal Aguda , Lesión Renal Aguda/diagnóstico , Biomarcadores , Humanos , Fenotipo
14.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34948459

RESUMEN

Microvesicles (MVs) are plasma extracellular vesicles ranging from 100 (150) to 1000 nm in diameter. These are generally produced by different cells through their vital activity and are a source of various protein and non-protein molecules. It is assumed that MVs can mediate intercellular communication and modulate cell functions. The interaction between natural killer cells (NK cells) and endothelial cells underlies multiple pathological conditions. The ability of MVs derived from NK cells to influence the functional state of endothelial cells in inflammatory conditions has yet to be studied well. In this regard, we aimed to study the effects of MVs derived from NK cells of the NK-92 cell line stimulated with IL-1ß on the phenotype, caspase activity, proliferation and migration of endothelial cells of the EA.hy926 cell line. Endothelial cells were cultured with MVs derived from cells of the NK-92 cell line after their stimulation with IL-1ß. Using flow cytometry, we evaluated changes in the expression of endothelial cell surface molecules and endothelial cell death. We evaluated the effect of MVs derived from stimulated NK cells on the proliferative and migratory activity of endothelial cells, as well as the activation of caspase-3 and caspase-9 therein. It was established that the incubation of endothelial cells with MVs derived from cells of the NK-92 cell line stimulated with IL-1ß and with MVs derived from unstimulated NK cells, leads to the decrease in the proliferative activity of endothelial cells, appearance of the pan leukocyte marker CD45 on them, caspase-3 activation and partial endothelial cell death, and reduced CD105 expression. However, compared with MVs derived from unstimulated NK cells, a more pronounced effect of MVs derived from cells of the NK-92 cell line stimulated with IL-1ß was found in relation to the decrease in the endothelial cell migratory activity and the intensity of the CD54 molecule expression on them. The functional activity of MVs is therefore mediated by the conditions they are produced under, as well as their internal contents.


Asunto(s)
Micropartículas Derivadas de Células/metabolismo , Células Endoteliales/citología , Interleucina-1beta/farmacología , Células Asesinas Naturales/citología , Caspasa 3/metabolismo , Comunicación Celular , Línea Celular , Movimiento Celular , Proliferación Celular , Técnicas de Cocultivo , Células Endoteliales/metabolismo , Citometría de Flujo , Humanos , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Fenotipo
15.
Int J Mol Sci ; 22(24)2021 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-34948147

RESUMEN

Intensive adjuvant radiotherapy (RT) is a standard treatment for glioblastoma multiforme (GBM) patients; however, its effect on the normal brain tissue remains unclear. Here, we investigated the short-term effects of multiple irradiation on the cellular and extracellular glycosylated components of normal brain tissue and their functional significance. Triple irradiation (7 Gy*3 days) of C57Bl/6 mouse brain inhibited the viability, proliferation and biosynthetic activity of normal glial cells, resulting in a fast brain-zone-dependent deregulation of the expression of proteoglycans (PGs) (decorin, biglycan, versican, brevican and CD44). Complex time-point-specific (24-72 h) changes in decorin and brevican protein and chondroitin sulfate (CS) and heparan sulfate (HS) content suggested deterioration of the PGs glycosylation in irradiated brain tissue, while the transcriptional activity of HS-biosynthetic system remained unchanged. The primary glial cultures and organotypic slices from triple-irradiated brain tissue were more susceptible to GBM U87 cells' adhesion and proliferation in co-culture systems in vitro and ex vivo. In summary, multiple irradiation affects glycosylated components of normal brain extracellular matrix (ECM) through inhibition of the functional activity of normal glial cells. The changed content and pattern of PGs and GAGs in irradiated brain tissues are accompanied by the increased adhesion and proliferation of GBM cells, suggesting a novel molecular mechanism of negative side-effects of anti-GBM radiotherapy.


Asunto(s)
Neoplasias Encefálicas , Encéfalo , Proliferación Celular/efectos de la radiación , Rayos gamma , Glioblastoma , Neoplasias Experimentales , Animales , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/radioterapia , Adhesión Celular/efectos de la radiación , Proteínas de la Matriz Extracelular/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/radioterapia , Masculino , Ratones , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Neoplasias Experimentales/radioterapia , Proteoglicanos/metabolismo
16.
Gynecol Endocrinol ; 35(sup1): 35-40, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31532312

RESUMEN

Preeclampsia still remains one of the most severe pregnancy complications and is an actual problem in the obstetrics practice. At present, the joint impact of cytokines and other placenta secreted factors on trophoblast cell functional activity during preeclampsia complicated pregnancy remains unclear. The aim of the study is to estimate the surface receptors expression by trophoblast cells in the presence of placenta secreted factors during physiological pregnancy and at preeclampsia. Trophoblast cells of the JEG-3 line were incubated in the presence of supernatants obtained by cultivation of placentas from women with physiological pregnancy and with preeclampsia. Surface receptors expression by trophoblast cells was estimated by FACS Canto II flow cytometer. It was established that in the third trimester both under normal and pathological conditions, the placenta secreted factors impact on the cytokine receptor expression by trophoblast differs while the trophoblast response capacity to the migration and proliferation stimulating and inhibiting signals remains stable. JEG-3 line cells enhanced the expression of CD186, CD140a, Integrin ß6, VE-cadherin, CD29, and CD140a in the case of incubation in the presence of placenta supernatants from the third-trimester pregnancy complicated with preeclampsia compared to incubation in the presence of placenta supernatants form the third trimester of physiological pregnancy.


Asunto(s)
Proteínas Gestacionales/farmacología , Receptores de Superficie Celular/genética , Trofoblastos/efectos de los fármacos , Trofoblastos/metabolismo , Adulto , Estudios de Casos y Controles , Células Cultivadas , Citocinas/metabolismo , Citocinas/farmacología , Femenino , Expresión Génica/efectos de los fármacos , Humanos , Placenta/metabolismo , Placenta/patología , Hormonas Placentarias/metabolismo , Hormonas Placentarias/farmacología , Preeclampsia/metabolismo , Preeclampsia/patología , Embarazo , Proteínas Gestacionales/metabolismo , Receptores de Superficie Celular/metabolismo
17.
Bioorg Med Chem ; 26(15): 4470-4480, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30076000

RESUMEN

Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a repair enzyme for stalled DNA-topoisomerase 1 (Top 1) cleavage complexes and other 3'-end DNA lesions. Tdp1 is a promising target for anticancer therapy, since it can repair DNA lesions caused by Top1 inhibitors leading to drug resistance. Hence, Tdp1 inhibition should result in synergistic effect with Top1 inhibitors. Twenty nine derivatives of (+)-usnic acid were tested for in vitro Tdp1 inhibitory activity using a fluorescent-based assay. Excellent activity was obtained, with derivative 6m demonstrating the lowest IC50 value of 25 nM. The established efficacy was verified using a gel-based assay, which gave close results to that of the fluorescent assay. In addition, molecular modeling in the Tdp1 substrate binding pocket suggested plausible binding modes for the active analogues. The synergistic effect of the Tdp1 inhibitors with topotecan, a Top1 poison in clinical use, was tested in two human cell lines, A-549 and HEK-293. Compounds 6k and 6x gave very promising results. In particular, 6x has a low cytotoxicity and an IC50 value of 63 nM, making it a valuable lead compound for the development of potent Tdp1 inhibitors for clinical use.


Asunto(s)
Benzofuranos/química , Inhibidores de Fosfodiesterasa/síntesis química , Hidrolasas Diéster Fosfóricas/química , Regulación Alostérica , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Benzofuranos/síntesis química , Sitios de Unión , Supervivencia Celular/efectos de los fármacos , ADN/química , ADN/metabolismo , Furanos/química , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Inhibidores de Fosfodiesterasa/química , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Relación Estructura-Actividad , Especificidad por Sustrato
18.
Bioorg Med Chem ; 22(24): 6826-36, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25464881

RESUMEN

Influenza virus is serious human pathogen leading to high morbidity and mortality all over the world. Due to high rate of mutation, it is able to fast development of drug resistance that makes necessary to search novel antivirals with broad range and alternative targets. In the present study we describe synthesis and anti-viral activity of novel derivatives of usnic acid (2,6-diacetyl-7,9-dihydroxy-8,9b-dimethyl-1,3(2H,9bH)-dibenzo-furandione). It is shown that anti-viral activity of usnic acid can be increased by side moieties introduction. The modification with chalcones appeared to be the most effective. Our study revealed that (-)-usnic acid exhibited higher antiviral activity than its (+)-enantiomer, but in the pairs of enantiomer derivatives such as enamines, pyrazoles and chalcones, the (+)-enantiomers were more potent inhibitors of the virus. For other groups of compounds the inhibiting activities of the enantiomers were comparable. Further optimization of the structure could therefore result in development of novel anti-influenza compound with alternative target and mechanism of virus-inhibiting action.


Asunto(s)
Antivirales/química , Benzofuranos/química , Benzofuranos/farmacología , Virus de la Influenza A/fisiología , Animales , Antivirales/síntesis química , Antivirales/farmacología , Benzofuranos/síntesis química , Supervivencia Celular/efectos de los fármacos , Perros , Humanos , Células de Riñón Canino Madin Darby , Estereoisomerismo , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacos
19.
Neurol Int ; 16(4): 790-803, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39051219

RESUMEN

Glucocorticoids are used during glioblastoma treatment to prevent the cerebral edema effect surrounding normal brain tissue. The aim of our study was to investigate the long-term effects of multiple administrations of glucocorticoids onto the glycosylated components (proteoglycans and glycosaminoglycans) of normal brain extracellular matrix and the glucocorticoid receptor (GR, Nr3c1) in an experimental model in vivo. Two-month-old male C57Bl/6 mice (n = 90) were injected intraperitoneally with various doses of dexamethasone (DXM) (1; 2.5 mg/kg) for 10 days. The mRNA levels of the GR, proteoglycans core proteins, and heparan sulfate metabolism-involved genes were determined at the 15th, 30th, 60th, and 90th days by a real-time RT-PCR. The glycosaminoglycans content was studied using dot blot and staining with Alcian blue. A DXM treatment increased total GAG content (2-fold), whereas the content of highly sulfated glycosaminoglycans decreased (1.5-2-fold). The mRNA level of the heparan sulfate metabolism-involved gene Hs3St2 increased 5-fold, the mRNA level of Hs6St2 increased6-7-fold, and the mRNA level of proteoglycan aggrecan increased 2-fold. A correlation analysis revealed an association between the mRNA level of the GR and the mRNA level of 8 of the 14 proteoglycans-coding and 4 of the 13 heparan sulfate metabolism-involved genes supporting GR involvement in the DXM regulation of the expression of these genes. In summary, multiple DXM administrations led to an increase in the total GAG content and reorganized the brain extracellular matrix in terms of its glycosylation pattern.

20.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39023346

RESUMEN

We report on a new technique for measuring the dynamic Young's modulus, E, of quantum materials at low temperatures as a function of static tuning strain, ϵ, in piezoactuator-driven pressure cells. In addition to a static tuning of stress and strain, we apply a small-amplitude, finite-frequency AC (1 Hz ≲ ω ≲ 1000 Hz) uniaxial stress, σac, to the sample and measure the resulting AC strain, ϵac, using a capacitive sensor to obtain the associated modulus E. We demonstrate the performance of the new technique through proof-of-principle experiments on the unconventional superconductor Sr2RuO4, which is known for its rich temperature-strain phase diagram. In particular, we show that the magnitude of E, measured using this AC technique at low frequencies, exhibits a pronounced nonlinear elasticity, which is in very good agreement with previous Young's modulus measurements on Sr2RuO4 under [1 0 0] strain using a DC method [Noad et al., Science 382, 447-450 (2023)]. By combining the new AC Young's modulus measurements with AC elastocaloric measurements in a single measurement, we demonstrate that these AC techniques are powerful in detecting small anomalies in the elastic properties of quantum materials. Finally, using the case of Sr2RuO4 as an example, we demonstrate how the imaginary component of the modulus can provide additional information about the nature of ordered phases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA