RESUMEN
We demonstrate a light-pulse atom interferometer based on the diffraction of free-falling atoms by a picosecond frequency-comb laser. More specifically, we coherently split and recombine wave packets of cold ^{87}Rb atoms by driving stimulated Raman transitions between the |5s ^{2}S_{1/2},F=1⟩ and |5s ^{2}S_{1/2},F=2⟩ hyperfine states, using two trains of picosecond pulses in a counterpropagating geometry. We study the impact of the pulses' length as well as the interrogation time onto the contrast of the atom interferometer. Our experimental data are well reproduced by a numerical simulation based on an effective coupling that depends on the overlap between the pulses and the atomic cloud. These results pave the way for extending light-pulse interferometry to transitions in other spectral regions and therefore to other species, for new possibilities in metrology, sensing of gravito-inertial effects, and tests of fundamental physics.
RESUMEN
This corrects the article DOI: 10.1103/PhysRevLett.125.123003.
RESUMEN
We perform high-resolution spectroscopy of the 3d ^{2}D_{3/2}-3d ^{2}D_{5/2} interval in all stable even isotopes of ^{A}Ca^{+} (A=40, 42, 44, 46, and 48) with an accuracy of â¼20 Hz using direct frequency-comb Raman spectroscopy. Combining these data with isotope shift measurements of the 4s ^{2}S_{1/2}â3d ^{2}D_{5/2} transition, we carry out a King plot analysis with unprecedented sensitivity to coupling between electrons and neutrons by bosons beyond the standard model. Furthermore, we estimate the sensitivity to such bosons from equivalent spectroscopy in Ba^{+} and Yb^{+}. Finally, the data yield isotope shifts of the 4s ^{2}S_{1/2}â3d ^{2}D_{3/2} transition at 10 parts per billion through combination with recent data of Knollmann, Patel, and Doret [Phys. Rev. A 100, 022514 (2019)PLRAAN2469-992610.1103/PhysRevA.100.022514].