Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(6): e1010478, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37262099

RESUMEN

Epstein-Barr virus (EBV) is a ubiquitous human γ-herpesvirus that is causally associated with various malignancies and autoimmune disease. Epstein-Barr Nuclear Antigen 1 (EBNA1) is the viral-encoded DNA binding protein required for viral episome maintenance and DNA replication during latent infection in proliferating cells. EBNA1 is known to be a highly stable protein, but the mechanisms regulating protein stability and how this may be linked to EBNA1 function is not fully understood. Proteomic analysis of EBNA1 revealed interaction with Procollagen Lysine-2 Oxoglutarate 5 Dioxygenase (PLOD) family of proteins. Depletion of PLOD1 by shRNA or inhibition with small molecule inhibitors 2,-2' dipyridyl resulted in the loss of EBNA1 protein levels, along with a selective growth inhibition of EBV-positive lymphoid cells. PLOD1 depletion also caused a loss of EBV episomes from latently infected cells and inhibited oriP-dependent DNA replication. Mass spectrometry identified EBNA1 peptides with lysine hydroxylation at K460 or K461. Mutation of K460, but not K461 abrogates EBNA1-driven DNA replication of oriP, but did not significantly affect EBNA1 DNA binding. Mutations in both K460 and K461 perturbed interactions with PLOD1, as well as decreased EBNA1 protein stability. These findings suggest that PLOD1 is a novel interaction partner of EBNA1 that regulates EBNA1 protein stability and function in viral plasmid replication, episome maintenance and host cell survival.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa , Humanos , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Infecciones por Virus de Epstein-Barr/genética , Herpesvirus Humano 4/genética , Lisina/genética , Proteómica , Replicación del ADN , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Replicación Viral , Estabilidad Proteica , Plásmidos , Origen de Réplica
2.
PLoS Pathog ; 17(1): e1009208, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33497421

RESUMEN

Epstein-Barr virus (EBV) immortalizes resting B-lymphocytes through a highly orchestrated reprogramming of host chromatin structure, transcription and metabolism. Here, we use a multi-omics-based approach to investigate these underlying mechanisms. ATAC-seq analysis of cellular chromatin showed that EBV alters over a third of accessible chromatin during the infection time course, with many of these sites overlapping transcription factors such as PU.1, Interferon Regulatory Factors (IRFs), and CTCF. Integration of RNA-seq analysis identified a complex transcriptional response and associations with EBV nuclear antigens (EBNAs). Focusing on EBNA1 revealed enhancer-binding activity at gene targets involved in nucleotide metabolism, supported by metabolomic analysis which indicated that adenosine and purine metabolism are significantly altered by EBV immortalization. We further validated that adenosine deaminase (ADA) is a direct and critical target of the EBV-directed immortalization process. These findings reveal that purine metabolism and ADA may be useful therapeutic targets for EBV-driven lymphoid cancers.


Asunto(s)
Linfocitos B/patología , Transformación Celular Viral , Cromatina/genética , Infecciones por Virus de Epstein-Barr/patología , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Nucleótidos/metabolismo , Proteínas Virales/metabolismo , Linfocitos B/metabolismo , Linfocitos B/virología , Cromatina/metabolismo , Epigénesis Genética , Infecciones por Virus de Epstein-Barr/metabolismo , Infecciones por Virus de Epstein-Barr/virología , Antígenos Nucleares del Virus de Epstein-Barr/genética , Herpesvirus Humano 4/fisiología , Interacciones Huésped-Patógeno , Humanos , Metaboloma , Transcriptoma , Proteínas Virales/genética
3.
PLoS Pathog ; 17(8): e1009834, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34352044

RESUMEN

Viruses suppress immune recognition through diverse mechanisms. Epstein-Barr Virus (EBV) establishes latent infection in memory B-lymphocytes and B-cell malignancies where it impacts B-cell immune function. We show here that EBV primary infection of naïve B-cells results in a robust down-regulation of HLA genes. We found that the viral encoded transcriptional regulatory factor EBNA2 bound to multiple regulatory regions in the HLA locus. Conditional expression of EBNA2 correlated with the down regulation of HLA class II transcription. EBNA2 down-regulation of HLA transcription was found to be dependent on CIITA, the major transcriptional activator of HLA class II gene transcription. We identified a major EBNA2 binding site downstream of the CIITA gene and upstream of DEXI, a dexamethasone inducible gene that is oriented head-to-head with CIITA gene transcripts. CRISPR/Cas9 deletion of the EBNA2 site upstream of DEXI attenuated CIITA transcriptional repression. EBNA2 caused an increase in DEXI transcription and a graded change in histone modifications with activation mark H3K27ac near the DEXI locus, and a loss of activation marks at the CIITA locus. A prominent CTCF binding site between CIITA and DEXI enhancers was mutated and further diminished the effects of EBNA2 on CIITA. Analysis of HiC data indicate that DEXI and CIITA enhancers are situated in different chromosome topological associated domains (TADs). These findings suggest that EBNA2 down regulates HLA-II genes through the down regulation of CIITA, and that this down regulation is an indirect consequence of EBNA2 enhancer formation at a neighboring TAD. We propose that enhancer competition between these neighboring chromosome domains represents a novel mechanism for gene regulation demonstrated by EBNA2.


Asunto(s)
Linfocitos B/virología , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos , Infecciones por Virus de Epstein-Barr/virología , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Genes MHC Clase II/fisiología , Proteínas de la Membrana/genética , Proteínas Nucleares/genética , Transactivadores/genética , Proteínas Virales/metabolismo , Linfocitos B/metabolismo , Proteínas de Unión al ADN/metabolismo , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/genética , Regulación de la Expresión Génica , Herpesvirus Humano 4/fisiología , Humanos , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Transactivadores/metabolismo , Proteínas Virales/genética
4.
PLoS Pathog ; 17(6): e1009618, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34106998

RESUMEN

Subpopulations of B-lymphocytes traffic to different sites and organs to provide diverse and tissue-specific functions. Here, we provide evidence that epigenetic differences confer a neuroinvasive phenotype. An EBV+ B cell lymphoma cell line (M14) with low frequency trafficking to the CNS was neuroadapted to generate a highly neuroinvasive B-cell population (MUN14). MUN14 B cells efficiently infiltrated the CNS within one week and produced neurological pathologies. We compared the gene expression profiles of viral and cellular genes using RNA-Seq and identified one viral (EBNA1) and several cellular gene candidates, including secreted phosphoprotein 1/osteopontin (SPP1/OPN), neuron navigator 3 (NAV3), CXCR4, and germinal center-associated signaling and motility protein (GCSAM) that were selectively upregulated in MUN14. ATAC-Seq and ChIP-qPCR revealed that these gene expression changes correlated with epigenetic changes at gene regulatory elements. The neuroinvasive phenotype could be attenuated with a neutralizing antibody to OPN, confirming the functional role of this protein in trafficking EBV+ B cells to the CNS. These studies indicate that B-cell trafficking to the CNS can be acquired by epigenetic adaptations and provide a new model to study B-cell neuroinvasion associated CNS lymphoma and autoimmune disease of the CNS, including multiple sclerosis (MS).


Asunto(s)
Linfocitos B/patología , Linfocitos B/virología , Neoplasias del Sistema Nervioso Central/virología , Epigénesis Genética , Infecciones por Virus de Epstein-Barr/patología , Animales , Linfocitos B/metabolismo , Transformación Celular Viral/fisiología , Neoplasias del Sistema Nervioso Central/metabolismo , Neoplasias del Sistema Nervioso Central/patología , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4 , Linfoma/metabolismo , Linfoma/patología , Linfoma/virología , Ratones , Osteopontina/metabolismo
5.
Immunity ; 40(1): 51-65, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24374193

RESUMEN

Autophagy has been implicated as a component of host defense, but the significance of antimicrobial autophagy in vivo and the mechanism by which it is regulated during infection are poorly defined. Here we found that antiviral autophagy was conserved in flies and mammals during infection with Rift Valley fever virus (RVFV), a mosquito-borne virus that causes disease in humans and livestock. In Drosophila, Toll-7 limited RVFV replication and mortality through activation of autophagy. RVFV infection also elicited autophagy in mouse and human cells, and viral replication was increased in the absence of autophagy genes. The mammalian Toll-like receptor adaptor, MyD88, was required for anti-RVFV autophagy, revealing an evolutionarily conserved requirement for pattern-recognition receptors in antiviral autophagy. Pharmacologic activation of autophagy inhibited RVFV infection in mammalian cells, including primary hepatocytes and neurons. Thus, autophagy modulation might be an effective strategy for treating RVFV infection, which lacks approved vaccines and therapeutics.


Asunto(s)
Autofagia/inmunología , Fiebre del Valle del Rift/inmunología , Virus de la Fiebre del Valle del Rift/inmunología , Compuestos Alílicos/farmacología , Animales , Antivirales/farmacología , Autofagia/efectos de los fármacos , Células Cultivadas , Drosophila , Evolución Molecular , Hepatocitos/efectos de los fármacos , Hepatocitos/inmunología , Hepatocitos/virología , Humanos , Control de Infecciones/métodos , Mamíferos , Ratones , Factor 88 de Diferenciación Mieloide/metabolismo , Neuronas/efectos de los fármacos , Neuronas/inmunología , Neuronas/virología , Quinazolinas/farmacología , Ratas , Fiebre del Valle del Rift/tratamiento farmacológico , Receptor Toll-Like 7/metabolismo , Replicación Viral
6.
J Virol ; 95(13): e0008821, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33883224

RESUMEN

Epstein-Barr virus (EBV) is a human gammaherpesvirus that is causally associated with various lymphomas and carcinomas. Although EBV is not typically associated with multiple myeloma (MM), it can be found in some B-cell lines derived from MM patients. Here, we analyzed two EBV-positive MM-patient-derived cell lines, IM9 and ARH77, and found defective viral genomes and atypical viral gene expression patterns. We performed transcriptome sequencing to characterize the viral and cellular properties of the two EBV-positive cell lines, compared to the canonical MM cell line 8226. Principal-component analyses indicated that IM9 and ARH77 clustered together and distinct from 8226. Immunological Genome Project analysis designated these cells as stem cell and bone marrow derived. IM9 and ARH77 displayed atypical viral gene expression, including leaky lytic cycle gene expression with an absence of lytic DNA amplification. Genome sequencing revealed that the EBV genomes in ARH77 contain large deletions, while IM9 has copy number losses in multiple EBV loci. Both IM9 and ARH77 showed EBV genome heterogeneity, suggesting cells harboring multiple and variant viral genomes. We identified atypical high-level expression of lytic genes BLRF1 and BLRF2. We demonstrated that short hairpin RNA (shRNA) depletion of BLRF2 altered viral and host gene expression, including a reduction in lytic gene activation and DNA amplification. These findings demonstrate that aberrant viral genomes and lytic gene expression persist in rare B cells derived from MM tumors, and they suggest that EBV may contribute to the etiology of MM. IMPORTANCE EBV is an oncogenic herpesvirus, but its mechanisms of oncogenesis are not fully understood. A role for EBV in MM has not yet been established. We analyzed EBV-positive B-cell lines derived from MM patients and found that the cells harbored defective viral genomes with aberrant viral gene expression patterns and cell gene signatures for bone marrow-derived lymphoid stem cells. These findings suggest that aberrant EBV latent infection may contribute to the etiology of MM.


Asunto(s)
Linfocitos B/virología , Virus Defectuosos/genética , Regulación Viral de la Expresión Génica/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/aislamiento & purificación , Mieloma Múltiple/virología , Animales , Células Cultivadas , Variaciones en el Número de Copia de ADN/genética , Modelos Animales de Enfermedad , Eliminación de Gen , Genoma Viral/genética , Humanos , Ratones , Ratones SCID , Estrés Oxidativo/fisiología , Interferencia de ARN , ARN Interferente Pequeño/genética , Transcriptoma/genética , Activación Viral/genética
7.
Gastric Cancer ; 24(5): 1076-1088, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33929613

RESUMEN

BACKGROUND AND AIMS: Epstein-Barr virus (EBV)-associated gastric carcinoma (EBVaGC) is the most common EBV-associated cancer and accounts for ~ 10% of all gastric cancers (GC). Epstein-Barr virus nuclear antigen 1 (EBNA1), which is critical for the replication and maintenance of the EBV latent genome, is consistently expressed in all EBVaGC tumors. We previously developed small molecule inhibitors of EBNA1. In this study, we investigated the efficacy and selectivity of an EBNA1 inhibitor in cell-based and animal xenograft models of EBV-positive and EBV-negative gastric carcinoma. METHODS: We tested the potency of an EBNA1 inhibitor, VK-1727, in vitro and in xenograft studies, using EBV-positive (SNU719 and YCCEL1) and EBV-negative (AGS and MKN74) GC cell lines. After treatment, we analyzed cell viability, proliferation, and RNA expression of EBV genes by RT-qPCR. RESULTS: Treatment with VK-1727 selectively inhibits cell cycle progression and proliferation in vitro. In animal studies, treatment with an EBNA1 inhibitor resulted in a significant dose-dependent decrease in tumor growth in EBVaGC xenograft models, but not in EBV-negative GC xenograft studies. Gene expression analysis revealed that short term treatment in cell culture tended towards viral gene activation, while long-term treatment in animal xenografts showed a significant decrease in viral gene expression. CONCLUSIONS: EBNA1 inhibitors are potent and selective inhibitors of cell growth in tissue culture and animal models of EBV-positive GC. Long-term treatment with EBNA1 inhibitors may lead to loss of EBV in mouse xenografts. These results suggest that pharmacological targeting of EBNA1 may be an effective strategy to treat patients with EBVaGC.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias Gástricas , Animales , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/tratamiento farmacológico , Antígenos Nucleares del Virus de Epstein-Barr/genética , Herpesvirus Humano 4 , Xenoinjertos , Humanos , Ratones , Neoplasias Gástricas/tratamiento farmacológico
8.
Drug Discov Today Dis Models ; 32(Pt A): 35-52, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33897799

RESUMEN

Epstein-Barr Virus (EBV) is a ubiquitous human herpesvirus that contributes to the etiology of diverse human cancers and auto-immune diseases. EBV establishes a relatively benign, long-term latent infection in over 90 percent of the adult population. Yet, it also increases risk for certain cancers and auto-immune disorders depending on complex viral, host, and environmental factors that are only partly understood. EBV latent infection is found predominantly in memory B-cells, but the natural infection cycle and pathological aberrations enable EBV to infect numerous other cell types, including oral, nasopharyngeal, and gastric epithelia, B-, T-, and NK-lymphoid cells, myocytes, adipocytes, astrocytes, and neurons. EBV infected cells, free virus, and gene products can also be found in the CNS. In addition to the direct effects of EBV on infected cells and tissue, the effect of chronic EBV infection on the immune system is also thought to contribute to pathogenesis, especially auto-immune disease. Here, we review properties of EBV infection that may shed light on its potential pathogenic role in neurological disorders.

9.
Neurobiol Dis ; 116: 120-130, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29738885

RESUMEN

Neonatal seizures disrupt normal synaptic maturation and often lead to later-life epilepsy and cognitive deficits. During early life, the brain exhibits heightened synaptic plasticity, in part due to a developmental overabundance of CaV1.2 L-type voltage gated calcium (Ca2+) channels (LT-VGCCs) and Ca2+-permeable AMPARs (CP-AMPARs) lacking GluA2 subunits. We hypothesized that early-life seizures overactivate these channels, in turn dysregulating Ca2+-dependent signaling pathways including that of methyl CPG binding protein 2 (MeCP2), a transcription factor implicated in the autism spectrum disorder (ASD) Rett Syndrome. Here, we show that in vivo hypoxia-induced seizures (HS) in postnatal day (P)10 rats acutely induced phosphorylation of the neuronal-specific target of activity-dependent MeCP2 phosphorylation, S421, as well as its upstream activator CaMKII T286. We next identified mechanisms by which activity-dependent Ca2+ influx induced MeCP2 phosphorylation using in vitro cortical and hippocampal neuronal cultures at embryonic day (E)18 + 10 days in vitro (DIV). In contrast to the prevalent role of NMDARs in the adult brain, we found that both CP-AMPARs and LT-VGCCs mediated MeCP2 S421 and CaMKII T286 phosphorylation induced by kainic acid (KA) or high potassium chloride (KCl) stimulation. Furthermore, in vivo post-seizure treatment with the broad-spectrum AMPAR antagonist NBQX, the CP-AMPAR blocker IEM-1460, or the LT-VGCC antagonist nimodipine blocked seizure-induced MeCP2 phosphorylation. Collectively, these results demonstrate that early-life seizures dysregulate critical activity-dependent developmental signaling pathways, in part via CP-AMPAR and LT-VGCC activation, providing novel age-specific therapeutic targets for convergent pathways underlying epilepsy and ASDs.


Asunto(s)
Corteza Cerebral/metabolismo , Hipocampo/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Convulsiones/metabolismo , Serina/metabolismo , Animales , Células Cultivadas , Corteza Cerebral/crecimiento & desarrollo , Hipocampo/crecimiento & desarrollo , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Fosforilación/fisiología , Ratas , Convulsiones/genética , Serina/genética
10.
J Virol ; 87(8): 4384-94, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23388721

RESUMEN

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a novel bunyavirus that recently emerged in China. Infection with SFTSV is associated with case-fatality rates of up to 30%, and neither antivirals nor vaccines are available at present. Development of antiviral strategies requires the elucidation of virus-host cell interactions. Here, we analyzed host cell entry of SFTSV. Employing lentiviral and rhabdoviral vectors, we found that the Gn/Gc glycoproteins (Gn/Gc) of SFTSV mediate entry into a broad range of human and animal cell lines, as well as human macrophages and dendritic cells. The Gn/Gc proteins of La Crosse virus (LACV) and Rift Valley Fever Virus (RVFV), other members of the bunyavirus family, facilitated entry into an overlapping but not identical range of cell lines, suggesting that SFTSV, LACV, and RVFV might differ in their receptor requirements. Entry driven by SFTSV Gn/Gc was dependent on low pH but did not require the activity of the pH-dependent endosomal/lysosomal cysteine proteases cathepsins B and L. Instead, the activity of a cellular serine protease was required for infection driven by SFTSV and LACV Gn/Gc. Sera from convalescent SFTS patients inhibited SFTSV Gn/Gc-driven host cell entry in a dose-dependent fashion, demonstrating that the vector system employed is suitable to detect neutralizing antibodies. Finally, the C-type lectin DC-SIGN was found to serve as a receptor for SFTSV Gn/Gc-driven entry into cell lines and dendritic cells. Our results provide initial insights into cell tropism, receptor usage, and proteolytic activation of SFTSV and will aid in the understanding of viral spread and pathogenesis.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Orthobunyavirus/fisiología , Receptores de Superficie Celular/metabolismo , Receptores Virales/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Línea Celular , Células Dendríticas/virología , Interacciones Huésped-Patógeno , Humanos , Macrófagos/virología , Glicoproteínas de Membrana/inmunología , Orthobunyavirus/inmunología , Serina Proteasas/metabolismo , Proteínas del Envoltorio Viral/inmunología , Tropismo Viral
11.
Nat Microbiol ; 9(6): 1540-1554, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38806670

RESUMEN

Epstein-Barr virus (EBV) is an aetiologic risk factor for the development of multiple sclerosis (MS). However, the role of EBV-infected B cells in the immunopathology of MS is not well understood. Here we characterized spontaneous lymphoblastoid cell lines (SLCLs) isolated from MS patients and healthy controls (HC) ex vivo to study EBV and host gene expression in the context of an individual's endogenous EBV. SLCLs derived from MS patient B cells during active disease had higher EBV lytic gene expression than SLCLs from MS patients with stable disease or HCs. Host gene expression analysis revealed activation of pathways associated with hypercytokinemia and interferon signalling in MS SLCLs and upregulation of forkhead box protein 1 (FOXP1), which contributes to EBV lytic gene expression. We demonstrate that antiviral approaches targeting EBV replication decreased cytokine production and autologous CD4+ T cell responses in this ex vivo model. These data suggest that dysregulation of intrinsic B cell control of EBV gene expression drives a pro-inflammatory, pathogenic B cell phenotype that can be attenuated by suppressing EBV lytic gene expression.


Asunto(s)
Linfocitos B , Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Esclerosis Múltiple , Humanos , Herpesvirus Humano 4/genética , Esclerosis Múltiple/virología , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos B/virología , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/complicaciones , Citocinas/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD4-Positivos/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Transcriptoma , Replicación Viral , Regulación Viral de la Expresión Génica , Línea Celular , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Perfilación de la Expresión Génica , Adulto , Femenino , Masculino
12.
J Virol ; 86(15): 7988-8001, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22623766

RESUMEN

La Crosse virus (LACV) is a leading cause of pediatric encephalitis and aseptic meningitis in the midwestern and southern United States, where it is considered an emerging human pathogen. No specific therapies or vaccines are available for LACV or any other orthobunyaviruses. Inhibition of LACV entry into cells is a potential target for therapeutic intervention, but this approach is limited by our current knowledge of the entry process. Here, we determined that clathrin-mediated endocytosis is the primary mechanism of orthobunyavirus entry and identified key cellular factors in this process. First, we demonstrated that LACV colocalized with clathrin shortly after infection in HeLa cells; we then confirmed the functional requirement of dynamin- and clathrin-mediated endocytosis for orthobunyavirus entry using several independent assays and, importantly, extended these findings to primary neuronal cultures. We also determined that macropinocytosis and caveolar endocytosis, both established routes of virus entry, are not critical for cellular entry of LACV. Moreover, we demonstrated that LACV infection is dependent on Rab5, which plays an important regulatory role in early endosomes, but not on Rab7, which is associated with late endosomes. These findings provide the first description of bunyavirus entry into cells of the central nervous system, where infection can cause severe neurological disease, and will aid in the design and development of antivirals and therapeutics that may be useful in the treatment of LACV and, more broadly, arboviral infections of the central nervous system.


Asunto(s)
Clatrina/metabolismo , Encefalitis de California/metabolismo , Endocitosis , Endosomas/metabolismo , Virus La Crosse/metabolismo , Internalización del Virus , Animales , Chlorocebus aethiops , Clatrina/genética , Cricetinae , Encefalitis de California/tratamiento farmacológico , Encefalitis de California/genética , Endosomas/genética , Endosomas/virología , Células HeLa , Humanos , Virus La Crosse/genética , Células Vero , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo , Proteínas de Unión a GTP rab7
13.
Nat Rev Microbiol ; 21(1): 51-64, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35931816

RESUMEN

Epstein-Barr virus (EBV) is a ubiquitous human lymphotropic herpesvirus with a well-established causal role in several cancers. Recent studies have provided compelling epidemiological and mechanistic evidence for a causal role of EBV in multiple sclerosis (MS). MS is the most prevalent chronic inflammatory and neurodegenerative disease of the central nervous system and is thought to be triggered in genetically predisposed individuals by an infectious agent, with EBV as the lead candidate. How a ubiquitous virus that typically leads to benign latent infections can promote cancer and autoimmune disease in at-risk populations is not fully understood. Here we review the evidence that EBV is a causal agent for MS and how various risk factors may affect EBV infection and immune control. We focus on EBV contributing to MS through reprogramming of latently infected B lymphocytes and the chronic presentation of viral antigens as a potential source of autoreactivity through molecular mimicry. We consider how knowledge of EBV-associated cancers may be instructive for understanding the role of EBV in MS and discuss the potential for therapies that target EBV to treat MS.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Esclerosis Múltiple , Neoplasias , Enfermedades Neurodegenerativas , Humanos , Herpesvirus Humano 4 , Infecciones por Virus de Epstein-Barr/complicaciones
14.
bioRxiv ; 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37461649

RESUMEN

PARP1 has been shown to regulate EBV latency. However, the therapeutic effect of PARP1 inhibitors on EBV+ lymphomagenesis has not yet been explored. Here, we show that PARPi BMN-673 has a potent anti-tumor effect on EBV-driven LCL in a mouse xenograft model. We found that PARP1 inhibition induces a dramatic transcriptional reprogramming of LCLs driven largely by the reduction of the MYC oncogene expression and dysregulation of MYC targets, both in vivo and in vitro. PARP1 inhibition also reduced the expression of viral oncoprotein EBNA2, which we previously demonstrated depends on PARP1 for activation of MYC. Further, we show that PARP1 inhibition blocks the chromatin association of MYC, EBNA2, and tumor suppressor p53. Overall, our study strengthens the central role of PARP1 in EBV malignant transformation and identifies the EBNA2/MYC pathway as a target of PARP1 inhibitors and its utility for the treatment of EBNA2-driven EBV-associated cancers.

15.
mBio ; 14(5): e0039623, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37606370

RESUMEN

IMPORTANCE: Epstein-Barr virus (EBV) latency is controlled by epigenetic silencing by DNA methylation [5-methyl cytosine (5mC)], histone modifications, and chromatin looping. However, how they dictate the transcriptional program in EBV-associated gastric cancers remains incompletely understood. EBV-associated gastric cancer displays a 5mC hypermethylated phenotype. A potential treatment for this cancer subtype is the DNA hypomethylating agent, which induces EBV lytic reactivation and targets hypermethylation of the cellular DNA. In this study, we identified a heterogeneous pool of EBV epialleles within two tumor-derived gastric cancer cell lines that are disrupted with a hypomethylating agent. Stochastic DNA methylation patterning at critical regulatory regions may be an underlying mechanism for spontaneous reactivation. Our results highlight the critical role of epigenetic modulation on EBV latency and life cycle, which is maintained through the interaction between 5mC and the host protein CCCTC-binding factor.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias Gástricas , Humanos , Cromatina , Herpesvirus Humano 4/fisiología , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Metilación de ADN , Decitabina/metabolismo , Latencia del Virus/genética , ADN/metabolismo , Genómica , Sitios de Unión
16.
Artículo en Inglés | MEDLINE | ID: mdl-37562974

RESUMEN

BACKGROUND AND OBJECTIVES: Epstein-Barr virus (EBV) is a ubiquitous herpesvirus that establishes lifelong latency in memory B cells and has been identified as a major risk factor of multiple sclerosis (MS). B cell depletion therapies have disease-modifying benefit in MS. However, it is unclear whether this benefit is partly attributable to the elimination of EBV+ B cells. Currently, there are no EBV-specific antiviral therapies available for targeting EBV latent infection in MS and limited experimental models to study EBV in MS. METHODS: In this study, we describe the establishment of spontaneous lymphoblastoid cell lines (SLCLs) generated ex vivo with the endogenous EBV of patients with MS and controls and treated with either an Epstein-Barr virus nuclear antigen 1 (EBNA1) inhibitor (VK-1727) or cladribine, a nucleoside analog that eliminates B cells. RESULTS: We showed that a small molecule inhibitor of EBNA1, a critical regulator of the EBV life cycle, blocks the proliferation and metabolic activity of these SLCLs. In contrast to cladribine, a highly cytotoxic B cell depleting therapy currently used in MS, the EBNA1 inhibitor VK-1727 was cytostatic rather than cytotoxic and selective for EBV+ cells, while having no discernible effects on EBV- cells. We validate that VK-1727 reduces EBNA1 DNA binding at known viral and cellular sites by ChIP-qPCR. DISCUSSION: This study shows that patient-derived SLCLs provide a useful tool for interrogating the role of EBV+ B cells in MS and suggests that a clinical trial testing the effect of EBNA1 inhibitors in MS may be warranted.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Esclerosis Múltiple , Humanos , Línea Celular , Proliferación Celular , Cladribina/farmacología , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/tratamiento farmacológico , Infecciones por Virus de Epstein-Barr/genética , Antígenos Nucleares del Virus de Epstein-Barr , Herpesvirus Humano 4 , Estudios de Casos y Controles
17.
Curr Opin Virol ; 56: 101260, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36174496

RESUMEN

Epstein-Barr virus (EBV) establishes a lifelong latent infection that can be a causal agent for a diverse spectrum of cancers and autoimmune disease. A complex and dynamic viral lifecycle evades eradication by the host immune system and confounds antiviral therapeutic strategies. To date, there are no clinically approved vaccines or therapies that selectively target EBV as the underlying cause of EBV-associated disease. Here, we review the challenges and recent advances in the development of EBV-specific therapeutics for treatment of EBV-associated cancers.

18.
Nat Commun ; 13(1): 5033, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36028493

RESUMEN

DAXX and ATRX are tumor suppressor proteins that form a histone H3.3 chaperone complex and are frequently mutated in cancers with the alternative lengthening of telomeres (ALT). Here, we show that DAXX and ATRX knock-out (KO) U87-T cells that have acquired ALT-like features have defects in p53 chromatin binding and DNA damage response. RNA-seq analysis revealed that p53 pathway is among the most perturbed. ChIP-seq and ATAC-seq revealed a genome-wide reduction in p53 DNA-binding and corresponding loss of chromatin accessibility at many p53 response elements across the genome. Both DAXX and ATRX null cells showed a depletion of histone H3.3 and accumulation of γH2AX at many p53 sites, including subtelomeres. These findings indicate that loss of DAXX or ATRX can compromise p53 chromatin binding and p53 DNA damage response in ALT-like cells, providing a link between histone composition, chromatin accessibility and tumor suppressor function of p53.


Asunto(s)
Cromatina , Histonas , Proteínas Co-Represoras , Daño del ADN , ADN Helicasas , Genes Supresores de Tumor , Chaperonas Moleculares , Proteínas Nucleares , Proteína p53 Supresora de Tumor , Proteína Nuclear Ligada al Cromosoma X
19.
Viruses ; 14(7)2022 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-35891445

RESUMEN

La Crosse virus (LACV) is a major cause of pediatric encephalitis and aseptic meningitis in the Midwestern, Mid-Atlantic, and Southern United States, where it is an emerging pathogen. The LACV Gc glycoprotein plays a critical role in the neuropathogenesis of LACV encephalitis as the putative virus attachment protein. Previously, we identified and experimentally confirmed the location of the LACV fusion peptide within Gc and generated a panel of recombinant LACVs (rLACVs) containing mutations in the fusion peptide as well as the wild-type sequence. These rLACVs retained their ability to cause neuronal death in a primary embryonic rat neuronal culture system, despite decreased replication and fusion phenotypes. To test the role of the fusion peptide in vivo, we tested rLACVs in an age-dependent murine model of LACV encephalitis. When inoculated directly into the CNS of young adult mice (P28), the rLACV fusion peptide mutants were as neurovirulent as the rLACV engineered with a wild-type sequence, confirming the results obtained in tissue culture. In contrast, the fusion peptide mutant rLACVs were less neuroinvasive when suckling (P3) or weanling (P21) mice were inoculated peripherally, demonstrating that the LACV fusion peptide is a determinant of neuroinvasion, but not of neurovirulence. In a challenge experiment, we found that peripheral challenge of weanling (P21) mice with fusion peptide mutant rLACVs protected from a subsequent WT-LACV challenge, suggesting that mutations in the fusion peptide are an attractive target for generating live-attenuated virus vaccines. Importantly, the high degree of conservation of the fusion peptide amongst the Bunyavirales and, structurally, other arboviruses suggests that these findings are broadly applicable to viruses that use a class II fusion mechanism and cause neurologic disease.


Asunto(s)
Encefalitis de California , Virus La Crosse , Animales , Humanos , Ratones , Mutagénesis Sitio-Dirigida , Mutación , Péptidos/genética , Péptidos/metabolismo , Ratas , Estados Unidos , Proteínas Virales/genética
20.
Oncotarget ; 11(46): 4224-4242, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33245718

RESUMEN

KSHV-associated cancers have poor prognoses and lack therapeutics that selectively target viral gene functions. We developed a screening campaign to identify known drugs that could be repurposed for the treatment of KSHV-associated cancers. We focused on primary effusion lymphoma (PEL), which has particularly poor treatment outcomes. We developed a luciferase reporter assay to test the ability of drugs to inhibit DNA binding of the KSHV LANA DNA binding domain (DBD). In parallel, we screened drugs for selective inhibition of a KSHV+ PEL cells. While potent hits were identified in each assay, only one hit, Mubritinib, was found to score in both assays. Mubritinib caused PEL cells to undergo cell cycle arrest with accumulation of sub-G1 population and Annexin V. Mubritinib inhibited LANA binding to KSHV terminal repeat (TR) DNA in KSHV+ PEL cells, but did not lead to KSHV lytic cycle reactivation. Mubritinib was originally identified as a receptor tyrosine kinase (RTK) inhibitor selective for HER2/ErbB2. But recent studies have revealed that Mubritinib can also inhibit the electron transport chain (ETC) complex at nanomolar concentrations. We found that other related ETC complex inhibitors (Rotenone and Deguelin) exhibited PEL cell growth inhibition while RTK inhibitors failed. Seahorse analysis demonstrated that Mubritinib selectively inhibits the maximal oxygen consumption (OCR) in PEL cells and metabolomics revealed changes in ATP/ADP and ATP/AMP ratios. These findings indicate that PEL cells are selectively sensitive to ETC complex inhibitors and provide a rationale for repurposing Mubritinib for selective treatment of PEL.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA