Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Sci ; 133(13)2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32482795

RESUMEN

Flotillins are lipid raft residents involved in membrane trafficking and recycling of plasma membrane proteins. Dictyostelium discoideum uses phagocytosis to kill, digest and feed on bacteria. It possesses three flotillin-like vacuolins that are strongly associated with membranes and that gradually accumulate on maturing phagosomes. Absence of vacuolins reduced adhesion and particle recognition resulting in a drastic reduction in the uptake of various types of particles. This was caused by a block in the recycling of plasma membrane components and the absence of their specific cortex-associated proteins. In addition, absence of vacuolins also impaired phagolysosome biogenesis, without significantly impacting killing and digestion of a range of bacteria. Strikingly, both absence and overexpression of vacuolins induced a strong downregulation of myosin VII (also known as MyoI) expression, as well as its binding partner talin A. Episomal expression of myosin VII fully rescued defects in uptake and adhesion but not in phagosome maturation. These results suggest a dual role for vacuolins: a novel mechanism involving membrane microdomains and myosin VII-talin A in clustering phagosomal receptors and adhesion molecules at the plasma membrane, and a role in phagolysosomal biogenesis.


Asunto(s)
Dictyostelium , Membranas Intracelulares , Miosinas/genética , Fagocitosis , Fagosomas
2.
PLoS Pathog ; 15(2): e1007551, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30730983

RESUMEN

By engulfing potentially harmful microbes, professional phagocytes are continually at risk from intracellular pathogens. To avoid becoming infected, the host must kill pathogens in the phagosome before they can escape or establish a survival niche. Here, we analyse the role of the phosphoinositide (PI) 5-kinase PIKfyve in phagosome maturation and killing, using the amoeba and model phagocyte Dictyostelium discoideum. PIKfyve plays important but poorly understood roles in vesicular trafficking by catalysing formation of the lipids phosphatidylinositol (3,5)-bisphosphate (PI(3,5)2) and phosphatidylinositol-5-phosphate (PI(5)P). Here we show that its activity is essential during early phagosome maturation in Dictyostelium. Disruption of PIKfyve inhibited delivery of both the vacuolar V-ATPase and proteases, dramatically reducing the ability of cells to acidify newly formed phagosomes and digest their contents. Consequently, PIKfyve- cells were unable to generate an effective antimicrobial environment and efficiently kill captured bacteria. Moreover, we demonstrate that cells lacking PIKfyve are more susceptible to infection by the intracellular pathogen Legionella pneumophila. We conclude that PIKfyve-catalysed phosphoinositide production plays a crucial and general role in ensuring early phagosomal maturation, protecting host cells from diverse pathogenic microbes.


Asunto(s)
Dictyostelium/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Adenosina Trifosfatasas , Animales , Línea Celular , Dictyostelium/patogenicidad , Humanos , Hidrolasas/metabolismo , Legionella pneumophila/patogenicidad , Legionelosis/metabolismo , Macrófagos , Fagocitosis , Fagosomas , Fosfatidilinositol 3-Quinasas/fisiología , Fosfatidilinositoles , Transporte de Proteínas , Infecciones por Protozoos/metabolismo
3.
Cell Microbiol ; 22(5): e13163, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31945239

RESUMEN

Mycobacterium marinum is a model organism for pathogenic Mycobacterium species, including Mycobacterium tuberculosis, the causative agent of tuberculosis. These pathogens enter phagocytes and replicate within the Mycobacterium-containing vacuole, possibly followed by vacuole exit and growth in the host cell cytosol. Mycobacteria release siderophores called mycobactins to scavenge iron, an essential yet poorly soluble and available micronutrient. To investigate the role of M. marinum mycobactins, we purified by organic solvent extraction and identified by mass spectrometry the lipid-bound mycobactin (MBT) and the water-soluble variant carboxymycobactin (cMBT). Moreover, we generated by specialised phage transduction a defined M. marinum ΔmbtB deletion mutant predicted to be defective for mycobactin production. The M. marinum ΔmbtB mutant strain showed a severe growth defect in broth and phagocytes, which was partially complemented by supplying the mbtB gene on a plasmid. Furthermore, purified Fe-MBT or Fe-cMBT improved the growth of wild type as well as ΔmbtB mutant bacteria on minimal plates, but only Fe-cMBT promoted the growth of wild-type M. marinum during phagocyte infection. Finally, the intracellular growth of M. marinum ΔmbtB in Acanthamoeba castellanii amoebae was restored by coinfection with wild-type bacteria. Our study identifies and characterises the M. marinum MBT and cMBT siderophores and reveals the requirement of mycobactins for extra- and intracellular growth of the pathogen.


Asunto(s)
Mycobacterium marinum/metabolismo , Oxazoles/metabolismo , Fagocitos/metabolismo , Sideróforos/biosíntesis , Acanthamoeba castellanii/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Hierro/metabolismo , Espectrometría de Masas , Ratones , Mycobacterium marinum/genética , Mycobacterium tuberculosis , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Células RAW 264.7 , Sideróforos/genética , Transcriptoma , Vacuolas/metabolismo
4.
J Cell Sci ; 131(23)2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30404827

RESUMEN

Professional phagocytes have developed an extensive repertoire of autonomous immunity strategies to ensure killing of bacteria. Besides phagosome acidification and the generation of reactive oxygen species, deprivation of nutrients and the lumenal accumulation of toxic metals are essential to kill ingested bacteria or inhibit the growth of intracellular pathogens. Here, we used the soil amoeba Dictyostelium discoideum, a professional phagocyte that digests bacteria for nutritional purposes, to decipher the role of zinc poisoning during phagocytosis of nonpathogenic bacteria and visualize the temporal and spatial dynamics of compartmentalized, free zinc using fluorescent probes. Immediately after particle uptake, zinc is delivered to phagosomes by fusion with 'zincosomes' of endosomal origin, and also by the action of one or more zinc transporters. We localized the four Dictyostelium ZnT transporters to endosomes, the contractile vacuole and the Golgi complex, and studied the impact of znt knockouts on zinc homeostasis. We show that zinc is delivered into the lumen of Mycobacterium smegmatis-containing vacuoles, and that Escherichia coli deficient in the zinc efflux P1B-type ATPase ZntA are killed faster than wild-type bacteria.


Asunto(s)
Bacterias/metabolismo , Proteínas Portadoras/metabolismo , Dictyostelium/metabolismo
5.
J Cell Sci ; 131(17)2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30054386

RESUMEN

Phagocytic cells take up, kill and digest microbes by a process called phagocytosis. To this end, these cells bind the particle, rearrange their actin cytoskeleton, and orchestrate transport of digestive factors to the particle-containing phagosome. The mammalian lysosomal membrane protein LIMP-2 (also known as SCARB2) and CD36, members of the class B of scavenger receptors, play a crucial role in lysosomal enzyme trafficking and uptake of mycobacteria, respectively, and generally in host cell defences against intracellular pathogens. Here, we show that the Dictyostelium discoideum LIMP-2 homologue LmpA regulates phagocytosis and phagolysosome biogenesis. The lmpA knockdown mutant is highly affected in actin-dependent processes, such as particle uptake, cellular spreading and motility. Additionally, the cells are severely impaired in phagosomal acidification and proteolysis, likely explaining the higher susceptibility to infection with the pathogenic bacterium Mycobacterium marinum, a close cousin of the human pathogen Mycobacterium tuberculosis Furthermore, we bring evidence that LmpB is a functional homologue of CD36 and specifically mediates uptake of mycobacteria. Altogether, these data indicate a role for LmpA and LmpB, ancestors of the family of which LIMP-2 and CD36 are members, in lysosome biogenesis and host cell defence.


Asunto(s)
Dictyostelium/fisiología , Proteínas de Membrana de los Lisosomas/metabolismo , Mycobacterium marinum/fisiología , Fagocitosis , Proteínas Protozoarias/metabolismo , Receptores de Lipoproteína/metabolismo , Antígenos CD36/genética , Dictyostelium/genética , Dictyostelium/microbiología , Humanos , Proteínas de Membrana de los Lisosomas/genética , Proteínas Protozoarias/genética , Receptores de Lipoproteína/genética , Receptores Depuradores/genética
6.
PLoS Pathog ; 14(12): e1007501, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30596802

RESUMEN

Phagocytic cells capture and kill most invader microbes within the bactericidal phagosome, but some pathogens subvert killing by damaging the compartment and escaping to the cytosol. To prevent the leakage of pathogen virulence and host defence factors, as well as bacteria escape, host cells have to contain and repair the membrane damage, or finally eliminate the cytosolic bacteria. All eukaryotic cells engage various repair mechanisms to ensure plasma membrane integrity and proper compartmentalization of organelles, including the Endosomal Sorting Complex Required for Transport (ESCRT) and autophagy machineries. We show that during infection of Dictyostelium discoideum with Mycobacterium marinum, the ESCRT-I component Tsg101, the ESCRT-III protein Snf7/Chmp4/Vps32 and the AAA-ATPase Vps4 are recruited to sites of damage at the Mycobacterium-containing vacuole. Interestingly, damage separately recruits the ESCRT and the autophagy machineries. In addition, the recruitment of Vps32 and Vps4 to repair sterile membrane damage depends on Tsg101 but appears independent of Ca2+. Finally, in absence of Tsg101, M. marinum accesses prematurely the cytosol, where the autophagy machinery restricts its growth. We propose that ESCRT has an evolutionary conserved function to repair small membrane damage and to contain intracellular pathogens in intact compartments.


Asunto(s)
Autofagia/fisiología , Dictyostelium/parasitología , Complejos de Clasificación Endosomal Requeridos para el Transporte/fisiología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Vacuolas/parasitología , Proteínas Bacterianas/metabolismo , Mycobacterium marinum/patogenicidad
7.
Cell Microbiol ; 21(11): e13083, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31290267

RESUMEN

Integrated with both a historical perspective and an evolutionary angle, this opinion article presents a brief and personal view of the emergence of cellular microbiology research. From the very first observations of phagocytosis by Goeze in 1777 to the exhaustive analysis of the cellular defence mechanisms performed in modern laboratories, the studies by cell biologists and microbiologists have converged into an integrative research field distinct from, but fully coupled to immunity: cellular microbiology. In addition, this brief article is thought as a humble patchwork of the motivations that have guided the research in my group over a quarter century.


Asunto(s)
Dictyostelium/inmunología , Mycobacterium marinum/inmunología , Fagocitosis/inmunología , Animales , Dictyostelium/crecimiento & desarrollo , Dictyostelium/microbiología , Dictyostelium/ultraestructura , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XXI , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Microbiología/historia , Mycobacterium marinum/crecimiento & desarrollo , Mycobacterium marinum/patogenicidad , Fagosomas/inmunología , Fagosomas/microbiología , Fagosomas/ultraestructura
8.
Cell Microbiol ; 21(6): e13008, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30656819

RESUMEN

The causative agent of tuberculosis, Mycobacterium tuberculosis, and its close relative Mycobacterium marinum manipulate phagocytic host cells, thereby creating a replication-permissive compartment termed the Mycobacterium-containing vacuole (MCV). The phosphoinositide (PI) lipid pattern is a crucial determinant of MCV formation and is targeted by mycobacterial PI phosphatases. In this study, we establish an efficient phage transduction protocol to construct defined M. marinum deletion mutants lacking one or three phosphatases, PtpA, PtpB, and/or SapM. These strains were defective for intracellular replication in macrophages and amoebae, and the growth defect was complemented by the corresponding plasmid-borne genes. Fluorescence microscopy of M. marinum-infected Dictyostelium discoideum revealed that MCVs harbouring mycobacteria lacking PtpA, SapM, or all three phosphatases accumulate significantly more phosphatidylinositol-3-phosphate (PtdIns3P) compared with MCVs containing the parental strain. Moreover, PtpA reduced MCV acidification by blocking the recruitment of the V-ATPase, and all three phosphatases promoted bacterial escape from the pathogen vacuole to the cytoplasm. In summary, the secreted M. marinum phosphatases PtpA, PtpB, and SapM determine the MCV PI pattern, compartment acidification, and phagosomal escape.


Asunto(s)
Citosol/metabolismo , Mycobacterium marinum/crecimiento & desarrollo , Fagosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Vacuolas/metabolismo , Acanthamoeba castellanii/microbiología , Adenosina Trifosfatasas/metabolismo , Amoeba/microbiología , Animales , Proteínas Bacterianas/metabolismo , Dictyostelium/metabolismo , Dictyostelium/microbiología , Interacciones Huésped-Patógeno/genética , Macrófagos/enzimología , Macrófagos/microbiología , Ratones , Microscopía Fluorescente , Mycobacterium marinum/enzimología , Mycobacterium marinum/genética , Mycobacterium marinum/patogenicidad , Proteínas Tirosina Fosfatasas/metabolismo , Células RAW 264.7 , Vacuolas/microbiología
9.
J Biol Chem ; 293(4): 1330-1345, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29242189

RESUMEN

Oxidation of halides and thiocyanate by heme peroxidases to antimicrobial oxidants is an important cornerstone in the innate immune system of mammals. Interestingly, phylogenetic and physiological studies suggest that homologous peroxidases are already present in mycetozoan eukaryotes such as Dictyostelium discoideum This social amoeba kills bacteria via phagocytosis for nutrient acquisition at its single-cell stage and for antibacterial defense at its multicellular stages. Here, we demonstrate that peroxidase A from D. discoideum (DdPoxA) is a stable, monomeric, glycosylated, and secreted heme peroxidase with homology to mammalian peroxidases. The first crystal structure (2.5 Å resolution) of a mycetozoan peroxidase of this superfamily shows the presence of a post-translationally-modified heme with one single covalent ester bond between the 1-methyl heme substituent and Glu-236. The metalloprotein follows the halogenation cycle, whereby compound I oxidizes iodide and thiocyanate at high rates (>108 m-1 s-1) and bromide at very low rates. It is demonstrated that DdPoxA is up-regulated and likely secreted at late multicellular development stages of D. discoideum when migrating slugs differentiate into fruiting bodies that contain persistent spores on top of a cellular stalk. Expression of DdPoxA is shown to restrict bacterial contamination of fruiting bodies. Structure and function of DdPoxA are compared with evolutionary-related mammalian peroxidases in the context of non-specific immune defense.


Asunto(s)
Dictyostelium/enzimología , Hemo Oxigenasa (Desciclizante)/química , Hemo Oxigenasa (Desciclizante)/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Catálisis , Dictyostelium/genética , Hemo Oxigenasa (Desciclizante)/genética , Oxidación-Reducción , Proteínas Protozoarias/genética , Relación Estructura-Actividad
10.
PLoS Pathog ; 13(1): e1006095, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28103313

RESUMEN

During a tuberculosis infection and inside lipid-laden foamy macrophages, fatty acids (FAs) and sterols are the major energy and carbon source for Mycobacterium tuberculosis. Mycobacteria can be found both inside a vacuole and the cytosol, but how this impacts their access to lipids is not well appreciated. Lipid droplets (LDs) store FAs in form of triacylglycerols (TAGs) and are energy reservoirs of prokaryotes and eukaryotes. Using the Dictyostelium discoideum/Mycobacterium marinum infection model we showed that M. marinum accesses host LDs to build up its own intracytosolic lipid inclusions (ILIs). Here, we show that host LDs aggregate at regions of the bacteria that become exposed to the cytosol, and appear to coalesce on their hydrophobic surface leading to a transfer of diacylglycerol O-acyltransferase 2 (Dgat2)-GFP onto the bacteria. Dictyostelium knockout mutants for both Dgat enzymes are unable to generate LDs. Instead, the excess of exogenous FAs is esterified predominantly into phospholipids, inducing uncontrolled proliferation of the endoplasmic reticulum (ER). Strikingly, in absence of host LDs, M. marinum alternatively exploits these phospholipids, resulting in rapid reversal of ER-proliferation. In addition, the bacteria are unable to restrict their acquisition of lipids from the dgat1&2 double knockout leading to vast accumulation of ILIs. Recent data indicate that the presence of ILIs is one of the characteristics of dormant mycobacteria. During Dictyostelium infection, ILI formation in M. marinum is not accompanied by a significant change in intracellular growth and a reduction in metabolic activity, thus providing evidence that storage of neutral lipids does not necessarily induce dormancy.


Asunto(s)
Dictyostelium/microbiología , Interacciones Huésped-Patógeno/fisiología , Infecciones por Mycobacterium no Tuberculosas/metabolismo , Mycobacterium marinum/metabolismo , Cromatografía en Capa Delgada , Dictyostelium/metabolismo , Técnica del Anticuerpo Fluorescente , Cuerpos de Inclusión/metabolismo , Microscopía Electrónica de Transmisión , Fosfolípidos/metabolismo , Triglicéridos/metabolismo
11.
PLoS Pathog ; 13(4): e1006344, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28414774

RESUMEN

Autophagy is a eukaryotic catabolic process also participating in cell-autonomous defence. Infected host cells generate double-membrane autophagosomes that mature in autolysosomes to engulf, kill and digest cytoplasmic pathogens. However, several bacteria subvert autophagy and benefit from its machinery and functions. Monitoring infection stages by genetics, pharmacology and microscopy, we demonstrate that the ESX-1 secretion system of Mycobacterium marinum, a close relative to M. tuberculosis, upregulates the transcription of autophagy genes, and stimulates autophagosome formation and recruitment to the mycobacteria-containing vacuole (MCV) in the host model organism Dictyostelium. Antagonistically, ESX-1 is also essential to block the autophagic flux and deplete the MCV of proteolytic activity. Activators of the TORC1 complex localize to the MCV in an ESX-1-dependent manner, suggesting an important role in the manipulation of autophagy by mycobacteria. Our findings suggest that the infection by M. marinum activates an autophagic response that is simultaneously repressed and exploited by the bacterium to support its survival inside the MCV.


Asunto(s)
Autofagia , Proteínas Bacterianas/metabolismo , Complejos Multiproteicos/metabolismo , Infecciones por Mycobacterium no Tuberculosas/metabolismo , Infecciones por Mycobacterium no Tuberculosas/fisiopatología , Mycobacterium marinum/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Bacterianas/genética , Dictyostelium/genética , Dictyostelium/metabolismo , Dictyostelium/microbiología , Interacciones Huésped-Patógeno , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos/genética , Infecciones por Mycobacterium no Tuberculosas/genética , Infecciones por Mycobacterium no Tuberculosas/virología , Mycobacterium marinum/genética , Serina-Treonina Quinasas TOR/genética , Vacuolas/microbiología
12.
Proc Natl Acad Sci U S A ; 113(40): E5906-E5915, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27647881

RESUMEN

Macropinocytosis is an ancient mechanism that allows cells to harvest nutrients from extracellular media, which also allows immune cells to sample antigens from their surroundings. During macropinosome formation, bulk plasma membrane is internalized with all its integral proteins. It is vital for cells to salvage these proteins before degradation, but the mechanisms for sorting them are not known. Here we describe the evolutionarily conserved recruitment of the WASH (WASP and SCAR homolog) complex to both macropinosomes and phagosomes within a minute of internalization. Using Dictyostelium, we demonstrate that WASH drives protein sorting and recycling from macropinosomes and is thus essential to maintain surface receptor levels and sustain phagocytosis. WASH functionally interacts with the retromer complex at both early and late phases of macropinosome maturation, but mediates recycling via retromer-dependent and -independent pathways. WASH mutants consequently have decreased membrane levels of integrins and other surface proteins. This study reveals an important pathway enabling cells to sustain macropinocytosis without bulk degradation of plasma membrane components.


Asunto(s)
Membrana Celular/metabolismo , Dictyostelium/metabolismo , Fagocitosis , Fagosomas/metabolismo , Receptores de Superficie Celular/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Integrinas/metabolismo , Lisosomas/metabolismo , Modelos Biológicos , Unión Proteica , Transporte de Proteínas , ATPasas de Translocación de Protón Vacuolares/metabolismo
13.
J Cell Sci ; 129(12): 2354-67, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27170354

RESUMEN

Proteins that contain Eps15 homology domains (EHDs) in their C-terminus are newly identified key regulators of endosomal membrane trafficking. Here, we show that D. discoideum contains a single EHD protein (referred to as EHD) that localizes to endosomal compartments and newly formed phagosomes. We provide the first evidence that EHD regulates phagosome maturation. Deletion of EHD results in defects in intraphagosomal proteolysis and acidification. These defects are linked to early delivery of lysosomal enzymes and fast retrieval of the vacuolar H(+)-ATPase in maturing phagosomes. We also demonstrate that EHD physically interacts with DymA. Our results indicate that EHD and DymA can associate independently with endomembranes, and yet they share identical kinetics in recruitment to phagosomes and release during phagosome maturation. Functional analysis of ehd(-), dymA(-) and double dymA(-)ehd(-) knockout strains indicate that DymA and EHD play non-redundant and independent functions in phagosome maturation. Finally, we show that the absence of EHD leads to increased tubulation of endosomes, indicating that EHD participates in the scission of endosomal tubules, as reported for DymA.


Asunto(s)
Dictyostelium/metabolismo , Dinaminas/metabolismo , Fagosomas/metabolismo , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Endosomas/metabolismo , Concentración de Iones de Hidrógeno , Mutación/genética , Unión Proteica , Proteolisis , Proteínas Protozoarias/química , Imagen de Lapso de Tiempo
14.
Cell Microbiol ; 19(7)2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28076662

RESUMEN

Bacterial sensing, ingestion, and killing by phagocytic cells are essential processes to protect the human body from infectious microorganisms. The cellular mechanisms involved in intracellular killing, their relative importance, and their specificity towards different bacteria are however poorly defined. In this study, we used Dictyostelium discoideum, a phagocytic cell model amenable to genetic analysis, to identify new gene products involved in intracellular killing. A random genetic screen led us to identify the role of Vps13F in intracellular killing of Klebsiella pneumoniae. Vps13F knock-out (KO) cells exhibited a delayed intracellular killing of K. pneumoniae, although the general organization of the phagocytic and endocytic pathway appeared largely unaffected. Transcriptomic analysis revealed that vps13F KO cells may be functionally similar to previously characterized fspA KO cells, shown to be defective in folate sensing. Indeed, vps13F KO cells showed a decreased chemokinetic response to various stimulants, suggesting a direct or indirect role of Vps13F in intracellular signaling. Overstimulation with excess folate restored efficient killing in vps13F KO cells. Finally, genetic inactivation of Far1, the folate receptor, resulted in inefficient intracellular killing of K. pneumoniae. Together, these observations show that stimulation of Dictyostelium by bacterial folate is necessary for rapid intracellular killing of K. pneumoniae.


Asunto(s)
Dictyostelium/microbiología , Dictyostelium/fisiología , Ácido Fólico/metabolismo , Klebsiella pneumoniae/fisiología , Fagocitosis/genética , Proteínas Protozoarias/genética , Receptor 1 de Folato/genética , Técnicas de Inactivación de Genes , Fagocitosis/fisiología , Transducción de Señal/genética , Proteínas de Transporte Vesicular/genética
15.
Proc Natl Acad Sci U S A ; 112(7): E687-92, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25646440

RESUMEN

In contrast to mechanisms mediating uptake of intracellular bacterial pathogens, bacterial egress and cell-to-cell transmission are poorly understood. Previously, we showed that the transmission of pathogenic mycobacteria between phagocytic cells also depends on nonlytic ejection through an F-actin based structure, called the ejectosome. How the host cell maintains integrity of its plasma membrane during the ejection process was unknown. Here, we reveal an unexpected function for the autophagic machinery in nonlytic spreading of bacteria. We show that ejecting mycobacteria are escorted by a distinct polar autophagocytic vacuole. If autophagy is impaired, cell-to-cell transmission is inhibited, the host plasma membrane becomes compromised and the host cells die. These findings highlight a previously unidentified, highly ordered interaction between bacteria and the autophagic pathway and might represent the ancient way to ensure nonlytic egress of bacteria.


Asunto(s)
Autofagia , Mycobacterium/fisiología , Dictyostelium/microbiología , Técnica del Anticuerpo Fluorescente , Microscopía Electrónica de Transmisión , Mycobacterium/ultraestructura
16.
Cell Microbiol ; 17(9): 1332-49, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25772333

RESUMEN

Lipid droplets exist in virtually every cell type, ranging not only from mammals to plants, but also to eukaryotic and prokaryotic unicellular organisms such as Dictyostelium and bacteria. They serve among other roles as energy reservoir that cells consume in times of starvation. Mycobacteria and some other intracellular pathogens hijack these organelles as a nutrient source and to build up their own lipid inclusions. The mechanisms by which host lipid droplets are captured by the pathogenic bacteria are extremely poorly understood. Using the powerful Dictyostelium discoideum/Mycobacterium marinum infection model, we observed that, immediately after their uptake, lipid droplets translocate to the vicinity of the vacuole containing live but not dead mycobacteria. Induction of lipid droplets in Dictyostelium prior to infection resulted in a vast accumulation of neutral lipids and sterols inside the bacterium-containing compartment. Subsequently, under these conditions, mycobacteria accumulated much larger lipid inclusions. Strikingly, the Dictyostelium homologue of perilipin and the murine perilipin 2 surrounded bacteria that had escaped to the cytosol of Dictyostelium or microglial BV-2 cells respectively. Moreover, bacterial growth was inhibited in Dictyostelium plnA knockout cells. In summary, our results provide evidence that mycobacteria actively manipulate the lipid metabolism of the host from very early infection stages.


Asunto(s)
Dictyostelium/metabolismo , Dictyostelium/microbiología , Gotas Lipídicas/metabolismo , Mycobacterium marinum/crecimiento & desarrollo , Animales , Línea Celular , Interacciones Huésped-Patógeno , Ratones , Microglía/metabolismo , Microglía/microbiología , Modelos Biológicos
17.
Anal Chem ; 87(19): 9954-9, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26352133

RESUMEN

Ionophore-based ion selective optical nanosensors that operate independently of the sample pH are developed here by the use of electrically charged solvatochromic dyes as signal transducers. A series of dye molecules with a D-π-A structure was synthesized and characterized in various solvents and incorporated into ion selective nanospheres for K(+), Na(+), and H(+). Since dye leakage was greatly suppressed when the solvatochromic dyes were encapsulated in the nanosphere core, ion sensing nanospheres were explored for cellular ion imaging in Dictyostelium discoideum live cells but spontaneous dye loss resulted in undesired staining of cells. The in vitro analysis of potassium in human plasma was successfully demonstrated with this approach. A theoretical model was developed for the response of the ion selective nanosensors containing charged solvatochromic dyes. The nanosensors exhibited a tunable response range, high sensitivity, and good stability.


Asunto(s)
Colorimetría/métodos , Colorantes/química , Hidrógeno/análisis , Potasio/análisis , Sodio/análisis , Cationes/análisis , Dictyostelium/química , Dictyostelium/citología , Fluorescencia , Humanos , Concentración de Iones de Hidrógeno , Nanosferas/química , Nanotecnología/métodos , Imagen Óptica , Plasma/química , Potasio/sangre , Espectrometría de Fluorescencia/métodos
18.
Microbiology (Reading) ; 161(7): 1392-406, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25873585

RESUMEN

Legionella pneumophila is a facultative intracellular bacterium, which upon inhalation can cause a potentially fatal pneumonia termed Legionnaires' disease. The opportunistic pathogen grows in environmental amoebae and mammalian macrophages within a unique membrane-bound compartment, the 'Legionella-containing vacuole'. Bacteria are exposed to many environmental cues including small signalling molecules from eukaryotic cells. A number of pathogenic bacteria sense and respond to catecholamine hormones, such as adrenalin and noradrenalin, a process mediated via the QseBC two-component system in some bacteria. In this study, we examined the effect of adrenergic compounds on L. pneumophila, and discovered that the adrenergic receptor antagonists benoxathian, naftopidil, propranolol and labetalol, as well as the QseC sensor kinase inhibitor LED209, reduced the growth of L. pneumophila in broth or amoebae, while replication in macrophages was enhanced. Growth restriction was common to members of the genus Legionella and Mycobacterium, and was observed for L. pneumophila in the replicative but not stationary phase of the biphasic life cycle. Deletion of the L. pneumophila qseBC genes indicated that growth inhibition by adrenergics or LED209 is mediated only to a minor extent by this two-component system, implying the presence of other adrenergic sensing systems. This study identifies adrenergic molecules as novel inhibitors of extra- and intracellular growth of Legionella and reveals LED209 as a potential lead compound to combat infections with Legionella or Mycobacterium spp.


Asunto(s)
Antagonistas Adrenérgicos/metabolismo , Antibacterianos/metabolismo , Legionella pneumophila/efectos de los fármacos , Legionella pneumophila/crecimiento & desarrollo , Acanthamoeba castellanii/efectos de los fármacos , Acanthamoeba castellanii/microbiología , Animales , Línea Celular , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Ratones , Mycobacterium/efectos de los fármacos , Mycobacterium/crecimiento & desarrollo
19.
Cell Microbiol ; 21(10): e13106, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31475428
20.
Chimia (Aarau) ; 69(4): 196-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26668937

RESUMEN

lonophore-based ion-selective optical nanosensors have been explored for a number of years. Voltage sensitive dyes (VSDs) have been introduced into this type of sensors only very recently, forming a new class of analytical tools. Here, K(+)-sensitive nanospheres incorporating a lipophilic VSD were successfully fabricated and characterized. The nanosensors were readily delivered into the social amoeba Dictyostelium discoideum in a non-invasive manner, forming a promising new platform for intracellular ion quantification and imaging.


Asunto(s)
Técnicas Biosensibles , Colorantes/química , Técnicas Electroquímicas/instrumentación , Nanotecnología/instrumentación , Fenómenos Ópticos , Potasio/química , Algoritmos , Técnicas Electroquímicas/métodos , Aprendizaje Automático , Nanotecnología/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA