Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892122

RESUMEN

Pancreatic islet isolation is critical for type 2 diabetes research. Although -omics approaches have shed light on islet molecular profiles, inconsistencies persist; on the other hand, functional studies are essential, but they require reliable and standardized isolation methods. Here, we propose a simplified protocol applied to very small-sized samples collected from partially pancreatectomized living donors. Islet isolation was performed by digesting tissue specimens collected during surgery within a collagenase P solution, followed by a Lympholyte density gradient separation; finally, functional assays and staining with dithizone were carried out. Isolated pancreatic islets exhibited functional responses to glucose and arginine stimulation mirroring donors' metabolic profiles, with insulin secretion significantly decreasing in diabetic islets compared to non-diabetic islets; conversely, proinsulin secretion showed an increasing trend from non-diabetic to diabetic islets. This novel islet isolation method from living patients undergoing partial pancreatectomy offers a valuable opportunity for targeted study of islet physiology, with the primary advantage of being time-effective and successfully preserving islet viability and functionality. It enables the generation of islet preparations that closely reflect donors' clinical profiles, simplifying the isolation process and eliminating the need for a Ricordi chamber. Thus, this method holds promises for advancing our understanding of diabetes and for new personalized pharmacological approaches.


Asunto(s)
Separación Celular , Islotes Pancreáticos , Humanos , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/citología , Separación Celular/métodos , Donadores Vivos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Insulina/metabolismo , Glucosa/metabolismo , Secreción de Insulina
2.
Diabetes Ther ; 15(1): 257-268, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37883003

RESUMEN

BACKGROUND: Sodium-glucose cotransporter-2 (SGLT2) inhibitors have shown controversial results in modulating plasma lipids in clinical trials. Most studies found slight increases in high-density lipoprotein (HDL) cholesterol but few have provided evidence on HDL functionality with disappointing results. However, there is broad agreement that these drugs provide cardiovascular protection through several mechanisms. Our group demonstrated that dapagliflozin improves myocardial flow reserve (MFR) in patients with type 2 diabetes (T2D) with coronary artery disease (CAD). The underlying mechanisms are still unknown, although in vitro studies have suggested the involvement of nitric oxide (NO). AIM: To investigate changes in HDL-mediated modulation of NO production with dapagliflozin and whether there is an association with MFR. METHODS: Sixteen patients with CAD-T2D were enrolled and randomized 1:1 to dapagliflozin or placebo for 4 weeks. Blood samples were collected before and after treatment for each group. The ability of HDL to stimulate NO production in endothelial cells was tested in vitro by incubating human umbilical vein endothelial cells (HUVEC) with apoB-depleted (apoB-D) serum of these patients. The production of NO was assessed by fluorescent assay, and results were expressed as fold versus untreated cells. RESULTS: Change in HDL-mediated NO production remained similar in dapagliflozin and placebo group, even after adjustment for confounders. There were no significant correlations between HDL-mediated NO production and MFR either at baseline or after treatment. No changes were found in HDL cholesterol in either group, while low-density lipoprotein cholesterol (LDL cholesterol) significantly decreased compared to baseline only in treatment group (p = 0.043). CONCLUSIONS: In patients with T2D-CAD, beneficial effects of dapagliflozin on coronary microcirculation seem to be unrelated to HDL functions. However, HDL capacity to stimulate NO production is not impaired at baseline; thus, the effect of drug treatments would be negligible. To conclude, we can assume that HDL-independent molecular pathways are involved in the improvement of MFR in this population. TRIAL REGISTRATION: EudraCT No. 2016-003614-27; ClinicalTrials.gov Identifier: NCT03313752.

3.
Eur J Intern Med ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38871564

RESUMEN

AIMS: Chronic pancreatitis (CP) is - along with acute pancreatitis - the most frequent cause of diabetes of the exocrine pancreas (DEP). Although insulin deficiency is widely accepted as the major feature of DEP, it is still unclear whether diabetes associated with CP is characterized by additional or different functional defects of the insulin secretory machinery. To identify possible functional defects specifically induced by CP, we performed a cross-sectional study in individuals with normal glucose tolerance (NGT), impaired glucose tolerance (IGT) and diabetes mellitus (DM) comparing patients with and without CP (CP vs. NCP). METHODS: We administered an oral glucose tolerance test (OGTT) to all participants and, according to their glucose tolerance, classified them as NGT, IGT and DM. Insulin sensitivity and beta-cell functional parameters were derived from OGTT, hyperglycemic clamp and hyperinsulinemic euglycemic clamp. RESULTS: Studying 146 subjects, we found that beta-cell function and insulin secretion were significantly lower in CP compared to NCP patients. However, when we classified the subjects according to OGTT-derived glucose tolerance, we found no differences in beta-cell function or in insulin sensitivity between CP and NCP with the same glucose tolerance status. Of note, we found that arginine-stimulated insulin secretion is reduced only in subjects with CP and DM compared to NCP subjects with DM. CONCLUSIONS: Patients with CP had no specific alterations in insulin secretion and beta-cell function. However, in patients diagnosed with diabetes, we found a lower arginine-stimulated insulin secretion, a marker of reduced functional mass.

4.
Trends Endocrinol Metab ; 34(4): 216-230, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36858875

RESUMEN

Our work is aimed at unraveling the role of the first-phase insulin secretion in the natural history of type 2 diabetes mellitus (T2DM) and its interrelationship with insulin resistance and with ß cell function and mass. Starting from pathophysiology, we investigate the impact of impaired secretion on glucose homeostasis and explore postmeal hyperglycemia as the main clinical feature, underlining its relevance in the management of the disease. We also review dietary and pharmacological approaches aimed at improving early secretory defects and restoring residual ß cell function. Furthermore, we discuss possible approaches to detect early secretory defects in clinical practice. By providing a journey through human and animal data, we attempt a unification of the recent evidence in an effort to offer a new outlook on ß cell secretion.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Células Secretoras de Insulina , Animales , Humanos , Secreción de Insulina , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Resistencia a la Insulina/fisiología , Glucemia
5.
Mol Metab ; 74: 101754, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37321370

RESUMEN

BACKGROUND: Over the last decades, various approaches have been explored to restore sufficient ß-cell mass in diabetic patients. Stem cells are certainly an attractive source of new ß-cells, but an alternative option is to induce the endogenous regeneration of these cells. SCOPE OF REVIEW: Since the exocrine and endocrine pancreatic glands have a common origin and a continuous crosstalk unites the two, we believe that analyzing the mechanisms that induce pancreatic regeneration in different conditions could further advance our knowledge in the field. In this review, we summarize the latest evidence on physiological and pathological conditions associated with the regulation of pancreas regeneration and proliferation, as well as the complex and coordinated signaling cascade mediating cell growth. MAJOR CONCLUSIONS: Unraveling the mechanisms involved in intracellular signaling and regulation of pancreatic cell proliferation and regeneration may inspire future investigations to discover potential strategies to cure diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Humanos , Islotes Pancreáticos/fisiología , Páncreas/fisiología , Células Secretoras de Insulina/fisiología , Regeneración/fisiología
6.
Genes (Basel) ; 14(6)2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37372455

RESUMEN

Next-generation sequencing (NGS) is nowadays commonly used for clinical purposes, and represents an efficient approach for the molecular diagnosis of familial hypercholesterolemia (FH). Although the dominant form of the disease is mostly due to the low-density lipoprotein receptor (LDLR) small-scale pathogenic variants, the copy number variations (CNVs) represent the underlying molecular defects in approximately 10% of FH cases. Here, we reported a novel large deletion in the LDLR gene involving exons 4-18, identified by the bioinformatic analysis of NGS data in an Italian family. A long PCR strategy was employed for the breakpoint region analysis where an insertion of six nucleotides (TTCACT) was found. Two Alu sequences, identified within intron 3 and exon 18, could underlie the identified rearrangement by a nonallelic homologous recombination (NAHR) mechanism. NGS proved to be an effective tool suitable for the identification of CNVs, together with small-scale alterations in the FH-related genes. For this purpose, the use and implementation of this cost-effective, efficient molecular approach meets the clinical need for personalized diagnosis in FH cases.


Asunto(s)
Variaciones en el Número de Copia de ADN , Hiperlipoproteinemia Tipo II , Humanos , Biología Computacional , Exones , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/diagnóstico , Intrones/genética
7.
Nutrients ; 15(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37836486

RESUMEN

Type 2 diabetes mellitus (T2DM) is one of the most widespread diseases worldwide. Lifestyle interventions, including diet and physical activity (PA), are fundamental non-pharmacological components of T2DM therapy. Exercise interventions are strongly recommended for people with or at risk of developing or already with overt diabetes, but adherence to PA guidelines in this population is still challenging. Furthermore, the heterogeneity of T2DM patients, driven by differing residual ß-cell functionality, as well as the possibility of practicing different types and intensities of PA, has led to the need to develop tailored exercise and training plans. Investigations on blood glucose variation in response to exercise could help to clarify why individuals do not respond in the same way to PA, and to guide the prescription of personalized treatments. The aim of this review is to offer an updated overview of the current evidence on the effects of different regimens and modalities of PA regarding glucose sensing and ß-cell secretory dynamics in individuals with prediabetes or T2DM, with a special focus on ß-cell function.


Asunto(s)
Diabetes Mellitus Tipo 2 , Estado Prediabético , Humanos , Ejercicio Físico , Estado Prediabético/terapia , Dieta , Glucemia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA