Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Exp Bot ; 71(13): 3765-3779, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31768543

RESUMEN

Trees are constantly exposed to climate fluctuations, which vary with both time and geographic location. Environmental changes that are outside of the physiological favorable range usually negatively affect plant performance and trigger responses to abiotic stress. Long-living trees in particular have evolved a wide spectrum of molecular mechanisms to coordinate growth and development under stressful conditions, thus minimizing fitness costs. The ongoing development of techniques directed at quantifying abiotic stress has significantly increased our knowledge of physiological responses in woody plants. However, it is only within recent years that advances in next-generation sequencing and biochemical approaches have enabled us to begin to understand the complexity of the molecular systems that underlie these responses. Here, we review recent progress in our understanding of the molecular bases of drought and temperature stresses in trees, with a focus on functional, transcriptomic, epigenetic, and population genomic studies. In addition, we highlight topics that will contribute to progress in our understanding of the plastic and adaptive responses of woody plants to drought and temperature in a context of global climate change.


Asunto(s)
Estrés Fisiológico , Árboles , Sequías , Genómica , Plantas , Árboles/genética
2.
Mol Phylogenet Evol ; 85: 197-207, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25639456

RESUMEN

The Patagonian region is characterized by a complex biogeographic history, with evidence of deep phylogeographic breaks shared among species. Of particular interest to conservation is the nature of colonization and settlement patterns after the last glacial period, including the detection of secondary contact between different lineages and/or hybridization among related species around phylogeographic breaks. Here we studied population demography and past hybridization of two widespread tree species endemic to South America, Nothofagus pumilio and N. antarctica. Using 8 nuclear microsatellites we genotyped 41 populations of both species. Genetic variation and structure across the geographic region were evaluated within and among species and the past demographic history of hybridization between the two species was inferred using Approximate Bayesian Computation (ABC). Northern and southern lineages were identified in each species, and Bayesian clustering revealed their convergence at mid latitudes (42°S). Spatial genetic structure (SGS) also indicated the existence of a genetic discontinuity at these latitudes, which is in agreement with previous data from maternal DNA markers. Several populations around 42-44°S presented high levels of genetic diversity with a decrease toward southern populations. Even though the species are clearly differentiated (G'ST=0.335), admixed gene pools were observed in both species. Two independent runs of ABC suggested that inter species admixture-like patterns occurred within the timescale of the Last Glacial Maximum (around 20,000 BP). We also provide evidences of recent and bi-directional hybridization/introgression between the two Nothofagus species and describe features of the populations demography in the past. The settlement of a secondary contact zone in Nothofagus species around 42-44°S coincides with the phylogeographic breaks and hotspots of genetic diversity found in other plant and animal species in Patagonia, highlighting its importance as reservoir of diversity. The characterization of the population history of native species can contribute substantially to long-term conservation and management policies.


Asunto(s)
Evolución Biológica , Fagaceae/clasificación , Hibridación Genética , Filogenia , Teorema de Bayes , ADN de Cloroplastos/genética , ADN de Plantas/genética , Marcadores Genéticos , Variación Genética , Genotipo , Haplotipos , Repeticiones de Microsatélite , Filogeografía , Análisis de Secuencia de ADN , América del Sur
3.
ACS Biomater Sci Eng ; 9(6): 2991-3009, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37227297

RESUMEN

Research on regeneration and accelerated recovery processes of bone tissue has driven a growing interest in the scientific community. Implementing natural materials to reduce rejections due to biocompatibility issues is an important trend. Biofunctionalization processes have been proposed to promote osseointegration in implant materials, and those substances able to generate an adequate environment for cell proliferation are the object of several studies. Because of their high protein content and their anti-inflammatory, antibacterial, antimicrobial, and healing properties, microalgae represent a natural source of bioactive compounds, and are proposed as candidates for tissue regeneration applications. In this paper microalgae are reviewed as a source of biofunctionalized materials focused on orthopedic applications.


Asunto(s)
Microalgas , Oseointegración , Huesos , Cicatrización de Heridas
4.
BMC Plant Biol ; 12: 153, 2012 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-22931513

RESUMEN

BACKGROUND: Genetic markers and linkage mapping are basic prerequisites for comparative genetic analyses, QTL detection and map-based cloning. A large number of mapping populations have been developed for oak, but few gene-based markers are available for constructing integrated genetic linkage maps and comparing gene order and QTL location across related species. RESULTS: We developed a set of 573 expressed sequence tag-derived simple sequence repeats (EST-SSRs) and located 397 markers (EST-SSRs and genomic SSRs) on the 12 oak chromosomes (2n = 2x = 24) on the basis of Mendelian segregation patterns in 5 full-sib mapping pedigrees of two species: Quercus robur (pedunculate oak) and Quercus petraea (sessile oak). Consensus maps for the two species were constructed and aligned. They showed a high degree of macrosynteny between these two sympatric European oaks. We assessed the transferability of EST-SSRs to other Fagaceae genera and a subset of these markers was mapped in Castanea sativa, the European chestnut. Reasonably high levels of macrosynteny were observed between oak and chestnut. We also obtained diversity statistics for a subset of EST-SSRs, to support further population genetic analyses with gene-based markers. Finally, based on the orthologous relationships between the oak, Arabidopsis, grape, poplar, Medicago, and soybean genomes and the paralogous relationships between the 12 oak chromosomes, we propose an evolutionary scenario of the 12 oak chromosomes from the eudicot ancestral karyotype. CONCLUSIONS: This study provides map locations for a large set of EST-SSRs in two oak species of recognized biological importance in natural ecosystems. This first step toward the construction of a gene-based linkage map will facilitate the assignment of future genome scaffolds to pseudo-chromosomes. This study also provides an indication of the potential utility of new gene-based markers for population genetics and comparative mapping within and beyond the Fagaceae.


Asunto(s)
Mapeo Cromosómico/métodos , Etiquetas de Secuencia Expresada , Genoma de Planta , Repeticiones de Microsatélite , Quercus/genética , Alelos , Cromosomas de las Plantas/genética , Evolución Molecular , Orden Génico , Ligamiento Genético , Variación Genética , Tamaño del Genoma , Patrón de Herencia , Cariotipo , Sitios de Carácter Cuantitativo , Simpatría , Sintenía
5.
Sci Rep ; 10(1): 19231, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33159157

RESUMEN

Patagonian forests are the southernmost temperate forests in the world, and Nothofagus pumilio is one of their most ecologically important tree species (i.e., a foundation species). It presents great adaptability and a wide distribution range, making it a suitable model for predicting the performance of trees facing global climate change. N. pumilio forests are increasingly threatened by extreme climatic events and anthropogenic activities. This study aims to identify priority conservation areas and Genetic Zones (GZs) for N. pumilio, promoting the implementation of specific practices to ensure its management and long-term preservation. Thirty-five populations (965 trees) sampled across its distribution (more than 2200 km latitudinally) were genotyped with SSRs, and geographical patterns of genetic variation were identified using Bayesian approaches. The phylogeographic patterns of the species and geomorphological history of the region were also considered. Six priority conservation areas were identified, which hold high allelic richness and/or exclusive allelic variants. Eighteen GZs were delineated based on the genetic structure of this species, and maps showing their distributional range were drawn up. Overall, this study defines management units based on genetic data for N. pumilio for the first time, which will facilitate the establishment of sustainable practices and highlight priorities for investment of conservation funding.


Asunto(s)
Conservación de los Recursos Naturales , Fagales/genética , Bosques , Variación Genética , Haplotipos , Filogeografía
6.
Genetica ; 136(1): 79-88, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-18758967

RESUMEN

Different regional patterns of glaciation are expected to have brought about a differential effect on the present genetic structure of natural tree populations in the temperate regions. The aim of the present study is to test this hypothesis in Nothofagus antarctica, a key tree species of the temperate forests of southern South America. An almost continuous ice layer characterized the region of the Andes south of 41 degrees S, while towards northern latitudes the pattern was more fragmented. Therefore, a higher chance for the location of larger or more numerous glacial refuges in the north of the Argentinean range, leads us to predict a higher genetic diversity in this region. Twelve natural populations of N. antarctica were sampled along the northern half of its Argentinean range, including six above 41 degrees S and six below that latitude. Sampled populations were genetically characterized through cpDNA and isozyme gene markers. Both groups of populations were compared by means of several diversity and differentiation parameters. A genetic structure analysis was conducted with isozyme data through clustering and Bayesian approaches. Based on three polymorphic chloroplast regions, only two haplotypes were distinguished, one corresponding to the nine northernmost sampled populations and the other to the two southernmost ones. Only the population located between those two groups resulted polymorphic. AMOVA analyses also revealed a latitudinal genetic structure for the populations surveyed, and higher levels of genetic variation were recognized in the northern populations.


Asunto(s)
Variación Genética , Magnoliopsida/genética , ADN de Cloroplastos/química , Estructuras Genéticas , Geografía , Cubierta de Hielo , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA