Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(8): e1011579, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37611070

RESUMEN

Fungal invasion of the oral epithelium is central to the pathogenesis of oropharyngeal candidiasis (OPC). Candida albicans invades the oral epithelium by receptor-induced endocytosis but this process is incompletely understood. We found that C. albicans infection of oral epithelial cells induces c-Met to form a multi-protein complex with E-cadherin and the epidermal growth factor receptor (EGFR). E-cadherin is necessary for C. albicans to activate both c-Met and EGFR and to induce the endocytosis of C. albicans. Proteomics analysis revealed that c-Met interacts with C. albicans Hyr1, Als3 and Ssa1. Both Hyr1 and Als3 are required for C. albicans to stimulate c-Met and EGFR in oral epithelial cells in vitro and for full virulence during OPC in mice. Treating mice with small molecule inhibitors of c-Met and EGFR ameliorates OPC, demonstrating the potential therapeutic efficacy of blocking these host receptors for C. albicans.


Asunto(s)
Candida albicans , Candidiasis Bucal , Animales , Ratones , Membrana Celular , Receptores ErbB , Cadherinas , Células Epiteliales
2.
PLoS Pathog ; 18(1): e1010192, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34995333

RESUMEN

Candida albicans is a major opportunistic pathogen of humans. It can grow as morphologically distinct yeast, pseudohyphae and hyphae, and the ability to switch reversibly among different forms is critical for its virulence. The relationship between morphogenesis and innate immune recognition is not quite clear. Dectin-1 is a major C-type lectin receptor that recognizes ß-glucan in the fungal cell wall. C. albicans ß-glucan is usually masked by the outer mannan layer of the cell wall. Whether and how ß-glucan masking is differentially regulated during hyphal morphogenesis is not fully understood. Here we show that the endo-1,3-glucanase Eng1 is differentially expressed in yeast, and together with Yeast Wall Protein 1 (Ywp1), regulates ß-glucan exposure and Dectin-1-dependent immune activation of macrophage by yeast cells. ENG1 deletion results in enhanced Dectin-1 binding at the septa of yeast cells; while eng1 ywp1 yeast cells show strong overall Dectin-1 binding similar to hyphae of wild-type and eng1 mutants. Correlatively, hyphae of wild-type and eng1 induced similar levels of cytokines in macrophage. ENG1 expression and Eng1-mediated ß-glucan trimming are also regulated by antifungal drugs, lactate and N-acetylglucosamine. Deletion of ENG1 modulates virulence in the mouse model of hematogenously disseminated candidiasis in a Dectin-1-dependent manner. The eng1 mutant exhibited attenuated lethality in male mice, but enhanced lethality in female mice, which was associated with a stronger renal immune response and lower fungal burden. Thus, Eng1-regulated ß-glucan exposure in yeast cells modulates the balance between immune protection and immunopathogenesis during disseminated candidiasis.


Asunto(s)
Candida albicans/patogenicidad , Candidiasis/inmunología , Glucano Endo-1,3-beta-D-Glucosidasa/metabolismo , Virulencia/fisiología , beta-Glucanos/inmunología , Animales , Candida albicans/inmunología , Candida albicans/metabolismo , Candidiasis/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , beta-Glucanos/metabolismo
3.
PLoS Pathog ; 18(7): e1010681, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35797411

RESUMEN

During hematogenously disseminated candidiasis, blood borne fungi must invade the endothelial cells that line the blood vessels to infect the deep tissues. Although Candida albicans, which forms hyphae, readily invades endothelial cells, other medically important species of Candida are poorly invasive in standard in vitro assays and have low virulence in immunocompetent mouse models of disseminated infection. Here, we show that Candida glabrata, Candida tropicalis, Candida parapsilosis, and Candida krusei can bind to vitronectin and high molecular weight kininogen present in human serum. Acting as bridging molecules, vitronectin and kininogen bind to αv integrins and the globular C1q receptor (gC1qR), inducing human endothelial cells to endocytose the fungus. This mechanism of endothelial cell invasion is poorly supported by mouse endothelial cells but can be restored when mouse endothelial cells are engineered to express human gC1qR or αv integrin. Overall, these data indicate that bridging molecule-mediated endocytosis is a common pathogenic strategy used by many medically important Candida spp. to invade human vascular endothelial cells.


Asunto(s)
Candidiasis , Células Endoteliales , Animales , Candida , Candida albicans , Candidiasis/microbiología , Células Endoteliales/microbiología , Humanos , Ratones , Vitronectina
4.
PLoS Pathog ; 17(1): e1009221, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33471869

RESUMEN

During oropharyngeal candidiasis (OPC), Candida albicans invades and damages oral epithelial cells, which respond by producing proinflammatory mediators that recruit phagocytes to foci of infection. The ephrin type-A receptor 2 (EphA2) detects ß-glucan and plays a central role in stimulating epithelial cells to release proinflammatory mediators during OPC. The epidermal growth factor receptor (EGFR) also interacts with C. albicans and is known to be activated by the Als3 adhesin/invasin and the candidalysin pore-forming toxin. Here, we investigated the interactions among EphA2, EGFR, Als3 and candidalysin during OPC. We found that EGFR and EphA2 constitutively associate with each other as part of a heteromeric physical complex and are mutually dependent for C. albicans-induced activation. Als3-mediated endocytosis of a C. albicans hypha leads to the formation of an endocytic vacuole where candidalysin accumulates at high concentration. Thus, Als3 potentiates targeting of candidalysin, and both Als3 and candidalysin are required for C. albicans to cause maximal damage to oral epithelial cells, sustain activation of EphA2 and EGFR, and stimulate pro-inflammatory cytokine and chemokine secretion. In the mouse model of OPC, C. albicans-induced production of CXCL1/KC and CCL20 is dependent on the presence of candidalysin and EGFR, but independent of Als3. The production of IL-1α and IL-17A also requires candidalysin but is independent of Als3 and EGFR. The production of TNFα requires Als1, Als3, and candidalysin. Collectively, these results delineate the complex interplay among host cell receptors EphA2 and EGFR and C. albicans virulence factors Als1, Als3 and candidalysin during the induction of OPC and the resulting oral inflammatory response.


Asunto(s)
Candida albicans/fisiología , Candidiasis Bucal/patología , Efrina-A2/metabolismo , Células Epiteliales/patología , Orofaringe/patología , Factores de Virulencia/metabolismo , Animales , Candidiasis Bucal/genética , Candidiasis Bucal/metabolismo , Candidiasis Bucal/microbiología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Efrina-A2/genética , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Orofaringe/metabolismo , Orofaringe/microbiología , Receptor EphA2 , Factores de Virulencia/genética
5.
PLoS Pathog ; 17(3): e1009235, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33780518

RESUMEN

To gain a better understanding of the transcriptional response of Aspergillus fumigatus during invasive pulmonary infection, we used a NanoString nCounter to assess the transcript levels of 467 A. fumigatus genes during growth in the lungs of immunosuppressed mice. These genes included ones known to respond to diverse environmental conditions and those encoding most transcription factors in the A. fumigatus genome. We found that invasive growth in vivo induces a unique transcriptional profile as the organism responds to nutrient limitation and attack by host phagocytes. This in vivo transcriptional response is largely mimicked by in vitro growth in Aspergillus minimal medium that is deficient in nitrogen, iron, and/or zinc. From the transcriptional profiling data, we selected 9 transcription factor genes that were either highly expressed or strongly up-regulated during in vivo growth. Deletion mutants were constructed for each of these genes and assessed for virulence in mice. Two transcription factor genes were found to be required for maximal virulence. One was rlmA, which is required for the organism to achieve maximal fungal burden in the lung. The other was sltA, which regulates of the expression of multiple secondary metabolite gene clusters and mycotoxin genes independently of laeA. Using deletion and overexpression mutants, we determined that the attenuated virulence of the ΔsltA mutant is due in part to decreased expression aspf1, which specifies a ribotoxin, but is not mediated by reduced expression of the fumigaclavine gene cluster or the fumagillin-pseruotin supercluster. Thus, in vivo transcriptional profiling focused on transcription factors genes provides a facile approach to identifying novel virulence regulators.


Asunto(s)
Aspergillus fumigatus/genética , Regulación Fúngica de la Expresión Génica/genética , Pulmón/virología , Factores de Transcripción/metabolismo , Animales , Aspergilosis/microbiología , Aspergillus fumigatus/patogenicidad , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica/métodos , Hierro/metabolismo , Pulmón/metabolismo , Ratones , Virulencia/genética
6.
PLoS Genet ; 16(6): e1008881, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32525871

RESUMEN

Iron is an essential nutrient required as a cofactor for many biological processes. As a fungal commensal-pathogen of humans, Candida albicans encounters a range of bioavailable iron levels in the human host and maintains homeostasis with a conserved regulatory circuit. How C. albicans senses and responds to iron availability is unknown. In model yeasts, regulation of the iron homeostasis circuit requires monothiol glutaredoxins (Grxs), but their functions beyond the regulatory circuit are unclear. Here, we show Grx3 is required for virulence and growth on low iron for C. albicans. To explore the global roles of Grx3, we applied a proteomic approach and performed in vivo cross-linked tandem affinity purification coupled with mass spectrometry. We identified a large number of Grx3 interacting proteins that function in diverse biological processes. This included Fra1 and Bol2/Fra2, which function with Grxs in intracellular iron trafficking in other organisms. Grx3 interacts with and regulates the activity of Sfu1 and Hap43, components of the C. albicans iron regulatory circuit. Unlike the regulatory circuit, which determines expression or repression of target genes in response to iron availability, Grx3 amplifies levels of gene expression or repression. Consistent with the proteomic data, the grx3 mutant is sensitive to heat shock, oxidative, nitrosative, and genotoxic stresses, and shows growth dependence on histidine, leucine, and tryptophan. We suggest Grx3 is a conserved global regulator of iron-dependent processes occurring within the cell.


Asunto(s)
Candida albicans/fisiología , Candidiasis Invasiva/microbiología , Proteínas Fúngicas/metabolismo , Glutarredoxinas/metabolismo , Hierro/metabolismo , Animales , Candida albicans/patogenicidad , Modelos Animales de Enfermedad , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Factores de Transcripción GATA/metabolismo , Regulación Fúngica de la Expresión Génica , Glutarredoxinas/genética , Glutarredoxinas/aislamiento & purificación , Homeostasis , Humanos , Hifa , Masculino , Ratones , Mutación , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas/genética , Proteómica , Virulencia/genética
7.
PLoS Genet ; 16(1): e1008582, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31961865

RESUMEN

Metabolic adaptation is linked to the ability of the opportunistic pathogen Candida albicans to colonize and cause infection in diverse host tissues. One way that C. albicans controls its metabolism is through the glucose repression pathway, where expression of alternative carbon source utilization genes is repressed in the presence of its preferred carbon source, glucose. Here we carry out genetic and gene expression studies that identify transcription factors Mig1 and Mig2 as mediators of glucose repression in C. albicans. The well-studied Mig1/2 orthologs ScMig1/2 mediate glucose repression in the yeast Saccharomyces cerevisiae; our data argue that C. albicans Mig1/2 function similarly as repressors of alternative carbon source utilization genes. However, Mig1/2 functions have several distinctive features in C. albicans. First, Mig1 and Mig2 have more co-equal roles in gene regulation than their S. cerevisiae orthologs. Second, Mig1 is regulated at the level of protein accumulation, more akin to ScMig2 than ScMig1. Third, Mig1 and Mig2 are together required for a unique aspect of C. albicans biology, the expression of several pathogenicity traits. Such Mig1/2-dependent traits include the abilities to form hyphae and biofilm, tolerance of cell wall inhibitors, and ability to damage macrophage-like cells and human endothelial cells. Finally, Mig1 is required for a puzzling feature of C. albicans biology that is not shared with S. cerevisiae: the essentiality of the Snf1 protein kinase, a central eukaryotic carbon metabolism regulator. Our results integrate Mig1 and Mig2 into the C. albicans glucose repression pathway and illuminate connections among carbon control, pathogenicity, and Snf1 essentiality.


Asunto(s)
Candida albicans/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Glucosa/metabolismo , Factores de Transcripción/metabolismo , Animales , Biopelículas , Candida albicans/efectos de los fármacos , Candida albicans/patogenicidad , Línea Celular , Farmacorresistencia Fúngica , Células Endoteliales/microbiología , Proteínas Fúngicas/genética , Humanos , Macrófagos/microbiología , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/genética
8.
PLoS Genet ; 15(5): e1008137, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31091232

RESUMEN

When the fungus Candida albicans proliferates in the oropharyngeal cavity during experimental oropharyngeal candidiasis (OPC), it undergoes large-scale genome changes at a much higher frequency than when it grows in vitro. Previously, we identified a specific whole chromosome amplification, trisomy of Chr6 (Chr6x3), that was highly overrepresented among strains recovered from the tongues of mice with OPC. To determine the functional significance of this trisomy, we assessed the virulence of two Chr6 trisomic strains and a Chr5 trisomic strain in the mouse model of OPC. We also analyzed the expression of virulence-associated traits in vitro. All three trisomic strains exhibited characteristics of a commensal during OPC in mice. They achieved the same oral fungal burden as the diploid progenitor strain but caused significantly less weight loss and elicited a significantly lower inflammatory host response. In vitro, all three trisomic strains had reduced capacity to adhere to and invade oral epithelial cells and increased susceptibility to neutrophil killing. Whole genome sequencing of pre- and post-infection isolates found that the trisomies were usually maintained. Most post-infection isolates also contained de novo point mutations, but these were not conserved. While in vitro growth assays did not reveal phenotypes specific to de novo point mutations, they did reveal novel phenotypes specific to each lineage. These data reveal that during OPC, clones that are trisomic for Chr5 or Chr6 are selected and they facilitate a commensal-like phenotype.


Asunto(s)
Candida albicans/genética , Candidiasis Bucal/genética , Orofaringe/microbiología , Animales , Candida albicans/metabolismo , Candidiasis/genética , Modelos Animales de Enfermedad , Células Epiteliales , Masculino , Ratones , Ratones Endogámicos BALB C , Neutrófilos , Fenotipo , Trisomía/genética , Virulencia
9.
Infect Immun ; 89(3)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33318139

RESUMEN

The mechanisms by which Candida glabrata resists host defense peptides and caspofungin are incompletely understood. To identify transcriptional regulators that enable C. glabrata to withstand these classes of stressors, a library of 215 C. glabrata transcriptional regulatory deletion mutants was screened for susceptibility to both protamine and caspofungin. We identified eight mutants that had increased susceptibility to both host defense peptides and caspofungin. Of these mutants, six were deleted for genes that were predicted to specify proteins involved in histone modification. These genes were ADA2, GCN5, SPT8, HOS2, RPD3, and SPP1 Deletion of ADA2, GCN5, and RPD3 also increased susceptibility to mammalian host defense peptides. The Δada2 and Δgcn5 mutants had increased susceptibility to other stressors, such as H2O2 and SDS. In the Galleria mellonella model of disseminated infection, the Δada2 and Δgcn5 mutants had attenuated virulence, whereas in neutropenic mice, the virulence of the Δada2 and Δrpd3 mutants was decreased. Thus, histone modification plays a central role in enabling C. glabrata to survive host defense peptides and caspofungin, and Ada2 and Rpd3 are essential for the maximal virulence of this organism during disseminated infection.


Asunto(s)
Candida glabrata/genética , Candida glabrata/patogenicidad , Proteínas Fúngicas/genética , Interacciones Huésped-Patógeno/genética , Factores de Transcripción/genética , Virulencia/genética , Eliminación de Gen , Variación Genética , Humanos , Mutación
10.
Nat Chem Biol ; 14(2): 135-141, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29227471

RESUMEN

The development of effective antifungal therapeutics remains a formidable challenge because of the close evolutionary relationship between humans and fungi. Mitochondrial function may present an exploitable vulnerability because of its differential utilization in fungi and its pivotal roles in fungal morphogenesis, virulence, and drug resistance already demonstrated by others. We now report mechanistic characterization of ML316, a thiohydantoin that kills drug-resistant Candida species at nanomolar concentrations through fungal-selective inhibition of the mitochondrial phosphate carrier Mir1. Using genetic, biochemical, and metabolomic approaches, we established ML316 as the first Mir1 inhibitor. Inhibition of Mir1 by ML316 in respiring yeast diminished mitochondrial oxygen consumption, resulting in an unusual metabolic catastrophe marked by citrate accumulation and death. In a mouse model of azole-resistant oropharyngeal candidiasis, ML316 reduced fungal burden and enhanced azole activity. Targeting Mir1 could provide a new, much-needed therapeutic strategy to address the rapidly rising burden of drug-resistant fungal infection.


Asunto(s)
Candidiasis/tratamiento farmacológico , Mitocondrias/metabolismo , Fosfatos/metabolismo , Animales , Antifúngicos/farmacología , Transporte Biológico/efectos de los fármacos , Candida/efectos de los fármacos , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Farmacorresistencia Fúngica , Femenino , Células Hep G2 , Humanos , Inmunosupresores , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Consumo de Oxígeno , Tiohidantoínas/farmacología
11.
J Infect Dis ; 220(9): 1477-1488, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31401652

RESUMEN

BACKGROUND: Candidalysin is a cytolytic peptide toxin secreted by Candida albicans hyphae and has significantly advanced our understanding of fungal pathogenesis. Candidalysin is critical for mucosal C albicans infections and is known to activate epithelial cells to induce downstream innate immune responses that are associated with protection or immunopathology during oral or vaginal infections. Furthermore, candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. However, the role of candidalysin in driving systemic infections is unknown. METHODS: In this study, using candidalysin-producing and candidalysin-deficient C albicans strains, we show that candidalysin activates mitogen-activated protein kinase (MAPK) signaling and chemokine secretion in endothelial cells in vitro. RESULTS: Candidalysin induces immune activation and neutrophil recruitment in vivo, and it promotes mortality in zebrafish and murine models of systemic fungal infection. CONCLUSIONS: The data demonstrate a key role for candidalysin in neutrophil recruitment and fungal virulence during disseminated systemic C albicans infections.


Asunto(s)
Candida albicans/inmunología , Candida albicans/metabolismo , Candidiasis Invasiva/microbiología , Candidiasis Invasiva/patología , Proteínas Fúngicas/metabolismo , Infiltración Neutrófila , Factores de Virulencia/metabolismo , Animales , Candida albicans/crecimiento & desarrollo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Femenino , Masculino , Ratones Endogámicos BALB C , Transducción de Señal , Análisis de Supervivencia , Virulencia , Pez Cebra
12.
PLoS Pathog ; 13(2): e1006205, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28192532

RESUMEN

Virulence of the human fungal pathogen Candida albicans depends on the switch from budding to filamentous growth, which requires sustained membrane traffic and polarized growth. In many organisms, small GTPases of the Arf (ADP-ribosylation factor) family regulate membrane/protein trafficking, yet little is known about their role in fungal filamentous growth. To investigate these GTPases in C. albicans, we generated loss of function mutants in all 3 Arf proteins, Arf1-Arf3, and 2 Arf-like proteins, Arl1 and Arl3. Our results indicate that of these proteins, Arf2 is required for viability and sensitivity to antifungal drugs. Repressible ARF2 expression results in defects in filamentous growth, cell wall integrity and virulence, likely due to alteration of the Golgi. Arl1 is also required for invasive filamentous growth and, although arl1/arl1 cells can initiate hyphal growth, hyphae are substantially shorter than that of the wild-type, due to the inability of this mutant to maintain hyphal growth at a single site. We show that this defect does not result from an alteration of phospholipid distribution and is unlikely to result from the sole Golgin Imh1 mislocalization, as Imh1 is not required for invasive filamentous growth. Rather, our results suggest that the arl1/arl1 hyphal growth defect results from increased secretion in this mutant. Strikingly, the arl1/arl1 mutant is drastically reduced in virulence during oropharyngeal candidiasis. Together, our results highlight the importance of Arl1 and Arf2 as key regulators of hyphal growth and virulence in C. albicans and identify a unique function of Arl1 in secretion.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Candida albicans/enzimología , Candida albicans/crecimiento & desarrollo , Candida albicans/patogenicidad , Proteínas Fúngicas/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Western Blotting , Candidiasis , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Ratones , Ratones Endogámicos BALB C , Morfogénesis , Virulencia
13.
Infect Immun ; 86(6)2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29581190

RESUMEN

The capacity of Candida albicans to switch reversibly between the white phenotype and the opaque phenotype is required for the fungus to mate. It also influences virulence during hematogenously disseminated candidiasis. We investigated the roles of the mating type loci (MTL) and white-opaque switching in the capacity of C. albicans to mate in the oropharynx and cause oropharyngeal candidiasis (OPC). When immunosuppressed mice were orally infected with mating-competent opaque a/a and α/α cells either alone or mixed with white cells, no detectable mating occurred, indicating that the mating frequency was less than 1.6 × 10-6 Opaque cells were also highly attenuated in virulence; they either were cleared from the oropharynx or switched to the white phenotype during OPC. Although there were strain-to-strain differences in the virulence of white cells, they were consistently more virulent than opaque cells. In vitro studies indicated that relative to white cells, opaque cells had decreased capacity to invade and damage oral epithelial cells. The reduced invasion of at least one opaque strain was due to reduced surface expression of the Als3 invasin and inability to activate the epidermal growth factor receptor, which is required to stimulate the epithelial cell endocytic machinery. These results suggest that mating is a rare event during OPC because opaque cells have reduced capacity to invade and damage the epithelial cells of the oral mucosa.


Asunto(s)
Candida albicans/fisiología , Candidiasis Bucal/microbiología , Genes del Tipo Sexual de los Hongos/fisiología , Animales , Candida albicans/clasificación , Candidiasis Bucal/inmunología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Huésped Inmunocomprometido , Ratones , Orofaringe/microbiología , Virulencia
14.
Infect Immun ; 86(8)2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29866908

RESUMEN

Candida albicans mutants for phosphatidylserine (PS) synthase (cho1ΔΔ) and PS decarboxylase (psd1ΔΔ psd2ΔΔ) are compromised for virulence in mouse models of systemic infection and oropharyngeal candidiasis (OPC). Both of these enzymes are necessary to synthesize phosphatidylethanolamine (PE) by the de novo pathway, but these mutants are still capable of growth in culture media, as they can import ethanolamine from media to synthesize PE through the Kennedy pathway. Given that the host has ethanolamine in its serum, the exact mechanism by which virulence is lost in these mutants is not clear. There are two competing hypotheses to explain their loss of virulence. (i) PE from the Kennedy pathway cannot substitute for de novo-synthesized PE. (ii) The mutants cannot acquire sufficient ethanolamine from the host to support adequate PE synthesis. These hypotheses can be simultaneously tested if ethanolamine availability is increased for Candida while it is inside the host. We accomplish this by transcomplementation of C. albicans with the Arabidopsis thaliana serine decarboxylase gene (AtSDC), which converts cytoplasmic serine to ethanolamine. Expression of AtSDC in either mutant restores PE synthesis, even in the absence of exogenous ethanolamine. AtSDC also restores virulence to cho1ΔΔ and psd1ΔΔ psd2ΔΔ strains in systemic and OPC infections. Thus, in the absence of de novo PE synthesis, C. albicans cannot acquire sufficient ethanolamine from the host to support virulence. In addition, expression of AtSDC restores PS synthesis in the cho1ΔΔ mutant, which may be due to causing PS decarboxylase to run backwards and convert PE to PS.


Asunto(s)
Candida albicans/genética , Candida albicans/metabolismo , Carboxiliasas/metabolismo , Etanolamina/metabolismo , Fosfatidiletanolaminas/metabolismo , Virulencia/genética , Virulencia/fisiología , Animales , Candida albicans/crecimiento & desarrollo , Candida albicans/patogenicidad , Variación Genética , Interacciones Huésped-Patógeno/fisiología , Ratones
15.
PLoS Biol ; 13(2): e1002076, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25693184

RESUMEN

Gene expression dynamics have provided foundational insight into almost all biological processes. Here, we analyze expression of environmentally responsive genes and transcription factor genes to infer signals and pathways that drive pathogen gene regulation during invasive Candida albicans infection of a mammalian host. Environmentally responsive gene expression shows that there are early and late phases of infection. The early phase includes induction of zinc and iron limitation genes, genes that respond to transcription factor Rim101, and genes characteristic of invasive hyphal cells. The late phase includes responses related to phagocytosis by macrophages. Transcription factor gene expression also reflects early and late phases. Transcription factor genes that are required for virulence or proliferation in vivo are enriched among highly expressed transcription factor genes. Mutants defective in six transcription factor genes, three previously studied in detail (Rim101, Efg1, Zap1) and three less extensively studied (Rob1, Rpn4, Sut1), are profiled during infection. Most of these mutants have distinct gene expression profiles during infection as compared to in vitro growth. Infection profiles suggest that Sut1 acts in the same pathway as Zap1, and we verify that functional relationship with the finding that overexpression of either ZAP1 or the Zap1-dependent zinc transporter gene ZRT2 restores pathogenicity to a sut1 mutant. Perturbation with the cell wall inhibitor caspofungin also has distinct gene expression impact in vivo and in vitro. Unexpectedly, caspofungin induces many of the same genes that are repressed early during infection, a phenomenon that we suggest may contribute to drug efficacy. The pathogen response circuitry is tailored uniquely during infection, with many relevant regulatory relationships that are not evident during growth in vitro. Our findings support the principle that virulence is a property that is manifested only in the distinct environment in which host-pathogen interaction occurs.


Asunto(s)
Candida albicans/metabolismo , Candida albicans/patogenicidad , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Animales , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/genética , Candidiasis/tratamiento farmacológico , Candidiasis/metabolismo , Candidiasis/microbiología , Candidiasis/patología , Caspofungina , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Equinocandinas/farmacología , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno , Inyecciones Intravenosas , Riñón/metabolismo , Riñón/microbiología , Riñón/patología , Lipopéptidos , Masculino , Ratones , Ratones Endogámicos BALB C , Anotación de Secuencia Molecular , Mutación , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Virulencia
16.
Infect Immun ; 85(2)2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27849182

RESUMEN

Staphylococcus aureus is the leading cause of skin and skin structure infections (SSSI). The high frequency of recurring SSSI due to S. aureus, including methicillin-resistant S. aureus (MRSA) strains, despite high titers of specific antibodies and circulating T cells, implies that traditional adaptive immunity imparts incomplete protection. We hypothesized that innate immune memory contributes to the protective host defense against recurring MRSA infection. To test this hypothesis, SSSI was induced in wild-type and rag1-/- mice in the BALB/c and C57BL/6 backgrounds. Prior infection (priming) of wild-type and rag1-/- mice of either background afforded protection against repeat infection, as evidenced by reduced abscess severities and decreased CFU densities compared to those in naive controls. Interestingly, protection was greater on the previously infected flank than on the naive flank for wild-type and rag1-/- mice. For wild-type mice, protective efficacy corresponded to increased infiltration of neutrophils (polymorphonuclear leukocytes [PMN]), macrophages (MΦ), Langerin+ dendritic cells (LDC), and natural killer (NK) cells. Protection was associated with the induction of interleukin-17A (IL-17A), IL-22, and gamma interferon (IFN-γ) as well as the antimicrobial peptides CRAMP and mßD-3. Priming also protected rag1-/- mice against recurring SSSI, with increased MΦ and LDC infiltration and induction of IL-22, CRAMP, and mßD-3. These findings suggest that innate immune memory, mediated by specific cellular and molecular programs, likely contributes to the localized host defense in recurrent MRSA SSSI. These insights support the development of targeted immunotherapeutic strategies to address the challenge of MRSA infection.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Memoria Inmunológica , Staphylococcus aureus Resistente a Meticilina/inmunología , Infecciones Cutáneas Estafilocócicas/inmunología , Infecciones Cutáneas Estafilocócicas/microbiología , Animales , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Expresión Génica , Masculino , Ratones , Ratones Noqueados , Recurrencia , Bazo/citología , Bazo/inmunología , Infecciones Cutáneas Estafilocócicas/patología
17.
PLoS Pathog ; 11(10): e1005187, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26492565

RESUMEN

Of the over 250 Aspergillus species, Aspergillus fumigatus accounts for up to 80% of invasive human infections. A. fumigatus produces galactosaminogalactan (GAG), an exopolysaccharide composed of galactose and N-acetyl-galactosamine (GalNAc) that mediates adherence and is required for full virulence. Less pathogenic Aspergillus species were found to produce GAG with a lower GalNAc content than A. fumigatus and expressed minimal amounts of cell wall-bound GAG. Increasing the GalNAc content of GAG of the minimally pathogenic A. nidulans, either through overexpression of the A. nidulans epimerase UgeB or by heterologous expression of the A. fumigatus epimerase Uge3 increased the amount of cell wall bound GAG, augmented adherence in vitro and enhanced virulence in corticosteroid-treated mice to levels similar to A. fumigatus. The enhanced virulence of the overexpression strain of A. nidulans was associated with increased resistance to NADPH oxidase-dependent neutrophil extracellular traps (NETs) in vitro, and was not observed in neutropenic mice or mice deficient in NADPH-oxidase that are unable to form NETs. Collectively, these data suggest that cell wall-bound GAG enhances virulence through mediating resistance to NETs.


Asunto(s)
Aspergillus/patogenicidad , Trampas Extracelulares , Neutrófilos/inmunología , Polisacáridos/fisiología , Animales , Biopelículas , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Virulencia
18.
BMC Bioinformatics ; 16: 31, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25638274

RESUMEN

BACKGROUND: Microbiome studies incorporate next-generation sequencing to obtain profiles of microbial communities. Data generated from these experiments are high-dimensional with a rich correlation structure but modest sample sizes. A statistical model that utilizes these microbiome profiles to explain a clinical or biological endpoint needs to tackle high-dimensionality resulting from the very large space of variable configurations. Ensemble models are a class of approaches that can address high-dimensionality by aggregating information across large model spaces. Although such models are popular in fields as diverse as economics and genetics, their performance on microbiome data has been largely unexplored. RESULTS: We developed a simulation framework that accurately captures the constraints of experimental microbiome data. Using this setup, we systematically evaluated a selection of both frequentist and Bayesian regression modeling ensembles. These are represented by variants of stability selection in conjunction with elastic net and spike-and-slab Bayesian model averaging (BMA), respectively. BMA ensembles that explore a larger space of models relative to stability selection variants performed better and had lower variability across simulations. However, stability selection ensembles were able to match the performance of BMA in scenarios of low sparsity where several variables had large regression coefficients. CONCLUSIONS: Given a microbiome dataset of interest, we present a methodology to generate simulated data that closely mimics its characteristics in a manner that enables meaningful evaluation of analytical strategies. Our evaluation demonstrates that the largest ensembles yield the strongest performance on microbiome data with modest sample sizes and high-dimensional measurements. We also demonstrate the ability of these ensembles to identify microbiome signatures that are associated with opportunistic Candida albicans colonization during antibiotic exposure. As the focus of microbiome research evolves from pilot to translational studies, we anticipate that our strategy will aid investigators in making evaluation-based decisions for selecting appropriate analytical methods.


Asunto(s)
Teorema de Bayes , Candida albicans/crecimiento & desarrollo , Candidiasis/microbiología , Microbiota , Modelos Estadísticos , Antibacterianos/farmacología , Candida albicans/efectos de los fármacos , Candidiasis/tratamiento farmacológico , Simulación por Computador , Proyectos de Investigación
19.
Infect Immun ; 83(3): 958-65, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25547797

RESUMEN

Candida albicans is part of the normal commensal microbiota of mucosal surfaces in a large percentage of the human population. However, perturbations of the host's immune response or bacterial microbiota have been shown to predispose individuals to the development of opportunistic Candida infections. It was recently discovered that a defect in the chemokine receptor CX3CR1 increases susceptibility of mice and humans to systemic candidiasis. However, whether CX3CR1 confers protection against mucosal C. albicans infection has not been investigated. Using two different mouse models, we found that Cx3cr1 is dispensable for the induction of interleukin 17A (IL-17A), IL-22, and IL-23 in the tongue after infection, as well as for the clearance of mucosal candidiasis from the tongue or lower gastrointestinal (GI) tract colonization. Furthermore, the dysfunctional human CX3CR1 allele CX3CR1-M280 was not associated with development of recurrent vulvovaginal candidiasis (RVVC) in women. Taken together, these data indicate that CX3CR1 is not essential for protection of the host against mucosal candidiasis, underscoring the dependence on different mammalian immune factors for control of mucosal versus systemic Candida infections.


Asunto(s)
Candida albicans/inmunología , Candidiasis Vulvovaginal/inmunología , Candidiasis/inmunología , Infecciones Oportunistas/inmunología , Receptores de Quimiocina/inmunología , Alelos , Animales , Receptor 1 de Quimiocinas CX3C , Candidiasis/genética , Candidiasis/microbiología , Candidiasis Vulvovaginal/genética , Candidiasis Vulvovaginal/microbiología , Modelos Animales de Enfermedad , Femenino , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/microbiología , Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Interleucina-17/genética , Interleucina-17/inmunología , Interleucina-23/genética , Interleucina-23/inmunología , Interleucinas/genética , Interleucinas/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones Oportunistas/genética , Infecciones Oportunistas/microbiología , Receptores de Quimiocina/deficiencia , Receptores de Quimiocina/genética , Lengua/inmunología , Lengua/microbiología , Vagina/inmunología , Vagina/microbiología , Interleucina-22
20.
Eukaryot Cell ; 13(2): 279-87, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24363364

RESUMEN

In Saccharomyces cerevisiae, the vacuolar protein sorting complexes Vps51/52/53/54 and Vps15/30/34/38 are essential for efficient endosome-to-Golgi complex retrograde transport. Here we investigated the function of Vps15 and Vps51, representative members of these complexes, in the stress resistance, host cell interactions, and virulence of Candida albicans. We found that C. albicans vps15Δ/Δ and vps51Δ/Δ mutants had abnormal vacuolar morphology, impaired retrograde protein trafficking, and dramatically increased susceptibility to a variety of stressors. These mutants also had reduced capacity to invade and damage oral epithelial cells in vitro and attenuated virulence in the mouse model of oropharyngeal candidiasis. Proteomic analysis of the cell wall of the vps51Δ/Δ mutant revealed increased levels of the Crh11 and Utr2 transglycosylases, which are targets of the calcineurin signaling pathway. The transcript levels of the calcineurin pathway members CHR11, UTR2, CRZ1, CNA1, and CNA2 were elevated in the vps15Δ/Δ and vps51Δ/Δ mutants. Furthermore, these strains were highly sensitive to the calcineurin-specific inhibitor FK506. Also, deletion of CHR11 and UTR2 further increased the stress susceptibility of these mutants. In contrast, overexpression of CRH11 and UTR2 partially rescued their defects in stress resistance, but not host cell interactions. Therefore, intact retrograde trafficking in C. albicans is essential for stress resistance, host cell interactions, and virulence. Aberrant retrograde trafficking stimulates the calcineurin signaling pathway, leading to the increased expression of Chr11 and Utr2, which enables C. albicans to withstand environmental stress.


Asunto(s)
Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno , Estrés Fisiológico , Proteína de Clasificación Vacuolar VPS15/metabolismo , Animales , Calcineurina/genética , Calcineurina/metabolismo , Inhibidores de la Calcineurina , Candida albicans/genética , Candida albicans/patogenicidad , Candidiasis Bucal/microbiología , Proteínas Fúngicas/genética , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Ratones , Ratones Endogámicos BALB C , Mutación , Transporte de Proteínas , Tacrolimus/farmacología , Proteína de Clasificación Vacuolar VPS15/genética , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA