RESUMEN
Adoptive cell therapies using genetically engineered T cell receptor or chimeric antigen receptor T cells are emerging forms of immunotherapy that redirect T cells to specifically target cancer. However, tumor antigen heterogeneity remains a key challenge limiting their efficacy against solid cancers. Here, we engineered T cells to secrete the dendritic cell (DC) growth factor Fms-like tyrosine kinase 3 ligand (Flt3L). Flt3L-secreting T cells expanded intratumoral conventional type 1 DCs and substantially increased host DC and T cell activation when combined with immune agonists poly (I:C) and anti-4-1BB. Importantly, combination therapy led to enhanced inhibition of tumor growth and the induction of epitope spreading towards antigens beyond those recognized by adoptively transferred T cells in solid tumor models of T cell receptor and chimeric antigen receptor T cell therapy. Our data suggest that augmenting endogenous DCs is a promising strategy to overcome the clinical problem of antigen-negative tumor escape following adoptive cell therapy.
Asunto(s)
Células Dendríticas/inmunología , Inmunoterapia Adoptiva , Proteínas de la Membrana/inmunología , Neoplasias Experimentales/inmunología , Linfocitos T/inmunología , Animales , Antígenos de Neoplasias/inmunología , Humanos , Factores Inmunológicos , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T/inmunología , Receptores Quiméricos de Antígenos/inmunologíaRESUMEN
Chimeric antigen receptor (CAR) T cell therapy has transformed the treatment of haematological malignancies such as acute lymphoblastic leukaemia, B cell lymphoma and multiple myeloma1-4, but the efficacy of CAR T cell therapy in solid tumours has been limited5. This is owing to a number of factors, including the immunosuppressive tumour microenvironment that gives rise to poorly persisting and metabolically dysfunctional T cells. Analysis of anti-CD19 CAR T cells used clinically has shown that positive treatment outcomes are associated with a more 'stem-like' phenotype and increased mitochondrial mass6-8. We therefore sought to identify transcription factors that could enhance CAR T cell fitness and efficacy against solid tumours. Here we show that overexpression of FOXO1 promotes a stem-like phenotype in CAR T cells derived from either healthy human donors or patients, which correlates with improved mitochondrial fitness, persistence and therapeutic efficacy in vivo. This work thus reveals an engineering approach to genetically enforce a favourable metabolic phenotype that has high translational potential to improve the efficacy of CAR T cells against solid tumours.
Asunto(s)
Proteína Forkhead Box O1 , Inmunoterapia Adoptiva , Neoplasias , Receptores Quiméricos de Antígenos , Células Madre , Linfocitos T , Humanos , Ratones , Línea Celular Tumoral , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Mitocondrias/metabolismo , Fenotipo , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/citología , Microambiente Tumoral/inmunología , Células Madre/citología , Células Madre/inmunología , Células Madre/metabolismo , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapiaRESUMEN
Large language models (LLMs) are generating interest in medical settings. For example, LLMs can respond coherently to medical queries by providing plausible differential diagnoses based on clinical notes. However, there are many questions to explore, such as evaluating differences between open- and closed-source LLMs as well as LLM performance on queries from both medical and non-medical users. In this study, we assessed multiple LLMs, including Llama-2-chat, Vicuna, Medllama2, Bard/Gemini, Claude, ChatGPT3.5, and ChatGPT-4, as well as non-LLM approaches (Google search and Phenomizer) regarding their ability to identify genetic conditions from textbook-like clinician questions and their corresponding layperson translations related to 63 genetic conditions. For open-source LLMs, larger models were more accurate than smaller LLMs: 7b, 13b, and larger than 33b parameter models obtained accuracy ranges from 21%-49%, 41%-51%, and 54%-68%, respectively. Closed-source LLMs outperformed open-source LLMs, with ChatGPT-4 performing best (89%-90%). Three of 11 LLMs and Google search had significant performance gaps between clinician and layperson prompts. We also evaluated how in-context prompting and keyword removal affected open-source LLM performance. Models were provided with 2 types of in-context prompts: list-type prompts, which improved LLM performance, and definition-type prompts, which did not. We further analyzed removal of rare terms from descriptions, which decreased accuracy for 5 of 7 evaluated LLMs. Finally, we observed much lower performance with real individuals' descriptions; LLMs answered these questions with a maximum 21% accuracy.
Asunto(s)
Autoinforme , Humanos , Lenguaje , Enfermedades Genéticas Congénitas/genéticaRESUMEN
The precise regulation of DNA replication is vital for cellular division and genomic integrity. Central to this process is the replication factor C (RFC) complex, encompassing five subunits, which loads proliferating cell nuclear antigen onto DNA to facilitate the recruitment of replication and repair proteins and enhance DNA polymerase processivity. While RFC1's role in cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) is known, the contributions of RFC2-5 subunits on human Mendelian disorders is largely unexplored. Our research links bi-allelic variants in RFC4, encoding a core RFC complex subunit, to an undiagnosed disorder characterized by incoordination and muscle weakness, hearing impairment, and decreased body weight. We discovered across nine affected individuals rare, conserved, predicted pathogenic variants in RFC4, all likely to disrupt the C-terminal domain indispensable for RFC complex formation. Analysis of a previously determined cryo-EM structure of RFC bound to proliferating cell nuclear antigen suggested that the variants disrupt interactions within RFC4 and/or destabilize the RFC complex. Cellular studies using RFC4-deficient HeLa cells and primary fibroblasts demonstrated decreased RFC4 protein, compromised stability of the other RFC complex subunits, and perturbed RFC complex formation. Additionally, functional studies of the RFC4 variants affirmed diminished RFC complex formation, and cell cycle studies suggested perturbation of DNA replication and cell cycle progression. Our integrated approach of combining in silico, structural, cellular, and functional analyses establishes compelling evidence that bi-allelic loss-of-function RFC4 variants contribute to the pathogenesis of this multisystemic disorder. These insights broaden our understanding of the RFC complex and its role in human health and disease.
Asunto(s)
Proteína de Replicación C , Humanos , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo , Masculino , Células HeLa , Femenino , Fenotipo , Replicación del ADN/genética , Adulto , Mutación , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , AlelosRESUMEN
BACKGROUND: Platinum-based chemotherapy is the recommended adjuvant treatment for patients with resectable, ALK-positive non-small-cell lung cancer (NSCLC). Data on the efficacy and safety of adjuvant alectinib as compared with chemotherapy in patients with resected ALK-positive NSCLC are lacking. METHODS: We conducted a global, phase 3, open-label, randomized trial in which patients with completely resected, ALK-positive NSCLC of stage IB (tumors ≥4 cm), II, or IIIA (as classified according to the seventh edition of the Cancer Staging Manual of the American Joint Committee on Cancer and Union for International Cancer Control) were randomly assigned in a 1:1 ratio to receive oral alectinib (600 mg twice daily) for 24 months or intravenous platinum-based chemotherapy in four 21-day cycles. The primary end point was disease-free survival, tested hierarchically among patients with stage II or IIIA disease and then in the intention-to-treat population. Other end points included central nervous system (CNS) disease-free survival, overall survival, and safety. RESULTS: In total, 257 patients were randomly assigned to receive alectinib (130 patients) or chemotherapy (127 patients). The percentage of patients alive and disease-free at 2 years was 93.8% in the alectinib group and 63.0% in the chemotherapy group among patients with stage II or IIIA disease (hazard ratio for disease recurrence or death, 0.24; 95% confidence interval [CI], 0.13 to 0.45; P<0.001) and 93.6% and 63.7%, respectively, in the intention-to-treat population (hazard ratio, 0.24; 95% CI, 0.13 to 0.43; P<0.001). Alectinib was associated with a clinically meaningful benefit with respect to CNS disease-free survival as compared with chemotherapy (hazard ratio for CNS disease recurrence or death, 0.22; 95% CI, 0.08 to 0.58). Data for overall survival were immature. No unexpected safety findings were observed. CONCLUSIONS: Among patients with resected ALK-positive NSCLC of stage IB, II, or IIIA, adjuvant alectinib significantly improved disease-free survival as compared with platinum-based chemotherapy. (Funded by F. Hoffmann-La Roche; ALINA ClinicalTrials.gov number, NCT03456076.).
Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Compuestos de Platino , Humanos , Carbazoles/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/cirugía , Recurrencia Local de Neoplasia/tratamiento farmacológico , Piperidinas/uso terapéutico , Proteínas Tirosina Quinasas Receptoras , Resultado del Tratamiento , Administración Oral , Administración Intravenosa , Compuestos de Platino/uso terapéutico , Antineoplásicos/uso terapéuticoRESUMEN
BACKGROUND: The early-generation ROS1 tyrosine kinase inhibitors (TKIs) that are approved for the treatment of ROS1 fusion-positive non-small-cell lung cancer (NSCLC) have antitumor activity, but resistance develops in tumors, and intracranial activity is suboptimal. Repotrectinib is a next-generation ROS1 TKI with preclinical activity against ROS1 fusion-positive cancers, including those with resistance mutations such as ROS1 G2032R. METHODS: In this registrational phase 1-2 trial, we assessed the efficacy and safety of repotrectinib in patients with advanced solid tumors, including ROS1 fusion-positive NSCLC. The primary efficacy end point in the phase 2 trial was confirmed objective response; efficacy analyses included patients from phase 1 and phase 2. Duration of response, progression-free survival, and safety were secondary end points in phase 2. RESULTS: On the basis of results from the phase 1 trial, the recommended phase 2 dose of repotrectinib was 160 mg daily for 14 days, followed by 160 mg twice daily. Response occurred in 56 of the 71 patients (79%; 95% confidence interval [CI], 68 to 88) with ROS1 fusion-positive NSCLC who had not previously received a ROS1 TKI; the median duration of response was 34.1 months (95% CI, 25.6 to could not be estimated), and median progression-free survival was 35.7 months (95% CI, 27.4 to could not be estimated). Response occurred in 21 of the 56 patients (38%; 95% CI, 25 to 52) with ROS1 fusion-positive NSCLC who had previously received one ROS1 TKI and had never received chemotherapy; the median duration of response was 14.8 months (95% CI, 7.6 to could not be estimated), and median progression-free survival was 9.0 months (95% CI, 6.8 to 19.6). Ten of the 17 patients (59%; 95% CI, 33 to 82) with the ROS1 G2032R mutation had a response. A total of 426 patients received the phase 2 dose; the most common treatment-related adverse events were dizziness (in 58% of the patients), dysgeusia (in 50%), and paresthesia (in 30%), and 3% discontinued repotrectinib owing to treatment-related adverse events. CONCLUSIONS: Repotrectinib had durable clinical activity in patients with ROS1 fusion-positive NSCLC, regardless of whether they had previously received a ROS1 TKI. Adverse events were mainly of low grade and compatible with long-term administration. (Funded by Turning Point Therapeutics, a wholly owned subsidiary of Bristol Myers Squibb; TRIDENT-1 ClinicalTrials.gov number, NCT03093116.).
Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Proteínas Tirosina Quinasas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Antineoplásicos/uso terapéutico , Resultado del TratamientoRESUMEN
Balanced chromosomal abnormalities (BCAs) represent a relatively untapped reservoir of single-gene disruptions in neurodevelopmental disorders (NDDs). We sequenced BCAs in patients with autism or related NDDs, revealing disruption of 33 loci in four general categories: (1) genes previously associated with abnormal neurodevelopment (e.g., AUTS2, FOXP1, and CDKL5), (2) single-gene contributors to microdeletion syndromes (MBD5, SATB2, EHMT1, and SNURF-SNRPN), (3) novel risk loci (e.g., CHD8, KIRREL3, and ZNF507), and (4) genes associated with later-onset psychiatric disorders (e.g., TCF4, ZNF804A, PDE10A, GRIN2B, and ANK3). We also discovered among neurodevelopmental cases a profoundly increased burden of copy-number variants from these 33 loci and a significant enrichment of polygenic risk alleles from genome-wide association studies of autism and schizophrenia. Our findings suggest a polygenic risk model of autism and reveal that some neurodevelopmental genes are sensitive to perturbation by multiple mutational mechanisms, leading to variable phenotypic outcomes that manifest at different life stages.
Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Aberraciones Cromosómicas , Trastorno Autístico/diagnóstico , Trastorno Autístico/genética , Niño , Trastornos Generalizados del Desarrollo Infantil/diagnóstico , Rotura Cromosómica , Deleción Cromosómica , Variaciones en el Número de Copia de ADN , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Sistema Nervioso/crecimiento & desarrollo , Esquizofrenia/genética , Análisis de Secuencia de ADN , Transducción de SeñalRESUMEN
Artificial intelligence (AI) for facial diagnostics is increasingly used in the genetics clinic to evaluate patients with potential genetic conditions. Current approaches focus on one type of AI called Deep Learning (DL). While DL- based facial diagnostic platforms have a high accuracy rate for many conditions, less is understood about how this technology assesses and classifies (categorizes) images, and how this compares to humans. To compare human and computer attention, we performed eye-tracking analyses of geneticist clinicians (n = 22) and non-clinicians (n = 22) who viewed images of people with 10 different genetic conditions, as well as images of unaffected individuals. We calculated the Intersection-over-Union (IoU) and Kullback-Leibler divergence (KL) to compare the visual attentions of the two participant groups, and then the clinician group against the saliency maps of our deep learning classifier. We found that human visual attention differs greatly from DL model's saliency results. Averaging over all the test images, IoU and KL metric for the successful (accurate) clinician visual attentions versus the saliency maps were 0.15 and 11.15, respectively. Individuals also tend to have a specific pattern of image inspection, and clinicians demonstrate different visual attention patterns than non-clinicians (IoU and KL of clinicians versus non-clinicians were 0.47 and 2.73, respectively). This study shows that humans (at different levels of expertise) and a computer vision model examine images differently. Understanding these differences can improve the design and use of AI tools, and lead to more meaningful interactions between clinicians and AI technologies.
Asunto(s)
Inteligencia Artificial , Computadores , Humanos , Simulación por ComputadorRESUMEN
BACKGROUND: Selpercatinib, a highly selective potent and brain-penetrant RET inhibitor, was shown to have efficacy in patients with advanced RET fusion-positive non-small-cell lung cancer (NSCLC) in a nonrandomized phase 1-2 study. METHODS: In a randomized phase 3 trial, we evaluated the efficacy and safety of first-line selpercatinib as compared with control treatment that consisted of platinum-based chemotherapy with or without pembrolizumab at the investigator's discretion. The primary end point was progression-free survival assessed by blinded independent central review in both the intention-to-treat-pembrolizumab population (i.e., patients whose physicians had planned to treat them with pembrolizumab in the event that they were assigned to the control group) and the overall intention-to-treat population. Crossover from the control group to the selpercatinib group was allowed if disease progression as assessed by blinded independent central review occurred during receipt of control treatment. RESULTS: In total, 212 patients underwent randomization in the intention-to-treat-pembrolizumab population. At the time of the preplanned interim efficacy analysis, median progression-free survival was 24.8 months (95% confidence interval [CI], 16.9 to not estimable) with selpercatinib and 11.2 months (95% CI, 8.8 to 16.8) with control treatment (hazard ratio for progression or death, 0.46; 95% CI, 0.31 to 0.70; P<0.001). The percentage of patients with an objective response was 84% (95% CI, 76 to 90) with selpercatinib and 65% (95% CI, 54 to 75) with control treatment. The cause-specific hazard ratio for the time to progression affecting the central nervous system was 0.28 (95% CI, 0.12 to 0.68). Efficacy results in the overall intention-to-treat population (261 patients) were similar to those in the intention-to-treat-pembrolizumab population. The adverse events that occurred with selpercatinib and control treatment were consistent with those previously reported. CONCLUSIONS: Treatment with selpercatinib led to significantly longer progression-free survival than platinum-based chemotherapy with or without pembrolizumab among patients with advanced RET fusion-positive NSCLC. (Funded by Eli Lilly and others; ClinicalTrials.gov number, NCT04194944.).
Asunto(s)
Anticuerpos Monoclonales Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Proteínas Proto-Oncogénicas c-ret , Humanos , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogénicas c-ret/antagonistas & inhibidoresRESUMEN
Starting with the launch of the Human Genome Project three decades ago, and continuing after its completion in 2003, genomics has progressively come to have a central and catalytic role in basic and translational research. In addition, studies increasingly demonstrate how genomic information can be effectively used in clinical care. In the future, the anticipated advances in technology development, biological insights, and clinical applications (among others) will lead to more widespread integration of genomics into almost all areas of biomedical research, the adoption of genomics into mainstream medical and public-health practices, and an increasing relevance of genomics for everyday life. On behalf of the research community, the National Human Genome Research Institute recently completed a multi-year process of strategic engagement to identify future research priorities and opportunities in human genomics, with an emphasis on health applications. Here we describe the highest-priority elements envisioned for the cutting-edge of human genomics going forward-that is, at 'The Forefront of Genomics'.
Asunto(s)
Investigación Biomédica/tendencias , Genoma Humano/genética , Genómica/tendencias , Salud Pública/normas , Investigación Biomédica Traslacional/tendencias , Investigación Biomédica/economía , COVID-19/genética , Genómica/economía , Humanos , National Human Genome Research Institute (U.S.)/economía , Cambio Social , Investigación Biomédica Traslacional/economía , Estados UnidosRESUMEN
Artificial intelligence (AI) is increasingly used in genomics research and practice, and generative AI has garnered significant recent attention. In clinical applications of generative AI, aspects of the underlying datasets can impact results, and confounders should be studied and mitigated. One example involves the facial expressions of people with genetic conditions. Stereotypically, Williams (WS) and Angelman (AS) syndromes are associated with a "happy" demeanor, including a smiling expression. Clinical geneticists may be more likely to identify these conditions in images of smiling individuals. To study the impact of facial expression, we analyzed publicly available facial images of approximately 3500 individuals with genetic conditions. Using a deep learning (DL) image classifier, we found that WS and AS images with non-smiling expressions had significantly lower prediction probabilities for the correct syndrome labels than those with smiling expressions. This was not seen for 22q11.2 deletion and Noonan syndromes, which are not associated with a smiling expression. To further explore the effect of facial expressions, we computationally altered the facial expressions for these images. We trained HyperStyle, a GAN-inversion technique compatible with StyleGAN2, to determine the vector representations of our images. Then, following the concept of InterfaceGAN, we edited these vectors to recreate the original images in a phenotypically accurate way but with a different facial expression. Through online surveys and an eye-tracking experiment, we examined how altered facial expressions affect the performance of human experts. We overall found that facial expression is associated with diagnostic accuracy variably in different genetic conditions.
Asunto(s)
Expresión Facial , Humanos , Aprendizaje Profundo , Inteligencia Artificial , Genética Médica/métodos , Síndrome de Williams/genéticaRESUMEN
BACKGROUND: The rate of diagnosis of mast cell activation syndrome (MCAS) has increased since the disorder's original description as a mastocytosis-like phenotype. While a set of consortium MCAS criteria is well described and widely accepted, this increase occurs in the setting of a broader set of proposed alternative MCAS criteria. OBJECTIVE: Effective diagnostic criteria must minimize the range of unrelated diagnoses that can be erroneously classified as the condition of interest. We sought to determine if the symptoms associated with alternative MCAS criteria result in less concise or consistent diagnostic alternatives, reducing diagnostic specificity. METHODS: We used multiple large language models, including ChatGPT, Claude, and Gemini, to bootstrap the probabilities of diagnoses that are compatible with consortium or alternative MCAS criteria. We utilized diversity and network analyses to quantify diagnostic precision and specificity compared to control diagnostic criteria including systemic lupus erythematosus, Kawasaki disease, and migraines. RESULTS: Compared to consortium MCAS criteria, alternative MCAS criteria are associated with more variable (Shannon diversity 5.8 vs 4.6, respectively; P = .004) and less precise (mean Bray-Curtis similarity 0.07 vs 0.19, respectively; P = .004) diagnoses. The diagnosis networks derived from consortium and alternative MCAS criteria had lower between-network similarity compared to the similarity between diagnosis networks derived from 2 distinct systemic lupus erythematosus criteria (cosine similarity 0.55 vs 0.86, respectively; P = .0022). CONCLUSION: Alternative MCAS criteria are associated with a distinct set of diagnoses compared to consortium MCAS criteria and have lower diagnostic consistency. This lack of specificity is pronounced in relation to multiple control criteria, raising the concern that alternative criteria could disproportionately contribute to MCAS overdiagnosis, to the exclusion of more appropriate diagnoses.
RESUMEN
BACKGROUND: Sotorasib is a specific, irreversible inhibitor of the GTPase protein, KRASG12C. We compared the efficacy and safety of sotorasib with a standard-of-care treatment in patients with non-small-cell lung cancer (NSCLC) with the KRASG12C mutation who had been previously treated with other anticancer drugs. METHODS: We conducted a randomised, open-label phase 3 trial at 148 centres in 22 countries. We recruited patients aged at least 18 years with KRASG12C-mutated advanced NSCLC, who progressed after previous platinum-based chemotherapy and a PD-1 or PD-L1 inhibitor. Key exclusion criteria included new or progressing untreated brain lesions or symptomatic brain lesions, previously identified oncogenic driver mutation other than KRASG12C for which an approved therapy is available (eg EGFR or ALK), previous treatment with docetaxel (neoadjuvant or adjuvant docetaxel was allowed if the tumour did not progress within 6 months after the therapy was terminated), previous treatment with a direct KRASG12C inhibitor, systemic anticancer therapy within 28 days of study day 1, and therapeutic or palliative radiation therapy within 2 weeks of treatment initiation. We randomly assigned (1:1) patients to oral sotorasib (960 mg once daily) or intravenous docetaxel (75 mg/m2 once every 3 weeks) in an open-label manner using interactive response technology. Randomisation was stratified by number of previous lines of therapy in advanced disease (1 vs 2 vs >2), ethnicity (Asian vs non-Asian), and history of CNS metastases (present or absent). Treatment continued until an independent central confirmation of disease progression, intolerance, initiation of another anticancer therapy, withdrawal of consent, or death, whichever occurred first. The primary endpoint was progression-free survival, which was assessed by a blinded, independent central review in the intention-to-treat population. Safety was assessed in all treated patients. This trial is registered at ClinicalTrials.gov, NCT04303780, and is active but no longer recruiting. FINDINGS: Between June 4, 2020, and April 26, 2021, 345 patients were randomly assigned to receive sotorasib (n=171 [50%]) or docetaxel (n=174 [50%]). 169 (99%) patients in the sotorasib group and 151 (87%) in the docetaxel group received at least one dose. After a median follow-up of 17·7 months (IQR 16·4-20·1), the study met its primary endpoint of a statistically significant increase in the progression-free survival for sotorasib, compared with docetaxel (median progression-free survival 5·6 months [95% CI 4·3-7·8] vs 4·5 months [3·0-5·7]; hazard ratio 0·66 [0·51-0·86]; p=0·0017). Sotorasib was well tolerated, with fewer grade 3 or worse (n=56 [33%] vs n=61 [40%]) and serious treatment-related adverse events compared with docetaxel (n=18 [11%] vs n=34 [23%]). For sotorasib, the most common treatment-related adverse events of grade 3 or worse were diarrhoea (n= 20 [12%]), alanine aminotransferase increase (n=13 [8%]), and aspartate aminotransferase increase (n=9 [5%]). For docetaxel, the most common treatment-related adverse events of grade 3 or worse were neutropenia (n=13 [9%]), fatigue (n=9 [6%]), and febrile neutropenia (n=8 [5%]). INTERPRETATION: Sotorasib significantly increased progression-free survival and had a more favourable safety profile, compared with docetaxel, in patients with advanced NSCLC with the KRASG12C mutation and who had been previously treated with other anticancer drugs. FUNDING: Amgen.
Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Adolescente , Adulto , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Docetaxel/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Mutación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Supervivencia sin EnfermedadRESUMEN
C-X-C motif chemokine receptor 2 (CXCR2) has a role in tumor progression, lineage plasticity, and reduction of immune checkpoint inhibitor efficacy. Preclinical evidence suggests potential benefit of CXCR2 inhibition in multiple solid tumors. In this phase 2 study (NCT03473925), adults with previously treated advanced or metastatic castration-resistant prostate cancer (CRPC), microsatellite-stable colorectal cancer (MSS CRC), or non-small-cell lung cancer (NSCLC) were randomized 1:1 to the CXCR2 antagonist navarixin 30 or 100 mg orally once daily plus pembrolizumab 200 mg intravenously every 3 weeks up to 35 cycles. Primary endpoints were investigator-assessed objective response rate (RECIST v1.1) and safety. Of 105 patients (CRPC, n=40; MSS CRC, n=40; NSCLC, n=25), 3 had a partial response (2 CRPC, 1 MSS CRC) for ORRs of 5%, 2.5%, and 0%, respectively. Median progression-free survival was 1.8-2.4 months without evidence of a dose-response relationship, and the study was closed at a prespecified interim analysis for lack of efficacy. Dose-limiting toxicities occurred in 2/48 patients (4%) receiving navarixin 30 mg and 3/48 (6%) receiving navarixin 100 mg; events included grade 4 neutropenia and grade 3 transaminase elevation, hepatitis, and pneumonitis. Treatment-related adverse events occurred in 70/105 patients (67%) and led to treatment discontinuation in 7/105 (7%). Maximal reductions from baseline in absolute neutrophil count were 44.5%-48.2% (cycle 1) and 37.5%-44.2% (cycle 2) and occurred within 6-12 hours postdose in both groups. Navarixin plus pembrolizumab did not demonstrate sufficient efficacy in this study. Safety and tolerability of the combination were manageable. (Trial registration: ClinicalTrials.gov , NCT03473925).
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Adulto , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Anticuerpos Monoclonales Humanizados/efectos adversos , Factores Inmunológicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversosRESUMEN
Cancer of unknown primary (CUP) is a syndrome defined by clinical absence of a primary cancer after standardised investigations. Gene expression profiling (GEP) and DNA sequencing have been used to predict primary tissue of origin (TOO) in CUP and find molecularly guided treatments; however, a detailed comparison of the diagnostic yield from these two tests has not been described. Here, we compared the diagnostic utility of RNA and DNA tests in 215 CUP patients (82% received both tests) in a prospective Australian study. Based on retrospective assessment of clinicopathological data, 77% (166/215) of CUPs had insufficient evidence to support TOO diagnosis (clinicopathology unresolved). The remainder had either a latent primary diagnosis (10%) or clinicopathological evidence to support a likely TOO diagnosis (13%) (clinicopathology resolved). We applied a microarray (CUPGuide) or custom NanoString 18-class GEP test to 191 CUPs with an accuracy of 91.5% in known metastatic cancers for high-medium confidence predictions. Classification performance was similar in clinicopathology-resolved CUPs - 80% had high-medium predictions and 94% were concordant with pathology. Notably, only 56% of the clinicopathology-unresolved CUPs had high-medium confidence GEP predictions. Diagnostic DNA features were interrogated in 201 CUP tumours guided by the cancer type specificity of mutations observed across 22 cancer types from the AACR Project GENIE database (77,058 tumours) as well as mutational signatures (e.g. smoking). Among the clinicopathology-unresolved CUPs, mutations and mutational signatures provided additional diagnostic evidence in 31% of cases. GEP classification was useful in only 13% of cases and oncoviral detection in 4%. Among CUPs where genomics informed TOO, lung and biliary cancers were the most frequently identified types, while kidney tumours were another identifiable subset. In conclusion, DNA and RNA profiling supported an unconfirmed TOO diagnosis in one-third of CUPs otherwise unresolved by clinicopathology assessment alone. DNA mutation profiling was the more diagnostically informative assay. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Asunto(s)
Neoplasias Primarias Desconocidas , Humanos , Neoplasias Primarias Desconocidas/diagnóstico , Neoplasias Primarias Desconocidas/genética , Neoplasias Primarias Desconocidas/patología , Estudios Prospectivos , Estudios Retrospectivos , Australia , Perfilación de la Expresión Génica , Análisis de Secuencia de ADN , ARNRESUMEN
ASPiRATION is a national prospective observational cohort study assessing the feasibility, clinical and economic value of up-front tissue-based comprehensive genomic profiling (CGP) to identify actionable genomic alterations in participants with newly diagnosed metastatic non-squamous non-small-cell lung cancer in Australia. This study will enrol 1000 participants with tumor available for CGP and standard of care molecular testing (EGFR/ALK/ROS1). Participants with actionable variants may receive novel targeted treatments through ASPiRATION-specific substudies, other trials/programs. Clinical outcome data will be collected for a minimum of 2 years. Study outcomes are descriptive, including the ability of CGP to identify additional actionable variants, leading to personalized treatment recommendations, and will describe the feasibility, efficiency, cost and utility of implementation of CGP nationally.
Lung cancer is the most common cause of cancer death in Australia and worldwide. This disease often happens due to alterations in specific genes that allow cancer cells to develop and spread. Scientists have designed targeted drugs that are better at attacking cancer cells that have specific 'actionable' gene alterations and have less effect on other cells in the body. The result is often more benefit from treatment and fewer side effects than other standard treatments (chemotherapy or immunotherapy). The targeted drugs are well established as the best initial treatments for some gene alterations, but more research is needed to know if this is true for some of the less common or recently identified gene alterations, and where the targeted drugs are very new. Comprehensive genomic profiling is a new way of testing lung cancer cells for all the gene alterations (the well-known ones as well as the rare ones) in a single test. It is expected that this test will find many more of these gene alterations, which will allow more people to have safer and more effective targeted treatments leading to potentially better outcomes, and will allow some people to join clinical trials testing newer targeted treatments. The ASPiRATION study will help work out whether comprehensive genomic profiling is better than the current way of testing for gene alterations in Australia, and if it is feasible to use in all people diagnosed with advanced lung cancer in Australia. Clinical Trial Registration: ACTRN12621000221853 (ANZCTR).
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Estudios Prospectivos , Proteínas Tirosina Quinasas/genética , Mutación , Australia , Proteínas Proto-Oncogénicas/genética , Genómica , Estudios Observacionales como AsuntoRESUMEN
WHAT IS THIS STUDY ABOUT?: This is a summary of the results of an ongoing study called CROWN. In the CROWN study, researchers looked at the effects of two medicines called lorlatinib (Lorbrena) and crizotinib (Xalkori) for people with advanced non-small cell lung cancer (NSCLC) who had not been treated yet. Everyone in the study had changes in a gene called anaplastic lymphoma kinase, or ALK, in their cancer cells. The changes in the ALK gene can make cancer grow. This analysis looked at how well lorlatinib and crizotinib worked and their side effects in people with advanced ALK-positive NSCLC after 5 years. WHAT DID THIS STUDY FIND?: After observing people for an average of 5 years, researchers found that more people who took lorlatinib were still alive without their cancer getting worse than the people who took crizotinib. At 5 years, the probability of being alive without their cancer getting worse was 60% in people who took lorlatinib compared with 8% in people who took crizotinib. Fewer people who took lorlatinib had their cancer spread within or to the brain than the people who took crizotinib. In more than half of the people who took lorlatinib, tumors that had spread to the brain did not get worse, and no new tumors spread to the brain after 5 years. In contrast, in about half of the people who took crizotinib, tumors that had spread to the brain got worse or new tumors spread to the brain after 16.4 months. More people who took lorlatinib (115 out of 149, or 77%) had severe or life-threatening side effects than people who took crizotinib (81 out of 142, or 57%). These side effects were like the ones reported in the earlier 3-year analysis. WHAT DO THE FINDINGS OF THE STUDY MEAN?: The 5-year results from the CROWN study showed that more people who took lorlatinib continued to benefit from their treatment than those who took crizotinib. The 5-year benefit of lorlatinib in people with ALK-positive NSCLC has never been seen before.Clinical Trial Registration: NCT03052608 (Phase 3 CROWN study) (ClinicalTrials.gov).
RESUMEN
BACKGROUND AND AIMS: Lurbinectedin is a novel oncogenic transcription inhibitor active in several cancers, including small cell lung cancer (SCLC). We aimed to describe the first Australian experience of the clinical efficacy and tolerability of lurbinectedin for the treatment of SCLC after progression on platinum-containing therapy. METHODS: Multicentre real-world study of individuals with SCLC initiating lurbinectedin monotherapy (3.2 mg/m2 three-weekly) on an early access programme between May 2020 and December 2021. Key outcomes were clinical utilisation, efficacy and tolerability. Progression-free survival (PFS) and overall survival (OS) were calculated using the Kaplan-Meier method. Outcome data were collected within the AUstralian Registry and biObank of thoRacic cAncers (AURORA). RESULTS: Data were analysed for 46 individuals across seven sites. Lurbinectedin was given as second- (83%, 38/46) or subsequent- (17%, 8/46) line therapy, mostly with prior chemoimmunotherapy (87%, 40/46). We report dose modifications (17%, 8/46), interruptions/delays (24%, 11/46), high-grade toxicities (28%, 13/46) and hospitalisations (54%, 25/46) during active treatment. The overall response rate was 33% and the disease control rate was 50%. Six-month OS was 44% (95% confidence interval (CI): 29.0-57.1). Twelve-month OS was 15% (95% CI: 6.5-26.8). From lurbinectedin first dose, the median PFS was 2.5 months (95% CI: 1.8-2.9) and OS was 4.5 months (95% CI: 3.5-7.2). From SCLC diagnosis, the median OS was 12.9 months (95% CI: 11.0-17.2). Individuals with a longer chemotherapy-free interval prior to lurbinectedin had longer PFS and OS. CONCLUSION: This real-world national experience of lurbinectedin post-platinum chemotherapy and immunotherapy for individuals with SCLC was similar to that reported in clinical trials.
Asunto(s)
Carbolinas , Compuestos Heterocíclicos de 4 o más Anillos , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Masculino , Femenino , Anciano , Carbolinas/uso terapéutico , Persona de Mediana Edad , Compuestos Heterocíclicos de 4 o más Anillos/uso terapéutico , Compuestos Heterocíclicos de 4 o más Anillos/efectos adversos , Australia , Antineoplásicos/uso terapéutico , Anciano de 80 o más Años , Supervivencia sin Progresión , Resultado del Tratamiento , AdultoRESUMEN
Genetic conditions affect people throughout their entire lifespan; however, many clinical geneticists focus on the care of pediatric individuals. We analyzed the medical literature and related resources to help assess to what extent adults with genetic diseases were represented. This included general literature searches of PubMed (from 2001 through 2022), specific databases (the FDA orphan drug list and the Clinical Genomic Database) related to management and direct treatment of genetic conditions, and textbooks and morphology guides relevant to the diagnosis of genetic conditions. In the field of genetics/genomics in general, we overall detected a statistically significant emphasis on pediatric populations in the medical literature compared to select other disciplines and compared with the global population distribution. Clinical genetics articles about adults tended to focus on younger adult ages. In clinical genetics, management and treatments, as well as illustrations in several educational/diagnostic resources tended to focus on pediatric populations.
Asunto(s)
Genética Médica , Genómica , Adulto , Humanos , NiñoRESUMEN
Virtually all areas of biomedicine will be increasingly affected by applications of artificial intelligence (AI). We discuss how AI may affect fields of medical genetics, including both clinicians and laboratorians. In addition to reviewing the anticipated impact, we provide recommendations for ways in which these groups may want to evolve in light of the influence of AI. We also briefly discuss how educational and training programs can play a key role in preparing the future workforce given these anticipated changes.