Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 410
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Rev ; 124(5): 2352-2418, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38408190

RESUMEN

This review highlights in situ UV-vis-NIR range absorption spectroscopy in catalysis. A variety of experimental techniques identifying reaction mechanisms, kinetics, and structural properties are discussed. Stopped flow techniques, use of laser pulses, and use of experimental perturbations are demonstrated for in situ studies of enzymatic, homogeneous, heterogeneous, and photocatalysis. They access different time scales and are applicable to different reaction systems and catalyst types. In photocatalysis, femto- and nanosecond resolved measurements through transient absorption are discussed for tracking excited states. UV-vis-NIR absorption spectroscopies for structural characterization are demonstrated especially for Cu and Fe exchanged zeolites and metalloenzymes. This requires combining different spectroscopies. Combining magnetic circular dichroism and resonance Raman spectroscopy is especially powerful. A multitude of phenomena can be tracked on transition metal catalysts on various supports, including changes in oxidation state, adsorptions, reactions, support interactions, surface plasmon resonances, and band gaps. Measurements of oxidation states, oxygen vacancies, and band gaps are shown on heterogeneous catalysts, especially for electrocatalysis. UV-vis-NIR absorption is burdened by broad absorption bands. Advanced analysis techniques enable the tracking of coking reactions on acid zeolites despite convoluted spectra. The value of UV-vis-NIR absorption spectroscopy to catalyst characterization and mechanistic investigation is clear but could be expanded.

2.
Proc Natl Acad Sci U S A ; 119(33): e2205619119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939688

RESUMEN

Melanins are highly conjugated biopolymer pigments that provide photoprotection in a wide array of organisms, from bacteria to humans. The rate-limiting step in melanin biosynthesis, which is the ortho-hydroxylation of the amino acid L-tyrosine to L-DOPA, is catalyzed by the ubiquitous enzyme tyrosinase (Ty). Ty contains a coupled binuclear copper active site that binds O2 to form a µ:η2:η2-peroxide dicopper(II) intermediate (oxy-Ty), capable of performing the regioselective monooxygenation of para-substituted monophenols to catechols. The mechanism of this critical monooxygenation reaction remains poorly understood despite extensive efforts. In this study, we have employed a combination of spectroscopic, kinetic, and computational methods to trap and characterize the elusive catalytic ternary intermediate (Ty/O2/monophenol) under single-turnover conditions and obtain molecular-level mechanistic insights into its monooxygenation reactivity. Our experimental results, coupled with quantum-mechanics/molecular-mechanics calculations, reveal that the monophenol substrate docks in the active-site pocket of oxy-Ty fully protonated, without coordination to a copper or cleavage of the µ:η2:η2-peroxide O-O bond. Formation of this ternary intermediate involves the displacement of active-site water molecules by the substrate and replacement of their H bonds to the µ:η2:η2-peroxide by a single H bond from the substrate hydroxyl group. This H-bonding interaction in the ternary intermediate enables the unprecedented monooxygenation mechanism, where the µ-η2:η2-peroxide O-O bond is cleaved to accept the phenolic proton, followed by substrate phenolate coordination to a copper site concomitant with its aromatic ortho-hydroxylation by the nonprotonated µ-oxo. This study provides insights into O2 activation and reactivity by coupled binuclear copper active sites with fundamental implications in biocatalysis.


Asunto(s)
Proteínas Bacterianas , Melaninas , Monofenol Monooxigenasa , Oxígeno , Fenoles , Streptomyces , Sitios de Unión , Catálisis , Cobre/química , Melaninas/biosíntesis , Monofenol Monooxigenasa/química , Oxígeno/metabolismo , Peróxidos/química , Fenoles/química , Streptomyces/enzimología
3.
J Am Chem Soc ; 146(9): 6061-6071, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38385349

RESUMEN

The highly reactive binuclear [Cu2O]2+ active site in copper zeolites activates the inert C-H bond of methane at low temperatures, offering a potential solution to reduce methane flaring and mitigate atmospheric methane levels. While substantial progress has been made in understanding the activation of methane by this core, one critical aspect, the active site's spin, has remained undetermined. In this study, we use variable-temperature, variable-field magnetic circular dichroism spectroscopy to define the ground state spin of the [Cu2O]2+ active sites in Cu-CHA and Cu-MFI. This novel approach allows for site-selective determination of the magnetic exchange coupling between the two copper centers of specific [Cu2O]2+ cores in a heterogeneous mixture, circumventing the drawbacks of bulk magnetic techniques. These experimental findings are coupled to density functional theory calculations to elucidate magnetostructural correlations in copper zeolites that are different from those of homogeneous binuclear Cu(II) complexes. The different spin states for the [Cu2O]2+ cores have different reactivities governed by how methane approaches the active site. This introduces a new understanding of zeolite topological control on active site reactivity.

4.
J Am Chem Soc ; 146(19): 13066-13082, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38688016

RESUMEN

Copper ion is a versatile and ubiquitous facilitator of redox chemical and biochemical processes. These include the binding of molecular oxygen to copper(I) complexes where it undergoes stepwise reduction-protonation. A detailed understanding of thermodynamic relationships between such reduced/protonated states is key to elucidate the fundamentals of the chemical/biochemical processes involved. The dicopper(I) complex [CuI2(BPMPO-)]1+ {BPMPOH = 2,6-bis{[(bis(2-pyridylmethyl)amino]methyl}-4-methylphenol)} undergoes cryogenic dioxygen addition; further manipulations in 2-methyltetrahydrofuran generate dicopper(II) peroxo [CuII2(BPMPO-)(O22-)]1+, hydroperoxo [CuII2(BPMPO-)(-OOH)]2+, and superoxo [CuII2(BPMPO-)(O2•-)]2+ species, characterized by UV-vis, resonance Raman and electron paramagnetic resonance (EPR) spectroscopies, and cold spray ionization mass spectrometry. An unexpected EPR spectrum for [CuII2(BPMPO-)(O2•-)]2+ is explained by the analysis of its exchange-coupled three-spin frustrated system and DFT calculations. A redox equilibrium, [CuII2(BPMPO-)(O22-)]1+ ⇄ [CuII2(BPMPO-)(O2•-)]2+, is established utilizing Me8Fc+/Cr(η6-C6H6)2, allowing for [CuII2(BPMPO-)(O2•-)]2+/[CuII2(BPMPO-)(O22-)]1+ reduction potential calculation, E°' = -0.44 ± 0.01 V vs Fc+/0, also confirmed by cryoelectrochemical measurements (E°' = -0.40 ± 0.01 V). 2,6-Lutidinium triflate addition to [CuII2(BPMPO-)(O22-)]1+ produces [CuII2(BPMPO-)(-OOH)]2+; using a phosphazene base, an acid-base equilibrium was achieved, pKa = 22.3 ± 0.7 for [CuII2(BPMPO-)(-OOH)]2+. The BDFEOO-H = 80.3 ± 1.2 kcal/mol, as calculated for [CuII2(BPMPO-)(-OOH)]2+; this is further substantiated by H atom abstraction from O-H substrates by [CuII2(BPMPO-)(O2•-)]2+ forming [CuII2(BPMPO-)(-OOH)]2+. In comparison to known analogues, the thermodynamic and spectroscopic properties of [CuII2(BPMPO-)] O2-derived adducts can be accounted for based on chelate ring size variations built into the BPMPO- framework and the resulting enhanced CuII-ion Lewis acidity.

5.
J Am Chem Soc ; 146(22): 14942-14947, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38775712

RESUMEN

Synthetic side-on peroxide-bound dicopper(II) (SP) complexes are important for understanding the active site structure/function of many copper-containing enzymes. This work highlights the formation of new {CuII(µ-η2:η2-O22-)CuII} complexes (with electronic absorption and resonance Raman (rR) spectroscopic characterization) using tripodal N3ArOH ligands at -135 °C, which spontaneously participate in intramolecular phenolic H-atom abstraction (HAA). This results in the generation of bis(phenoxyl radical)bis(µ-OH)dicopper(II) intermediates, substantiated by their EPR/UV-vis/rR spectroscopic signatures and crystal structural determination of a diphenoquinone dicopper(I) complex derived from ligand para-C═C coupling. The newly observed chemistry in these ligand-Cu systems is discussed with respect to (a) our Cu-MeAN (tridentate N,N,N',N',N″-pentamethyldipropylenetriamine)-derived model SP species, which was unreactive toward exogenous monophenol addition (J. Am. Chem. Soc. 2012, 134, 8513-8524), emphasizing the impact of intramolecularly tethered ArOH groups, and (b) recent advances in understanding the mechanism of action of the tyrosinase (Ty) enzyme.

6.
Chem Rev ; 122(14): 12207-12243, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35077641

RESUMEN

Transition-metal-exchanged zeolites perform remarkable chemical reactions from low-temperature methane to methanol oxidation to selective reduction of NOx pollutants. As with metalloenzymes, metallozeolites have impressive reactivities that are controlled in part by interactions outside the immediate coordination sphere. These second-sphere effects include activating a metal site through enforcing an "entatic" state, controlling binding and access to the metal site with pockets and channels, and directing radical rebound vs cage escape. This review explores these effects with emphasis placed on but not limited to the selective oxidation of methane to methanol with a focus on copper and iron active sites, although other transition-metal-ion zeolite reactions are also explored. While the actual active-site geometric and electronic structures are different in the copper and iron metallozeolites compared to the metalloenzymes, their second-sphere interactions with the lattice or the protein environments are found to have strong parallels that contribute to their high activity and selectivity.


Asunto(s)
Metaloproteínas , Zeolitas , Catálisis , Cobre/química , Hierro/química , Metano/química , Metanol/química , Zeolitas/química
7.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33876764

RESUMEN

The pterin-dependent nonheme iron enzymes hydroxylate aromatic amino acids to perform the biosynthesis of neurotransmitters to maintain proper brain function. These enzymes activate oxygen using a pterin cofactor and an aromatic amino acid substrate bound to the FeII active site to form a highly reactive FeIV = O species that initiates substrate oxidation. In this study, using tryptophan hydroxylase, we have kinetically generated a pre-FeIV = O intermediate and characterized its structure as a FeII-peroxy-pterin species using absorption, Mössbauer, resonance Raman, and nuclear resonance vibrational spectroscopies. From parallel characterization of the pterin cofactor and tryptophan substrate-bound ternary FeII active site before the O2 reaction (including magnetic circular dichroism spectroscopy), these studies both experimentally define the mechanism of FeIV = O formation and demonstrate that the carbonyl functional group on the pterin is directly coordinated to the FeII site in both the ternary complex and the peroxo intermediate. Reaction coordinate calculations predict a 14 kcal/mol reduction in the oxygen activation barrier due to the direct binding of the pterin carbonyl to the FeII site, as this interaction provides an orbital pathway for efficient electron transfer from the pterin cofactor to the iron center. This direct coordination of the pterin cofactor enables the biological function of the pterin-dependent hydroxylases and demonstrates a unified mechanism for oxygen activation by the cofactor-dependent nonheme iron enzymes.


Asunto(s)
Hierro/metabolismo , Neurotransmisores/biosíntesis , Proteínas Nucleares/metabolismo , Pterinas/química , Proteína Gli2 con Dedos de Zinc/metabolismo , Humanos , Hierro/química , Proteínas Nucleares/química , Oxígeno/metabolismo , Pterinas/metabolismo , Triptófano/química , Triptófano/metabolismo , Proteína Gli2 con Dedos de Zinc/química
8.
J Am Chem Soc ; 145(37): 20610-20623, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37696009

RESUMEN

Much progress has been made in understanding the roles of the secondary coordination sphere (SCS) in tuning redox potentials of metalloproteins. In contrast, the impact of SCS on reactivity is much less understood. A primary example is how copper proteins can promote S-nitrosylation (SNO), which is one of the most important dynamic post-translational modifications, and is crucial in regulating nitric oxide storage and transportation. Specifically, the factors that instill CuII with S-nitrosylating capabilities and modulate activity are not well understood. To address this issue, we investigated the influence of the primary and secondary coordination sphere on CuII-catalyzed S-nitrosylation by developing a series of azurin variants with varying catalytic capabilities. We have employed a multidimensional approach involving electronic absorption, S and Cu K-edge XAS, EPR, and resonance Raman spectroscopies together with QM/MM computational analysis to examine the relationships between structure and molecular mechanism in this reaction. Our findings have revealed that kinetic competency is correlated with three balancing factors, namely Cu-S bond strength, Cu spin localization, and relative S(ps) vs S(pp) contributions to the ground state. Together, these results support a reaction pathway that proceeds through the attack of the Cu-S bond rather than electrophilic addition to CuII or radical attack of SCys. The insights gained from this work provide not only a deeper understanding of SNO in biology but also a basis for designing artificial and tunable SNO enzymes to regulate NO and prevent diseases due to SNO dysregulation.


Asunto(s)
Azurina , Metaloproteínas , Cobre , Catálisis , Electrónica
9.
J Am Chem Soc ; 145(42): 22866-22870, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37844210

RESUMEN

Tyrosinase is a ubiquitous coupled binuclear copper enzyme that activates O2 toward the regioselective monooxygenation of monophenols to catechols via a mechanism that remains only partially defined. Here, we present new mechanistic insights into the initial steps of this monooxygenation reaction by employing a pre-steady-state, stopped-flow kinetics approach that allows for the direct measurement of the monooxygenation rates for a series of para-substituted monophenols by oxy-tyrosinase. The obtained biphasic Hammett plot and the associated solvent kinetic isotope effect values provide direct evidence for an initial H-transfer from the protonated phenolic substrate to the Cu2O2 core of oxy-tyrosinase. The correlation of these experimental results to quantum mechanics/molecular mechanics calculations provides a detailed mechanistic description of this H-transfer step. These new mechanistic insights revise and expand our fundamental understanding of Cu2O2 active sites in biology.


Asunto(s)
Cobre , Monofenol Monooxigenasa , Monofenol Monooxigenasa/química , Cobre/química , Dominio Catalítico , Fenoles/química , Catecoles/química , Cinética
10.
J Am Chem Soc ; 145(21): 11735-11744, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37195014

RESUMEN

Lytic polysaccharide monooxygenases have received significant attention as catalytic convertors of biomass to biofuel. Recent studies suggest that its peroxygenase activity (i.e., using H2O2 as an oxidant) is more important than its monooxygenase functionality. Here, we describe new insights into peroxygenase activity, with a copper(I) complex reacting with H2O2 leading to site-specific ligand-substrate C-H hydroxylation. [CuI(TMG3tren)]+ (1) (TMG3tren = 1,1,1-Tris{2-[N2-(1,1,3,3-tetramethylguanidino)]ethyl}amine) and a dry source of hydrogen peroxide, (o-Tol3P═O·H2O2)2 react in the stoichiometry, [CuI(TMG3tren)]+ + H2O2 → [CuI(TMG3tren-OH)]+ + H2O, wherein a ligand N-methyl group undergoes hydroxylation giving TMG3tren-OH. Furthermore, Fenton-type chemistry (CuI + H2O2 → CuII-OH + ·OH) is displayed, in which (i) a Cu(II)-OH complex could be detected during the reaction and it could be separately isolated and characterized crystallographically and (ii) hydroxyl radical (·OH) scavengers either quenched the ligand hydroxylation reaction and/or (iii) captured the ·OH produced.


Asunto(s)
Cobre , Peróxido de Hidrógeno , Cobre/química , Peróxido de Hidrógeno/química , Hidroxilación , Ligandos , Oxigenasas de Función Mixta/química , Radical Hidroxilo/química , Oxidación-Reducción
11.
J Am Chem Soc ; 145(29): 16015-16025, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37441786

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) catalyze the degradation of recalcitrant carbohydrate polysaccharide substrates. These enzymes are characterized by a mononuclear Cu(I) active site with a three-coordinate T-shaped "His-brace" configuration including the N-terminal histidine and its amine group as ligands. This study explicitly investigates the electronic structure of the d10 Cu(I) active site in a LPMO using Kß X-ray emission spectroscopy (XES). The lack of inversion symmetry in the His-brace site enables the 3d/p mixing required for intensity in the Kß valence-to-core (VtC) XES spectrum of Cu(I)-LPMO. These Kß XES data are correlated to density functional theory (DFT) calculations to define the bonding, and in particular, the frontier molecular orbital (FMO) of the Cu(I) site. These experimentally validated DFT calculations are used to evaluate the reaction coordinate for homolytic cleavage of the H2O2 O-O bond and understand the contribution of this FMO to the low barrier of this reaction and how the geometric and electronic structure of the Cu(I)-LPMO site is activated for rapid reactivity with H2O2.


Asunto(s)
Peróxido de Hidrógeno , Oxigenasas de Función Mixta , Oxigenasas de Función Mixta/química , Polisacáridos/metabolismo , Dominio Catalítico , Espectrometría por Rayos X
12.
J Am Chem Soc ; 145(34): 18977-18991, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37590931

RESUMEN

Fe K-edge X-ray absorption spectroscopy (XAS) has long been used for the study of high-valent iron intermediates in biological and artificial catalysts. 4p-mixing into the 3d orbitals complicates the pre-edge analysis but when correctly understood via 1s2p resonant inelastic X-ray scattering and Fe L-edge XAS, it enables deeper insight into the geometric structure and correlates with the electronic structure and reactivity. This study shows that in addition to the 4p-mixing into the 3dz2 orbital due to the short iron-oxo bond, the loss of inversion in the equatorial plane leads to 4p mixing into the 3dx2-y2,xy, providing structural insight and allowing the distinction of 6- vs 5-coordinate active sites as shown through application to the Fe(IV)═O intermediate of taurine dioxygenase. Combined with O K-edge XAS, this study gives an unprecedented experimental insight into the electronic structure of Fe(IV)═O active sites and their selectivity for reactivity enabled by the π-pathway involving the 3dxz/yz orbitals. Finally, the large effect of spin polarization is experimentally assigned in the pre-edge (i.e., the α/ß splitting) and found to be better modeled by multiplet simulations rather than by commonly used time-dependent density functional theory.


Asunto(s)
Electrónica , Hierro , Rayos X , Espectroscopía de Absorción de Rayos X , Teoría Funcional de la Densidad
13.
J Am Chem Soc ; 145(24): 13284-13301, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37294874

RESUMEN

In multicopper oxidases (MCOs), the type 1 (T1) Cu accepts electrons from the substrate and transfers these to the trinuclear Cu cluster (TNC) where O2 is reduced to H2O. The T1 potential in MCOs varies from 340 to 780 mV, a range not explained by the existing literature. This study focused on the ∼350 mV difference in potential of the T1 center in Fet3p and Trametes versicolor laccase (TvL) that have the same 2His1Cys ligand set. A range of spectroscopies performed on the oxidized and reduced T1 sites in these MCOs shows that they have equivalent geometric and electronic structures. However, the two His ligands of the T1 Cu in Fet3p are H-bonded to carboxylate residues, while in TvL they are H-bonded to noncharged groups. Electron spin echo envelope modulation spectroscopy shows that there are significant differences in the second-sphere H-bonding interactions in the two T1 centers. Redox titrations on type 2-depleted derivatives of Fet3p and its D409A and E185A variants reveal that the two carboxylates (D409 and E185) lower the T1 potential by 110 and 255-285 mV, respectively. Density functional theory calculations uncouple the effects of the charge of the carboxylates and their difference in H-bonding interactions with the His ligands on the T1 potential, indicating 90-150 mV for anionic charge and ∼100 mV for a strong H-bond. Finally, this study provides an explanation for the generally low potentials of metallooxidases relative to the wide range of potentials of the organic oxidases in terms of different oxidized states of their TNCs involved in catalytic turnover.


Asunto(s)
Ceruloplasmina , Histidina , Ceruloplasmina/química , Ligandos , Cobre/química , Trametes , Electricidad Estática , Lacasa/metabolismo
14.
J Am Chem Soc ; 145(28): 15230-15250, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37414058

RESUMEN

The extradiol dioxygenases (EDOs) and intradiol dioxygenases (IDOs) are nonheme iron enzymes that catalyze the oxidative aromatic ring cleavage of catechol substrates, playing an essential role in the carbon cycle. The EDOs and IDOs utilize very different FeII and FeIII active sites to catalyze the regiospecificity in their catechol ring cleavage products. The factors governing this difference in cleavage have remained undefined. The EDO homoprotocatechuate 2,3-dioxygenase (HPCD) and IDO protocatechuate 3,4-dioxygenase (PCD) provide an opportunity to understand this selectivity, as key O2 intermediates have been trapped for both enzymes. Nuclear resonance vibrational spectroscopy (in conjunction with density functional theory calculations) is used to define the geometric and electronic structures of these intermediates as FeII-alkylhydroperoxo (HPCD) and FeIII-alkylperoxo (PCD) species. Critically, in both intermediates, the initial peroxo bond orientation is directed toward extradiol product formation. Reaction coordinate calculations were thus performed to evaluate both the extra- and intradiol O-O cleavage for the simple organic alkylhydroperoxo and for the FeII and FeIII metal catalyzed reactions. These results show the FeII-alkylhydroperoxo (EDO) intermediate undergoes facile extradiol O-O bond homolysis due to its extra e-, while for the FeIII-alkylperoxo (IDO) intermediate the extradiol cleavage involves a large barrier and would yield the incorrect extradiol product. This prompted our evaluation of a viable mechanism to rearrange the FeIII-alkylperoxo IDO intermediate for intradiol cleavage, revealing a key role in the rebinding of the displaced Tyr447 ligand in this rearrangement, driven by the proton delivery necessary for O-O bond cleavage.


Asunto(s)
Dioxigenasas , Dioxigenasas/química , Compuestos Férricos , Catecoles/química , Análisis Espectral , Compuestos Ferrosos
15.
Inorg Chem ; 62(7): 2959-2981, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36534001

RESUMEN

Thirteen boronated cyanometallates [M(CN-BR3)6]3/4/5- [M = Cr, Mn, Fe, Ru, Os; BR3 = BPh3, B(2,4,6,-F3C6H2)3, B(C6F5)3] and one metalloboratonitrile [Cr(NC-BPh3)6]3- have been characterized by X-ray crystallography and spectroscopy [UV-vis-near-IR, NMR, IR, spectroelectrochemistry, and magnetic circular dichroism (MCD)]; CASSCF+NEVPT2 methods were employed in calculations of electronic structures. For (t2g)5 electronic configurations, the lowest-energy ligand-to-metal charge-transfer (LMCT) absorptions and MCD C-terms in the spectra of boronated species have been assigned to transitions from cyanide π + B-C borane σ orbitals. CASSCF+NEVPT2 calculations including t1u and t2u orbitals reproduced t1u/t2u → t2g excitation energies. Many [M(CN-BR3)6]3/4- complexes exhibited highly electrochemically reversible redox couples. Notably, the reduction formal potentials of all five [M(CN-B(C6F5)3)6]3- anions scale with the LMCT energies, and Mn(I) and Cr(II) compounds, [K(18-crown-6)]5[Mn(CN-B(C6F5)3)6] and [K(18-crown-6)]4[Cr(CN-B(C6F5)3)6], are surprisingly stable. Continuous-wave and pulsed electron paramagnetic resonance (EPR; hyperfine sublevel correlation) spectra were collected for all Cr(III) complexes; as expected, 14N hyperfine splittings are greater for (Ph4As)3[Cr(NC-BPh3)6] than for (Ph4As)3[Cr(CN-BPh3)6].

16.
Proc Natl Acad Sci U S A ; 117(22): 11916-11922, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32414932

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) have been proposed to react with both [Formula: see text] and [Formula: see text] as cosubstrates. In this study, the [Formula: see text] reaction with reduced Hypocrea jecorina LPMO9A (CuI-HjLPMO9A) is demonstrated to be 1,000-fold faster than the [Formula: see text] reaction while producing the same oxidized oligosaccharide products. Analysis of the reactivity in the absence of polysaccharide substrate by stopped-flow absorption and rapid freeze-quench (RFQ) electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) yields two intermediates corresponding to neutral tyrosyl and tryptophanyl radicals that are formed along minor reaction pathways. The dominant reaction pathway is characterized by RFQ EPR and kinetic modeling to directly produce CuII-HjLPMO9A and indicates homolytic O-O cleavage. Both optical intermediates exhibit magnetic exchange coupling with the CuII sites reflecting facile electron transfer (ET) pathways, which may be protective against uncoupled turnover or provide an ET pathway to the active site with substrate bound. The reactivities of nonnative organic peroxide cosubstrates effectively exclude the possibility of a ping-pong mechanism.


Asunto(s)
Aminoácidos/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxigenasas de Función Mixta/química , Polisacáridos/metabolismo , Sitios de Unión , Biocombustibles , Espectroscopía de Resonancia por Spin del Electrón/métodos , Hypocrea/metabolismo , Cinética , Espectroscopía de Resonancia Magnética/métodos , Oxigenasas de Función Mixta/metabolismo , Oxidación-Reducción , Peróxidos/metabolismo , Triptófano/metabolismo , Tirosina/metabolismo
17.
Proc Natl Acad Sci U S A ; 117(10): 5152-5159, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32094179

RESUMEN

Determining the requirements for efficient oxygen (O2) activation is key to understanding how enzymes maintain efficacy and mitigate unproductive, often detrimental reactivity. For the α-ketoglutarate (αKG)-dependent nonheme iron enzymes, both a concerted mechanism (both cofactor and substrate binding prior to reaction with O2) and a sequential mechanism (cofactor binding and reaction with O2 precede substrate binding) have been proposed. Deacetoxycephalosporin C synthase (DAOCS) is an αKG-dependent nonheme iron enzyme for which both of these mechanisms have been invoked to generate an intermediate that catalyzes oxidative ring expansion of penicillin substrates in cephalosporin biosynthesis. Spectroscopy shows that, in contrast to other αKG-dependent enzymes (which are six coordinate when only αKG is bound to the FeII), αKG binding to FeII-DAOCS results in ∼45% five-coordinate sites that selectively react with O2 relative to the remaining six-coordinate sites. However, this reaction produces an FeIII species that does not catalyze productive ring expansion. Alternatively, simultaneous αKG and substrate binding to FeII-DAOCS produces five-coordinate sites that rapidly react with O2 to form an FeIV=O intermediate that then reacts with substrate to produce cephalosporin product. These results demonstrate that the concerted mechanism is operative in DAOCS and by extension, other nonheme iron enzymes.


Asunto(s)
Transferasas Intramoleculares/química , Hierro/química , Ácidos Cetoglutáricos/química , Proteínas de Hierro no Heme/química , Proteínas de Unión a las Penicilinas/química , Especies Reactivas de Oxígeno/química , Activación Enzimática , Oxidación-Reducción , Penicilina G/química , Especificidad por Sustrato
18.
J Am Chem Soc ; 144(42): 19305-19316, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36219763

RESUMEN

The direct conversion of methane to methanol would have a wide reaching environmental and industrial impact. Copper-containing zeolites can perform this reaction at low temperatures and pressures at a previously defined O2-activated [Cu2O]2+ site. However, after autoreduction of the copper-containing zeolite mordenite and removal of the [Cu2O]2+ active site, the zeolite is still methane reactive. In this study, we use diffuse reflectance UV-vis spectroscopy, magnetic circular dichroism, resonance Raman spectroscopy, electron paramagnetic resonance, and X-ray absorption spectroscopy to unambiguously define a mononuclear [CuOH]+ as the CH4 reactive active site of the autoreduced zeolite. The rigorous identification of a mononuclear active site allows a reactivity comparison to the previously defined [Cu2O]2+ active site. We perform kinetic experiments to compare the reactivity of the [CuOH]+ and [Cu2O]2+ sites and find that the binuclear site is significantly more reactive. From the analysis of density functional theory calculations, we elucidate that this increased reactivity is a direct result of stabilization of the [Cu2OH]2+ H-atom abstraction product by electron delocalization over the two Cu cations via the bridging ligand. This significant increase in reactivity from electron delocalization over a binuclear active site provides new insights for the design of highly reactive oxidative catalysts.


Asunto(s)
Zeolitas , Zeolitas/química , Cobre/química , Metano/química , Dominio Catalítico , Metanol/química , Ligandos , Modelos Moleculares , Oxígeno/química , Espectroscopía de Resonancia por Spin del Electrón , Cationes
20.
Faraday Discuss ; 234(0): 9-30, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35133385

RESUMEN

Metal sites in biology often exhibit unique spectroscopic features that reflect novel geometric and electronic structures imposed by the protein that are key to reactivity. The blue copper active site involved in long range, rapid biological electron transfer is a classic example. This review presents an overview of both traditional and synchrotron based spectroscopic methods and their coupling to electronic structure calculations to understand the unique features of the blue copper active site, their contributions to function and the role of the protein in determining the geometric and electronic structure of the active site (called the "entatic state"). The relation of this active site to other biological electron transfer sites is further developed. In particular, ultrafast XFEL spectroscopy is used to evaluate the methionine-S-Fe bond in cytochrome c, and its entatic control by the protein in determining function (electron transfer vs. apoptosis).


Asunto(s)
Cobre , Electrones , Cobre/química , Transporte de Electrón , Metales , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA