Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Cancer ; 150(5): 868-880, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34751446

RESUMEN

Surgical resection with lymphadenectomy and perioperative chemotherapy is the universal mainstay for curative treatment of gastric cancer (GC) patients with locoregional disease. However, GC survival remains asymmetric in West- and East-world regions. We hypothesize that this asymmetry derives from differential clinical management. Therefore, we collected chemo-naïve GC patients from Portugal and South Korea to explore specific immunophenotypic profiles related to disease aggressiveness and clinicopathological factors potentially explaining associated overall survival (OS) differences. Clinicopathological and survival data were collected from chemo-naïve surgical cohorts from Portugal (West-Europe cohort [WE-C]; n = 170) and South Korea (East-Asia cohort [EA-C]; n = 367) and correlated with immunohistochemical expression profiles of E-cadherin and CD44v6 obtained from consecutive tissue microarrays sections. Survival analysis revealed a subset of 12.4% of WE-C patients, whose tumors concomitantly express E-cadherin_abnormal and CD44v6_very high, displaying extremely poor OS, even at TNM stages I and II. These WE-C stage-I and -II patients tumors were particularly aggressive compared to all others, invading deeper into the gastric wall (P = .032) and more often permeating the vasculature (P = .018) and nerves (P = .009). A similar immunophenotypic profile was found in 11.9% of EA-C patients, but unrelated to survival. Tumours, from stage-I and -II EA-C patients, that display both biomarkers, also permeated more lymphatic vessels (P = .003), promoting lymph node (LN) metastasis (P = .019), being diagnosed on average 8 years earlier and submitted to more extensive LN dissection than WE-C. Concomitant E-cadherin_abnormal/CD44v6_very-high expression predicts aggressiveness and poor survival of stage-I and -II GC submitted to conservative lymphadenectomy.


Asunto(s)
Biomarcadores de Tumor/análisis , Cadherinas/análisis , Receptores de Hialuranos/análisis , Neoplasias Gástricas/mortalidad , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Humanos , Escisión del Ganglio Linfático , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Neoplasias Gástricas/patología , Neoplasias Gástricas/cirugía
2.
Bioinformatics ; 36(15): 4363-4365, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32449759

RESUMEN

MOTIVATION: Visual assessment of scanned tissue samples and associated molecular markers, such as gene expression, requires easy interactive inspection at multiple resolutions. This requires smart handling of image pyramids and efficient distribution of different types of data across several levels of detail. RESULTS: We present TissUUmaps, enabling fast visualization and exploration of millions of data points overlaying a tissue sample. TissUUmaps can be used both as a web service or locally in any computer, and regions of interest as well as local statistics can be extracted and shared among users. AVAILABILITY AND IMPLEMENTATION: TissUUmaps is available on github at github.com/wahlby-lab/TissUUmaps. Several demos and video tutorials are available at http://tissuumaps.research.it.uu.se/howto.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Computadores , Programas Informáticos , Expresión Génica
3.
Cytometry A ; 99(12): 1176-1186, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34089228

RESUMEN

Multiplexed and spatially resolved single-cell analyses that intend to study tissue heterogeneity and cell organization invariably face as a first step the challenge of cell classification. Accuracy and reproducibility are important for the downstream process of counting cells, quantifying cell-cell interactions, and extracting information on disease-specific localized cell niches. Novel staining techniques make it possible to visualize and quantify large numbers of cell-specific molecular markers in parallel. However, due to variations in sample handling and artifacts from staining and scanning, cells of the same type may present different marker profiles both within and across samples. We address multiplexed immunofluorescence data from tissue microarrays of low-grade gliomas and present a methodology using two different machine learning architectures and features insensitive to illumination to perform cell classification. The fully automated cell classification provides a measure of confidence for the decision and requires a comparably small annotated data set for training, which can be created using freely available tools. Using the proposed method, we reached an accuracy of 83.1% on cell classification without the need for standardization of samples. Using our confidence measure, cells with low-confidence classifications could be excluded, pushing the classification accuracy to 94.5%. Next, we used the cell classification results to search for cell niches with an unsupervised learning approach based on graph neural networks. We show that the approach can re-detect specialized tissue niches in previously published data, and that our proposed cell classification leads to niche definitions that may be relevant for sub-groups of glioma, if applied to larger data sets.


Asunto(s)
Glioma , Humanos , Aprendizaje Automático , Redes Neurales de la Computación , Reproducibilidad de los Resultados
4.
BMC Biol ; 18(1): 144, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33076915

RESUMEN

BACKGROUND: Neuroanatomical compartments of the mouse brain are identified and outlined mainly based on manual annotations of samples using features related to tissue and cellular morphology, taking advantage of publicly available reference atlases. However, this task is challenging since sliced tissue sections are rarely perfectly parallel or angled with respect to sections in the reference atlas and organs from different individuals may vary in size and shape and requires manual annotation. With the advent of in situ sequencing technologies and automated approaches, it is now possible to profile the gene expression of targeted genes inside preserved tissue samples and thus spatially map biological processes across anatomical compartments. RESULTS: Here, we show how in situ sequencing data combined with dimensionality reduction and clustering can be used to identify spatial compartments that correspond to known anatomical compartments of the brain. We also visualize gradients in gene expression and sharp as well as smooth transitions between different compartments. We apply our method on mouse brain sections and show that a fully unsupervised approach can computationally define anatomical compartments, which are highly reproducible across individuals, using as few as 18 gene markers. We also show that morphological variation does not always follow gene expression, and different spatial compartments can be defined by various cell types with common morphological features but distinct gene expression profiles. CONCLUSION: We show that spatial gene expression data can be used for unsupervised and unbiased annotations of mouse brain spatial compartments based only on molecular markers, without the need of subjective manual annotations based on tissue and cell morphology or matching reference atlases.


Asunto(s)
Encéfalo/metabolismo , Perfilación de la Expresión Génica/métodos , Transcriptoma , Animales , Masculino , Ratones
5.
Lancet Oncol ; 21(2): 222-232, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31926806

RESUMEN

BACKGROUND: An increasing volume of prostate biopsies and a worldwide shortage of urological pathologists puts a strain on pathology departments. Additionally, the high intra-observer and inter-observer variability in grading can result in overtreatment and undertreatment of prostate cancer. To alleviate these problems, we aimed to develop an artificial intelligence (AI) system with clinically acceptable accuracy for prostate cancer detection, localisation, and Gleason grading. METHODS: We digitised 6682 slides from needle core biopsies from 976 randomly selected participants aged 50-69 in the Swedish prospective and population-based STHLM3 diagnostic study done between May 28, 2012, and Dec 30, 2014 (ISRCTN84445406), and another 271 from 93 men from outside the study. The resulting images were used to train deep neural networks for assessment of prostate biopsies. The networks were evaluated by predicting the presence, extent, and Gleason grade of malignant tissue for an independent test dataset comprising 1631 biopsies from 246 men from STHLM3 and an external validation dataset of 330 biopsies from 73 men. We also evaluated grading performance on 87 biopsies individually graded by 23 experienced urological pathologists from the International Society of Urological Pathology. We assessed discriminatory performance by receiver operating characteristics and tumour extent predictions by correlating predicted cancer length against measurements by the reporting pathologist. We quantified the concordance between grades assigned by the AI system and the expert urological pathologists using Cohen's kappa. FINDINGS: The AI achieved an area under the receiver operating characteristics curve of 0·997 (95% CI 0·994-0·999) for distinguishing between benign (n=910) and malignant (n=721) biopsy cores on the independent test dataset and 0·986 (0·972-0·996) on the external validation dataset (benign n=108, malignant n=222). The correlation between cancer length predicted by the AI and assigned by the reporting pathologist was 0·96 (95% CI 0·95-0·97) for the independent test dataset and 0·87 (0·84-0·90) for the external validation dataset. For assigning Gleason grades, the AI achieved a mean pairwise kappa of 0·62, which was within the range of the corresponding values for the expert pathologists (0·60-0·73). INTERPRETATION: An AI system can be trained to detect and grade cancer in prostate needle biopsy samples at a ranking comparable to that of international experts in prostate pathology. Clinical application could reduce pathology workload by reducing the assessment of benign biopsies and by automating the task of measuring cancer length in positive biopsy cores. An AI system with expert-level grading performance might contribute a second opinion, aid in standardising grading, and provide pathology expertise in parts of the world where it does not exist. FUNDING: Swedish Research Council, Swedish Cancer Society, Swedish eScience Research Center, EIT Health.


Asunto(s)
Inteligencia Artificial , Diagnóstico por Computador , Interpretación de Imagen Asistida por Computador , Clasificación del Tumor , Neoplasias de la Próstata/patología , Anciano , Biopsia , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Estudios Prospectivos , Reproducibilidad de los Resultados , Suecia
6.
Cytometry A ; 95(4): 366-380, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30565841

RESUMEN

Artificial intelligence, deep convolutional neural networks, and deep learning are all niche terms that are increasingly appearing in scientific presentations as well as in the general media. In this review, we focus on deep learning and how it is applied to microscopy image data of cells and tissue samples. Starting with an analogy to neuroscience, we aim to give the reader an overview of the key concepts of neural networks, and an understanding of how deep learning differs from more classical approaches for extracting information from image data. We aim to increase the understanding of these methods, while highlighting considerations regarding input data requirements, computational resources, challenges, and limitations. We do not provide a full manual for applying these methods to your own data, but rather review previously published articles on deep learning in image cytometry, and guide the readers toward further reading on specific networks and methods, including new methods not yet applied to cytometry data. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Asunto(s)
Aprendizaje Profundo , Citometría de Imagen/métodos , Animales , Inteligencia Artificial/tendencias , Aprendizaje Profundo/tendencias , Humanos , Citometría de Imagen/instrumentación , Citometría de Imagen/tendencias , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático , Microscopía/instrumentación , Microscopía/métodos , Redes Neurales de la Computación
7.
Heliyon ; 9(5): e15306, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37131430

RESUMEN

Background and objectives: Spatially resolved techniques for exploring the molecular landscape of tissue samples, such as spatial transcriptomics, often result in millions of data points and images too large to view on a regular desktop computer, limiting the possibilities in visual interactive data exploration. TissUUmaps is a free, open-source browser-based tool for GPU-accelerated visualization and interactive exploration of 107+ data points overlaying tissue samples. Methods: Herein we describe how TissUUmaps 3 provides instant multiresolution image viewing and can be customized, shared, and also integrated into Jupyter Notebooks. We introduce new modules where users can visualize markers and regions, explore spatial statistics, perform quantitative analyses of tissue morphology, and assess the quality of decoding in situ transcriptomics data. Results: We show that thanks to targeted optimizations the time and cost associated with interactive data exploration were reduced, enabling TissUUmaps 3 to handle the scale of today's spatial transcriptomics methods. Conclusion: TissUUmaps 3 provides significantly improved performance for large multiplex datasets as compared to previous versions. We envision TissUUmaps to contribute to broader dissemination and flexible sharing of largescale spatial omics data.

8.
Sci Data ; 10(1): 562, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620357

RESUMEN

The analysis of FFPE tissue sections stained with haematoxylin and eosin (H&E) or immunohistochemistry (IHC) is essential for the pathologic assessment of surgically resected breast cancer specimens. IHC staining has been broadly adopted into diagnostic guidelines and routine workflows to assess the status of several established biomarkers, including ER, PGR, HER2 and KI67. Biomarker assessment can also be facilitated by computational pathology image analysis methods, which have made numerous substantial advances recently, often based on publicly available whole slide image (WSI) data sets. However, the field is still considerably limited by the sparsity of public data sets. In particular, there are no large, high quality publicly available data sets with WSIs of matching IHC and H&E-stained tissue sections from the same tumour. Here, we publish the currently largest publicly available data set of WSIs of tissue sections from surgical resection specimens from female primary breast cancer patients with matched WSIs of corresponding H&E and IHC-stained tissue, consisting of 4,212 WSIs from 1,153 patients.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Mama , Neoplasias de la Mama/diagnóstico , Colorantes , Eosina Amarillenta-(YS) , Hematoxilina , Coloración y Etiquetado
9.
IEEE J Biomed Health Inform ; 25(2): 393-402, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32750958

RESUMEN

Immunohistochemical (IHC) analysis of tissue biopsies is currently used for clinical screening of solid cancers to assess protein expression. The large amount of image data produced from these tissue samples requires specialized computational pathology methods to perform integrative analysis. Even though proteins are traditionally studied independently, the study of protein co-expression may offer new insights towards patients' clinical and therapeutic decisions. To explore protein co-expression, we constructed a modular image analysis pipeline to spatially align tissue microarray (TMA) image slides, evaluate alignment quality, define tumor regions, and ultimately quantify protein expression, before and after tumor segmentation. The pipeline was built with open-source tools that can manage gigapixel slides. To evaluate the consensus between pathologist and computer, we characterized a cohort of 142 gastric cancer (GC) cases regarding the extent of E-cadherin and CD44v6 expression. We performed IHC analysis in consecutive TMA slides and compared the automated quantification with the pathologists' manual assessment. Our results show that automated quantification within tumor regions improves agreement with the pathologists' classification. A co-expression map was created to identify the cores co-expressing both proteins. The proposed pipeline provides not only computational tools forwarding current pathology practices to explore co-expression, but also a framework for merging data and transferring information in learning-based approaches to pathology.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Neoplasias , Biopsia , Humanos , Inmunohistoquímica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA