Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Chaos ; 33(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37352503

RESUMEN

It is well-known that interactions between species determine the population composition in an ecosystem. Conventional studies have focused on fixed population structures to reveal how interactions shape population compositions. However, interaction structures are not fixed but change over time due to invasions. Thus, invasion and interaction play an important role in shaping communities. Despite its importance, however, the interplay between invasion and interaction has not been well explored. Here, we investigate how invasion affects the population composition with interactions in open evolving ecological systems considering generalized Lotka-Volterra-type dynamics. Our results show that the system has two distinct regimes. One is characterized by low diversity with abrupt changes of dominant species in time, appearing when the interaction between species is strong and invasion slowly occurs. On the other hand, frequent invasions can induce higher diversity with slow changes in abundances despite strong interactions. It is because invasion happens before the system reaches its equilibrium, which drags the system from its equilibrium all the time. All species have similar abundances in this regime, which implies that fast invasion induces regime shift. Therefore, whether invasion or interaction dominates determines the population composition.


Asunto(s)
Ecosistema , Modelos Biológicos , Dinámica Poblacional
2.
Chaos ; 31(12): 123127, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34972349

RESUMEN

Complex network analyses have provided clues to improve power-grid stability with the help of numerical models. The high computational cost of numerical simulations, however, has inhibited the approach, especially when it deals with the dynamic properties of power grids such as frequency synchronization. In this study, we investigate machine learning techniques to estimate the stability of power-grid synchronization. We test three different machine learning algorithms-random forest, support vector machine, and artificial neural network-training them with two different types of synthetic power grids consisting of homogeneous and heterogeneous input-power distribution, respectively. We find that the three machine learning models better predict the synchronization stability of power-grid nodes when they are trained with the heterogeneous input-power distribution rather than the homogeneous one. With the real-world power grids of Great Britain, Spain, France, and Germany, we also demonstrate that the machine learning algorithms trained on synthetic power grids are transferable to the stability prediction of the real-world power grids, which implies the prospective applicability of machine learning techniques on power-grid studies.

3.
Chaos ; 29(10): 103132, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31675814

RESUMEN

In electric power systems delivering alternating current, it is essential to maintain its synchrony of the phase with the rated frequency. The synchronization stability that quantifies how well the power-grid system recovers its synchrony against perturbation depends on various factors. As an intrinsic factor that we can design and control, the transmission capacity of the power grid affects the synchronization stability. Therefore, the transition pattern of the synchronization stability with the different levels of transmission capacity against external perturbation provides the stereoscopic perspective to understand the synchronization behavior of power grids. In this study, we extensively investigate the factors affecting the synchronization stability transition by using the concept of basin stability as a function of the transmission capacity. For a systematic approach, we introduce the integrated basin instability, which literally adds up the instability values as the transmission capacity increases. We first take simple 5-node motifs as a case study of building blocks of power grids, and a more realistic IEEE 24-bus model to highlight the complexity of decisive factors. We find that both structural properties such as gate keepers in network topology and dynamical properties such as large power input/output at nodes cause synchronization instability. The results suggest that evenly distributed power generation and avoidance of bottlenecks can improve the overall synchronization stability of power-grid systems.

4.
Nano Lett ; 15(2): 1190-6, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25590438

RESUMEN

Molecular self-assembly commonly suffers from dense structural defect formation. Spontaneous defect annihilation in block copolymer (BCP) self-assembly is particularly retarded due to significant energy barrier for polymer chain diffusion and structural reorganization. Here we present localized defect melting induced by blending short neutral random copolymer chain as an unusual method to promote the defect annihilation in BCP self-assembled nanopatterns. Chemically neutral short random copolymer chains blended with BCPs are specifically localized and induce local disordered states at structural defect sites in the self-assembled nanopatterns. Such localized "defect melting" relieves the energy penalty for polymer diffusion and morphology reorganization such that spontaneous defect annihilation by mutual coupling is anomalously accelerated upon thermal annealing. Interestingly, neutral random copolymer chain blending also causes morphology-healing self-assembly behavior that can generate large-area highly ordered 10 nm scale nanopattern even upon poorly defined defective prepatterns. Underlying mechanisms of the unusual experimental findings are thoroughly investigated by three-dimensional self-consistent field theory calculation.

5.
ACS Appl Mater Interfaces ; 15(21): 26138-26147, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37199778

RESUMEN

A highly sensitive and flexible gas sensor that can detect a wide range of chemicals is crucial for wearable applications. However, conventional single resistance-based flexible sensors face challenges in maintaining chemical sensitivity under mechanical stress and can be affected by interfering gases. This study presents a versatile approach for fabricating a micropyramidal flexible ion gel sensor, which accomplishes sub-ppm sensitivity (<80 ppb) at room temperature and discrimination capability between various analytes, including toluene, isobutylene, ammonia, ethanol, and humidity. The discrimination accuracy of our flexible sensor is as high as 95.86%, enhanced by using machine learning-based algorithms. Moreover, its sensing capability remains stable with only a 2.09% change from the flat state to a 6.5 mm bending radius, further amplifying its universal usage for wearable chemical sensing. Therefore, we envision that a micropyramidal flexible ion gel sensor platform assisted by machine learning-based algorithms will provide a new strategy toward next-generation wearable sensing technology.

6.
Proc Natl Acad Sci U S A ; 106(34): 14236-40, 2009 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-19706506

RESUMEN

When a new facility like a grocery store, a school, or a fire station is planned, its location should ideally be determined by the necessities of people who live nearby. Empirically, it has been found that there exists a positive correlation between facility and population densities. In the present work, we investigate the ideal relation between the population and the facility densities within the framework of an economic mechanism governing microdynamics. In previous studies based on the global optimization of facility positions in minimizing the overall travel distance between people and facilities, it was shown that the density of facility D and that of population rho should follow a simple power law D approximately rho(2/3). In our empirical analysis, on the other hand, the power-law exponent alpha in D approximately rho(alpha) is not a fixed value but spreads in a broad range depending on facility types. To explain this discrepancy in alpha, we propose a model based on economic mechanisms that mimic the competitive balance between the profit of the facilities and the social opportunity cost for populations. Through our simple, microscopically driven model, we show that commercial facilities driven by the profit of the facilities have alpha = 1, whereas public facilities driven by the social opportunity cost have alpha = 2/3. We simulate this model to find the optimal positions of facilities on a real U.S. map and show that the results are consistent with the empirical data.


Asunto(s)
Instituciones de Atención Ambulatoria/estadística & datos numéricos , Planificación Ambiental , Densidad de Población , Instituciones Académicas/estadística & datos numéricos , Algoritmos , Simulación por Computador , Geografía , Humanos , Modelos Teóricos , Cambio Social , Estados Unidos
7.
Phys Rev E ; 106(6-1): 064309, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36671153

RESUMEN

Perturbations made to networked systems may result in partial structural loss, such as a blackout in a power-grid system. Investigating the resulting disturbance in network properties is quintessential to understand real networks in action. The removal of nodes is a representative disturbance, but previous studies are seemingly contrasting about its effect on arguably the most fundamental network statistic, the degree distribution. The key question is about the functional form of the degree distributions that can be altered during node removal or sampling. The functional form is decisive in the remaining subnetwork's static and dynamical properties. In this work, we clarify the situation by utilizing the relative entropies with respect to the reference distributions in the Poisson and power-law form, to quantify the distance between the subnetwork's degree distribution and either of the reference distributions. Introducing general sequential node removal processes with continuously different levels of hub protection to encompass a series of scenarios including uniform random removal and preferred or protective (i.e., biased random) removal of the hub, we classify the altered degree distributions starting from various power-law forms by comparing two relative entropy values. From the extensive investigation in various scenarios based on direct node-removal simulations and by solving the rate equation of degree distributions, we discover in the parameter space two distinct regimes, one where the degree distribution is closer to the power-law reference distribution and the other closer to the Poisson distribution.


Asunto(s)
Simulación por Computador , Entropía , Distribución de Poisson
8.
Phys Rev Lett ; 107(19): 195702, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-22181628

RESUMEN

We study a model for coupled networks introduced recently by Buldyrev et al., [Nature (London) 464, 1025 (2010)], where each node has to be connected to others via two types of links to be viable. Removing a critical fraction of nodes leads to a percolation transition that has been claimed to be more abrupt than that for uncoupled networks. Indeed, it was found to be discontinuous in all cases studied. Using an efficient new algorithm we verify that the transition is discontinuous for coupled Erdös-Rényi networks, but find it to be continuous for fully interdependent diluted lattices. In 2 and 3 dimensions, the order parameter exponent ß is larger than in ordinary percolation, showing that the transition is less sharp, i.e., further from discontinuity, than for isolated networks. Possible consequences for spatially embedded networks are discussed.

9.
Phys Rev Lett ; 106(22): 225701, 2011 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-21702616

RESUMEN

We study four Achlioptas-type processes with "explosive" percolation transitions. All transitions are clearly continuous, but their finite size scaling functions are not entirely holomorphic. The distributions of the order parameter, i.e., the relative size s(max)/N of the largest cluster, are double humped. But-in contrast to first-order phase transitions-the distance between the two peaks decreases with system size N as N(-η) with η>0. We find different positive values of ß (defined via (s(max)/N)∼(p-p(c))ß for infinite systems) for each model, showing that they are all in different universality classes. In contrast, the exponent Θ (defined such that observables are homogeneous functions of (p-p(c))N(Θ)) is close to-or even equal to-1/2 for all models.

10.
Phys Rev E ; 101(2-1): 022613, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32168592

RESUMEN

Multiple organs in a living system respond to environmental changes, and the signals from the organs regulate the physiological environment. Inspired by this biological feedback, we propose a simple autonomous system of active rotators to explain how multiple units are synchronized under a fluctuating environment. We find that the feedback via an environment can entrain rotators to have synchronous phases for specific conditions. This mechanism is markedly different from the simple entrainment by a common oscillatory external stimulus that is not interacting with systems. We theoretically examine how the phase synchronization depends on the interaction strength between rotators and environment. Furthermore, we successfully demonstrate the proposed model by realizing an analog electric circuit with microelectronic devices. This bioinspired platform can be used as a sensor for monitoring varying environments and as a controller for amplifying signals by their feedback-induced synchronization.

11.
Phys Rev Lett ; 103(22): 228702, 2009 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-20366129

RESUMEN

We investigate how we can improve the synchronizability of complex networks simply by changing the link direction while conserving the local link weights and topology. Performing the linear stability analysis of synchronization and numerical simulation of the Kuramoto model in the directed networks, we find that while a random assignment of link directions generally weakens the degree of synchronization, a properly organized directionality can systematically enhance the network synchronization. In this respect, we suggest a simple method of changing the link direction according to the larger residual degree starting from small residual degree nodes. This result provides plausible applications to control the synchronizability of systems in various fields.


Asunto(s)
Modelos Teóricos , Algoritmos , Retroalimentación , Dinámicas no Lineales
12.
Phys Rev Lett ; 111(18): 189602, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24237575
13.
J Theor Biol ; 252(4): 722-31, 2008 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-18395227

RESUMEN

Identifying candidate genes related to complex diseases or traits and mapping their relationships require a system-level analysis at a cellular scale. The objective of the present study is to systematically analyze the complex effects of interrelated genes and provide a framework for revealing their relationships in association with a specific disease (asthma in this case). We observed that protein-protein interaction (PPI) networks associated with asthma have a power-law connectivity distribution as many other biological networks have. The hub nodes and skeleton substructure of the result network are consistent with the prior knowledge about asthma pathways, and also suggest unknown candidate target genes associated with asthma, including GNB2L1, BRCA1, CBL, and VAV1. In particular, GNB2L1 appears to play a very important role in the asthma network through frequent interactions with key proteins in cellular signaling. This network-based approach represents an alternative method for analyzing the complex effects of candidate genes associated with complex diseases and suggesting a list of gene drug targets. The full list of genes and the analysis details are available in the following online supplementary materials: http://biosoft.kaist.ac.kr:8080/resources/asthma_ppi.


Asunto(s)
Asma/metabolismo , Mapeo de Interacción de Proteínas , Asma/genética , Asma/patología , Fenómenos Fisiológicos Celulares , Bases de Datos Genéticas , Perfilación de la Expresión Génica/métodos , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Unión Proteica , Biología de Sistemas
14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(1 Pt 2): 016106, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18764019

RESUMEN

We study collective synchronization in a large number of coupled oscillators on various complex networks. In particular, we focus on the relaxation dynamics of the synchronization, which is important from the viewpoint of information transfer or the dynamics of system recovery from a perturbation. We measure the relaxation time tau that is required to establish global synchronization by varying the structural properties of the networks. It is found that the relaxation time in a strong-coupling regime (K>Kc) logarithmically increases with network size N , which is attributed to the initial random phase fluctuation given by O(N-1/2) . After elimination of the initial-phase fluctuation, the relaxation time is found to be independent of the system size; this implies that the local interaction that depends on the structural connectivity is irrelevant in the relaxation dynamics of the synchronization in the strong-coupling regime. The relaxation dynamics is analytically derived in a form independent of the system size, and it exhibits good consistency with numerical simulations. As an application, we also explore the recovery dynamics of the oscillators when perturbations enter the system.

15.
Sci Data ; 5: 180209, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30351301

RESUMEN

Network science enables us to improve the performance of complex systems such as traffic, communication, and power grids. To do so, it is necessary to use a well-constructed flawless network dataset associated with the system of interest. In this study, we present the dataset of the Chilean power grid. We harmonized data from three diverse sources to generate a unified dataset. Through an intensive review on the raw data, we filter out inconsistent errors and unrealistic faults, making the data more trustworthy. In contrast to other network dataset for power grids, we especially focus on preserving the physical structure of nodes' connection incorporating the 'tap' structure. As a result, we provide three different versions of the dataset: 'with-tap', 'without-tap', and 'reduced versions'. Along with structure, we incorporate various attributes of the nodes and edges such as the geo-coordinates, voltage of transmission lines, and the time series data of generation or consumption. These data are useful for network scientists to analyze the performance and dynamic stability of power grids.

16.
ACS Nano ; 10(3): 3435-42, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26871736

RESUMEN

Recent advance of high-power laser processing allows for rapid, continuous, area-selective material fabrication, typically represented by laser crystallization of silicon or oxides for display applications. Two-dimensional materials such as graphene exhibit remarkable physical properties and are under intensive development for the manufacture of flexible devices. Here we demonstrate an area-selective ultrafast nanofabrication method using low intensity infrared or visible laser irradiation to direct the self-assembly of block copolymer films into highly ordered manufacturing-relevant architectures at the scale below 12 nm. The fundamental principles underlying this light-induced nanofabrication mechanism include the self-assembly of block copolymers to proceed across the disorder-order transition under large thermal gradients, and the use of chemically modified graphene films as a flexible and conformal light-absorbing layers for transparent, nonplanar, and mechanically flexible surfaces.

17.
Artículo en Inglés | MEDLINE | ID: mdl-25974475

RESUMEN

We consider a tournament among four equally strong semifinalists. The players have to decide how much stamina to use in the semifinals, provided that the rest is available in the final and the third-place playoff. We investigate optimal strategies for allocating stamina to the successive matches when players' prizes (payoffs) are given according to the tournament results. From the basic assumption that the probability to win a match follows a nondecreasing function of stamina difference, we present symmetric Nash equilibria for general payoff structures. We find three different phases of the Nash equilibria in the payoff space. First, when the champion wins a much bigger payoff than the others, any pure strategy can constitute a Nash equilibrium as long as all four players adopt it in common. Second, when the first two places are much more valuable than the other two, the only Nash equilibrium is such that everyone uses a pure strategy investing all stamina in the semifinal. Third, when the payoff for last place is much smaller than the others, a Nash equilibrium is formed when every player adopts a mixed strategy of using all or none of its stamina in the semifinals. In a limiting case that only last place pays the penalty, this mixed-strategy profile can be proved to be a unique symmetric Nash equilibrium, at least when the winning probability follows a Heaviside step function. Moreover, by using this Heaviside step function, we study the tournament by using evolutionary replicator dynamics to obtain analytic solutions, which reproduces the corresponding Nash equilibria on the population level and gives information on dynamic aspects.

18.
Sci Rep ; 4: 7370, 2014 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-25501877

RESUMEN

Scientists have made efforts to understand the beauty of painting art in their own languages. As digital image acquisition of painting arts has made rapid progress, researchers have come to a point where it is possible to perform statistical analysis of a large-scale database of artistic paints to make a bridge between art and science. Using digital image processing techniques, we investigate three quantitative measures of images - the usage of individual colors, the variety of colors, and the roughness of the brightness. We found a difference in color usage between classical paintings and photographs, and a significantly low color variety of the medieval period. Interestingly, moreover, the increment of roughness exponent as painting techniques such as chiaroscuro and sfumato have advanced is consistent with historical circumstances.

19.
Adv Mater ; 26(27): 4665-70, 2014 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-24848137

RESUMEN

Highly aligned metal nanowire arrays with feature sizes approaching 10 nm are fabricated. This is made possible by the self-assembly of block copolymers (BCPs) on graphene-wrinkle arrays. Thickness-modulated BCP films confined on the wrinkled reduced graphene oxide (rGO) surface promote the strict alignment of the self-assembled BCP lamellae in the direction of the film thickness gradient.


Asunto(s)
Fenómenos Mecánicos , Nanotecnología/instrumentación , Nanocables/química , Polímeros/química , Análisis Costo-Beneficio , Grafito/química , Nanotecnología/economía
20.
Artículo en Inglés | MEDLINE | ID: mdl-24032883

RESUMEN

We consider a costly bilingualism model in which one can take two strategies in parallel. We investigate how a single zealot triggers the cascading behavior and how the compatibility of the two strategies affects when interacting patterns change. First, the role of the interaction range in the cascading is studied by increasing the range from local to global. We find that people sometimes do not favor taking the superior strategy even though its payoff is higher than that of the inferior one. This is found to be caused by the local interactions rather than the global ones. Applying this model to social networks, we find that the location of the zealot is also important for larger cascading in heterogeneous networks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA