Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37108351

RESUMEN

A comet assay is a trusted and widely used method for assessing DNA damage in individual eukaryotic cells. However, it is time-consuming and requires extensive monitoring and sample manipulation by the user. This limits the throughput of the assay, increases the risk of errors, and contributes to intra- and inter-laboratory variability. Here, we describe the development of a device which automates high throughput sample processing for a comet assay. This device is based upon our patented, high throughput, vertical comet assay electrophoresis tank, and incorporates our novel, patented combination of assay fluidics, temperature control, and a sliding electrophoresis tank to facilitate sample loading and removal. Additionally, we demonstrated that the automated device performs at least as well as our "manual" high throughput system, but with all the advantages of a fully "walkaway" device, such as a decreased need for human involvement and a decreased assay run time. Our automated device represents a valuable, high throughput approach for reliably assessing DNA damage with the minimal operator involvement, particularly if combined with the automated analysis of comets.


Asunto(s)
Daño del ADN , Células Eucariotas , Humanos , Ensayo Cometa/métodos
2.
Nanotechnology ; 31(36): 365706, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32464610

RESUMEN

The use of plasma processes in nanomaterial synthesis is limited by a lack of understanding of the effects of plasma treatment on the morphology and other properties. Here, we studied the effects of atmospheric plasma treatment on the morphology and optical properties of Ag nanoparticles. The Ag nanoparticles were deposited on substrates by injecting an aerosol into flowing argon gas and then treated with a low-temperature atmospheric plasma jet. After plasma treatment, the mean Ag nanoparticle diameter reduced to an average of 5 nm, which was accompanied by a blue shift of ∼70 nm in the peak of the surface plasmon resonance; these results are similar to those obtained by thermal treatment at elevated temperatures. The reduction in nanoparticle size is explained by the redox reaction that occurs on the nanoparticle surface, which is evident from the presence of AgO and Ag2O Raman peaks in the treated sample. The surface charge changed as a result of plasma treatment, as indicated by a large change in the zeta potential from +25.1 ± 4 mV for the untreated sample to -25.9 ± 6 mV after 15 min of plasma treatment. Surface-enhanced Raman spectroscopy of the plasma-treated films was carried out with the fluorescent dye Rhodamine 6 G, which showed a ∼120-fold enhancement in the signal intensity relative to the untreated substrates. We, therefore, conclude that cold-plasma treatment modified the surface morphology of the Ag nanoparticles, thereby enhancing their optical properties. This technique could be applied to a wide range of nanoparticle systems used in biosensing applications.

3.
IEEE Rev Biomed Eng ; 10: 174-186, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28541225

RESUMEN

Technological evolution in wearable sensors accounts for major growth and transformation in a multitude of industries, ranging from healthcare to computing and informatics to communication and biomedical sciences. The major driver for this transformation is the new-found ability to continuously monitor and analyze the patients' physiology in patients' natural setting. Numerous wearable sensors are already on the market and are summarized. Most of the current technologies have focused on electrophysiological, electromechanical, or acoustic measurements. Wearable biochemical sensing devices are in their infancy. Traditional challenges in biochemical sensing such as reliability, repeatability, stability, and drift are amplified in wearable sensing systems due to variabilities in operating environment, sample/sensor handling, and motion artifacts. Enzymatic sensing technologies, due to reduced fluidic challenges, continue to be forerunners for converting into wearable sensors. This paper reviews the recent developments in wearable enzymatic sensors. The wearable sensors have been classified in three major groups based on sensor embodiment and placement relative to the human body: 1) on-body, 2) clothing/textile-based biosensors, and 3) biosensor accessories. The sensors, which come in the forms of stickers and tattoos, are categorized as on-body biosensors. The fabric-based biosensor comes in different models such as smart-shirts, socks, gloves, and smart undergarments with printed sensors for continuous monitoring.


Asunto(s)
Técnicas Biosensibles , Enzimas/metabolismo , Dispositivos Electrónicos Vestibles , Técnicas Biosensibles/clasificación , Electroquímica , Estabilidad de Enzimas , Humanos , Telemedicina , Dispositivos Electrónicos Vestibles/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA