Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Cell Biochem ; 114(5): 1124-34, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23192945

RESUMEN

The limited treatment option for recurrent prostate cancer and the eventual resistance to conventional chemotherapy drugs has fueled continued interest in finding new anti-neoplastic agents of natural product origin. We previously reported anti-proliferative activity of deoxypodophyllotoxin (DPT) on human prostate cancer cells. Using the PC-3 cell model of human prostate cancer, the present study reveals that DPT induced apoptosis via a caspase-3-dependent pathway that is activated due to dysregulated mitochondrial function. DPT-treated cells showed accumulation of the reactive oxygen species (ROS), intracellular Ca (i)(2+) surge, increased mitochondrial membrane potential (MMP, ΔΨ(m)), Bax protein translocation to mitochondria and cytochrome c release to the cytoplasm. This resulted in caspase-3 activation, which in turn induced apoptosis. The antioxidant N-acetylcysteine (NAC) reduced ROS accumulation, MMP and Ca (i)(2+) surge, on the other hand the Ca(2+) chelator BAPTA inhibited the Ca( i)(2+) overload and MMP without affecting the increase of ROS, indicating that the generation of ROS occurred prior to Ca(2+) flux. This suggested that both ROS and Ca( i)(2+) signaling play roles in the increased MMP via Ca (i)(2+)-dependent and/or -independent mechanisms, since ΔΨ(m) elevation was reversed by NAC and BAPTA. This study provides the first evidence for the involvement of both ROS- and Ca( i)(2+)-activated signals in the disruption of mitochondrial homeostasis and the precedence of ROS production over the failure of Ca(2+) flux homeostasis.


Asunto(s)
Apoptosis/efectos de los fármacos , Calcio/metabolismo , Homeostasis/efectos de los fármacos , Mitocondrias/metabolismo , Podofilotoxina/análogos & derivados , Neoplasias de la Próstata/patología , Especies Reactivas de Oxígeno/metabolismo , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocromos c/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Medicamentos Herbarios Chinos , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Activación Enzimática/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Modelos Biológicos , Podofilotoxina/química , Podofilotoxina/farmacología , Neoplasias de la Próstata/metabolismo , Transporte de Proteínas/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismo
2.
Cancers (Basel) ; 14(4)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35205640

RESUMEN

Organ-confined prostate cancer of low-grade histopathology is managed with radiation, surgery, active surveillance, or watchful waiting and exhibits a 5-year overall survival (OS) of 95%, while metastatic prostate cancer (PCa) is incurable, holding a 5-year OS of 30%. Treatment options for advanced PCa-metastatic and non-metastatic-include hormone therapy that inactivates androgen receptor (AR) signaling, chemotherapy and genome-targeted therapy entailing synthetic lethality of tumor cells exhibiting aberrant DNA damage response, and immune checkpoint inhibition (ICI), which suppresses tumors with genomic microsatellite instability and/or deficient mismatch repair. Cancer genome sequencing uncovered novel somatic and germline mutations, while mechanistic studies are revealing their pathological consequences. A microRNA has shown biomarker potential for stratifying patients who may benefit from angiogenesis inhibition prior to ICI. A 22-gene expression signature may select high-risk localized PCa, which would not additionally benefit from post-radiation hormone therapy. We present an up-to-date review of the molecular and therapeutic aspects of PCa, highlight genomic alterations leading to AR upregulation and discuss AR-degrading molecules as promising anti-AR therapeutics. New biomarkers and druggable targets are shaping innovative intervention strategies against high-risk localized and metastatic PCa, including AR-independent small cell-neuroendocrine carcinoma, while presenting individualized treatment opportunities through improved design and precision targeting.

3.
Biochem Biophys Res Commun ; 413(1): 80-6, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21871443

RESUMEN

The anticancer activity of salinomycin has evoked excitement due to its recent identification as a selective inhibitor of breast cancer stem cells (CSCs) and its ability to reduce tumor growth and metastasis in vivo. In prostate cancer, similar to other cancer types, CSCs and/or progenitor cancer cells are believed to drive tumor recurrence and tumor growth. Thus salinomycin can potentially interfere with the end-stage progression of hormone-indifferent and chemotherapy-resistant prostate cancer. Androgen-responsive (LNCaP) and androgen-refractive (PC-3, DU-145) human prostate cancer cells showed dose- and time-dependent reduced viability upon salinomycin treatment; non-malignant RWPE-1 prostate cells were relatively less sensitive to drug-induced lethality. Salinomycin triggered apoptosis of PC-3 cells by elevating the intracellular ROS level, which was accompanied by decreased mitochondrial membrane potential, translocation of Bax protein to mitochondria, cytochrome c release to the cytoplasm, activation of the caspase-3 and cleavage of PARP-1, a caspase-3 substrate. Expression of the survival protein Bcl-2 declined. Pretreatment of PC-3 cells with the antioxidant N-acetylcysteine prevented escalation of oxidative stress, dissipation of the membrane polarity of mitochondria and changes in downstream molecular events. These results are the first to link elevated oxidative stress and mitochondrial membrane depolarization to salinomycin-mediated apoptosis of prostate cancer cells.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Neoplasias de la Próstata/metabolismo , Piranos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Caspasa 3/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Citocromos c/metabolismo , Citosol/metabolismo , Humanos , Masculino , Mitocondrias/metabolismo , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo
4.
Endocrinology ; 161(2)2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31894239

RESUMEN

SULT2B1b (SULT2B) is a prostate-expressed hydroxysteroid sulfotransferase, which may regulate intracrine androgen homeostasis by mediating 3ß-sulfation of dehydroepiandrosterone (DHEA), the precursor for 5α-dihydrotestosterone (DHT) biosynthesis. The aldo-keto reductase (AKR)1C3 regulates androgen receptor (AR) activity in castration-resistant prostate cancer (CRPC) by promoting tumor tissue androgen biosynthesis from adrenal DHEA and also by functioning as an AR-selective coactivator. Herein we report that SULT2B-depleted CRPC cells, arising from stable RNA interference or gene knockout (KO), are markedly upregulated for AKR1C3, activated for ERK1/2 survival signal, and induced for epithelial-to-mesenchymal (EMT)-like changes. EMT was evident from increased mesenchymal proteins and elevated EMT-inducing transcription factors SNAI1 and TWIST1 in immunoblot and single-cell mass cytometry analyses. SULT2B KO cells showed greater motility and invasion in vitro; growth escalation in xenograft study; and enhanced metastatic potential predicted on the basis of decreased cell stiffness and adhesion revealed from atomic force microscopy analysis. While AR and androgen levels were unchanged, AR activity was elevated, since PSA and FKBP5 mRNA induction by DHT-activated AR was several-fold higher in SULT2B-silenced cells. AKR1C3 silencing prevented ERK1/2 activation and SNAI1 induction in SULT2B-depleted cells. SULT2B was undetectable in nearly all CRPC metastases from 50 autopsy cases. Primary tumors showed variable and Gleason score (GS)-independent SULT2B levels. CRPC metastases lacking SULT2B expressed AKR1C3. Since AKR1C3 is frequently elevated in advanced prostate cancer, the inhibitory influence of SULT2B on AKR1C3 upregulation, ERK1/2 activation, EMT-like induction, and on cell motility and invasiveness may be clinically significant. Pathways regulating the inhibitory SULT2B-AKR1C3 axis may inform new avenue(s) for targeting SULT2B-deficient prostate cancer.


Asunto(s)
Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/metabolismo , Carcinoma/enzimología , Neoplasias de la Próstata/enzimología , Sulfotransferasas/metabolismo , Animales , Transición Epitelial-Mesenquimal , Humanos , Masculino , Ratones Desnudos , Metástasis de la Neoplasia , Trasplante de Neoplasias , Receptores Androgénicos/metabolismo
5.
FASEB Bioadv ; 1(6): 353-363, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31844843

RESUMEN

Hyperproliferation of prostate transition-zone epithelial and stromal cells leads to benign prostate hyperplasia (BPH), a prevalent pathology in elderly men. Senescent cells in BPH tissue induce a senescence-associated secretory phenotype (SASP) which, by generating inflamed microenvironment and reactive stroma, promotes leukocyte infiltration, cellular hyperproliferation and nodular prostate growth. We examined human prostate epithelial (BPH-1, PNT-1α) and stromal (HPS-19I) cells for SASP induction by ionizing radiation and assessed SASP's impacts on cell proliferation and on signal transducers that promote cellular growth, proliferation and survival. Radiation-induced DNA damage led to cellular senescence, evident from elevated expression of senescence-associated ß-galactosidase and the cell-cycle inhibitor p16/INK4a. Clinical BPH tissue showed p16 accumulation. SASP induced mRNA expression for inflammatory cytokines (IL-1α, IL-6, IL-8, TNF-α); chemokines (GM-CSF, CXCL12); metalloproteases (MMP-1, MMP-3, MMP-10); growth factor binding IGFBP-3. Media from irradiated epithelial or stromal cells enhanced BPH-1 proliferation. ERK1/2 and AKT, which enhance cell growth/survival and STAT5, which facilitates cell cycle progression and leukocyte recruitment to epithelial microenvironment, were activated by SASP components. The radiation-induced cellular senescence model can be a platform for identification of individual SASP components and pathways that drive BPH etiology/progression in vivo and targeting them may form the basis for novel BPH therapy.

6.
Vitam Horm ; 100: 321-55, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26827958

RESUMEN

Metastatic castration-resistant prostate cancer (mCRPC) is a progressive, noncurable disease induced by androgen receptor (AR) upon its activation by tumor tissue androgen, which is generated from adrenal steroid dehydroepiandrosterone (DHEA) through intracrine androgen biosynthesis. Inhibition of mCRPC and early-stage, androgen-dependent prostate cancer by calcitriol, the bioactive vitamin D3 metabolite, is amply documented in cell culture and animal studies. However, clinical trials of calcitriol or synthetic analogs are inconclusive, although encouraging results have recently emerged from pilot studies showing efficacy of a safe-dose vitamin D3 supplementation in reducing tumor tissue inflammation and progression of low-grade prostate cancer. Vitamin D-mediated inhibition of normal and malignant prostate cells is caused by diverse mechanisms including G1/S cell cycle arrest, apoptosis, prodifferentiation gene expression changes, and suppressed angiogenesis and cell migration. Biological effects of vitamin D are mediated by altered expression of a gene network regulated by the vitamin D receptor (VDR), which is a multidomain, ligand-inducible transcription factor similar to AR and other nuclear receptors. AR-VDR cross talk modulates androgen metabolism in prostate cancer cells. Androgen inhibits vitamin D-mediated induction of CYP24A1, the calcitriol-degrading enzyme, while vitamin D promotes androgen inactivation by inducing phase I monooxygenases (e.g., CYP3A4) and phase II transferases (e.g., SULT2B1b, a DHEA-sulfotransferase). CYP3A4 and SULT2B1b levels are markedly reduced and CYP24A1 is overexpressed in advanced prostate cancer. In future trials, combining low-calcemic, potent next-generation calcitriol analogs with CYP24A1 inhibition or androgen supplementation, or cancer stem cell suppression by a phytonutrient such as sulfarophane, may prove fruitful in prostate cancer prevention and treatment.


Asunto(s)
Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Vitamina D/metabolismo , Vitamina D/farmacología , Humanos , Masculino , Receptores de Calcitriol/metabolismo
7.
Methods Enzymol ; 400: 165-91, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16399349

RESUMEN

SULT2A1 is a sulfo-conjugating phase II enzyme expressed at very high levels in the liver and intestine, the two major first-pass metabolic tissues, and in the steroidogenic adrenal tissue. SULT2A1 acts preferentially on the hydroxysteroids dehydroepiandrosterone, testosterone/dihydrotestosterone, and pregnenolone and on cholesterol-derived amphipathic sterol bile acids. Several therapeutic drugs and other xenobiotics, which include xenoestrogens, are also sulfonated by this cytosolic steroid/bile acid sulfotransferase. Nonsteroid nuclear receptors with key roles in the metabolism and detoxification of endobiotics and xenobiotics, such as bile acid-activated farnesoid X receptor, xenobiotic-activated pregnane X receptor and constitutive androstane receptor, and lipid-activated peroxisome proliferator-activated receptor-alpha, mediate transcription induction of SULT2A1 in the enterohepatic system. The ligand-activated vitamin D receptor (VDR) is another nuclear receptor that stimulates SULT2A1 transcription, and the regulatory elements in human, mouse, and rat promoters directing this induction have been characterized. Given that bile acid sulfonation is catalyzed exclusively by SULT2A1 and that the 3alpha-sulfate of the highly toxic lithocholic acid is a major excretory metabolite in humans, we speculate that a role for the VDR pathway in SULT2A1 expression may have emerged to shield first-pass tissues from the cytotoxic effects of a bile acid overload arising from disrupted sterol homeostasis triggered by endogenous and exogenous factors.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Receptores de Calcitriol/metabolismo , Sulfotransferasas/genética , Animales , Ácidos y Sales Biliares/química , Ácidos y Sales Biliares/metabolismo , Humanos , Transducción de Señal , Sulfotransferasas/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-27478824

RESUMEN

Orally delivered small-molecule therapeutics are metabolized in the liver and intestine by phase I and phase II drug-metabolizing enzymes (DMEs), and transport proteins coordinate drug influx (phase 0) and drug/drug-metabolite efflux (phase III). Genes involved in drug metabolism and disposition are induced by xenobiotic-activated nuclear receptors (NRs), i.e. PXR (pregnane X receptor) and CAR (constitutive androstane receptor), and by the 1α, 25-dihydroxy vitamin D3-activated vitamin D receptor (VDR), due to transactivation of xenobiotic-response elements (XREs) present in phase 0-III genes. Additional NRs, like HNF4-α, FXR, LXR-α play important roles in drug metabolism in certain settings, such as in relation to cholesterol and bile acid metabolism. The phase I enzymes CYP3A4/A5, CYP2D6, CYP2B6, CYP2C9, CYP2C19, CYP1A2, CYP2C8, CYP2A6, CYP2J2, and CYP2E1 metabolize >90% of all prescription drugs, and phase II conjugation of hydrophilic functional groups (with/without phase I modification) facilitates drug clearance. The conjugation step is mediated by broad-specificity transferases like UGTs, SULTs, GSTs. This review delves into our current understanding of PXR/CAR/VDR-mediated regulation of DME and transporter expression, as well as effects of single nucleotide polymorphism (SNP) and epigenome (specified by promoter methylation, histone modification, microRNAs, long non coding RNAs) on the expression of PXR/CAR/VDR and phase 0-III mediators, and their impacts on variable drug response. Therapeutic agents that target epigenetic regulation and the molecular basis and consequences (overdosing, underdosing, or beneficial outcome) of drug-drug/drug-food/drug-herb interactions are also discussed. Precision medicine requires understanding of a drug's impact on DME and transporter activity and their NR-regulated expression in order to achieve optimal drug efficacy without adverse drug reactions. In future drug screening, new tools such as humanized mouse models and microfluidic organs-on-chips, which mimic the physiology of a multicellular environment, will likely replace the current cell-based workflow.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA