Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(50): 27493-27499, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38059304

RESUMEN

Ultrasmall Pd4 clusters form in the micropores of FER zeolite during low-temperature treatment (100 °C) in the presence of humid CO gas. They effectively catalyze CO oxidation below 100 °C, whereas Pd nanoparticles are not active as they are poisoned by CO. Using catalytic measurements, infrared (IR) spectroscopy, X-ray absorption spectroscopy (EXAFS), microscopy, and density functional theory calculations, we provide the molecular-level insight into this previously unreported phenomenon. Pd nanoparticles get covered with CO at low temperatures, which effectively blocks O2 activation until CO desorption occurs. Small Pd clusters in zeolites, in contrast, demonstrate fluxional behavior in the presence of CO, which significantly increases the affinity for binding O2. Our study provides a pathway to achieve low-temperature CO oxidation activity on the basis of a well-defined Pd/zeolite system.

2.
J Am Chem Soc ; 145(9): 5029-5040, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36812067

RESUMEN

Atom trapping leads to catalysts with atomically dispersed Ru1O5 sites on (100) facets of ceria, as identified by spectroscopy and DFT calculations. This is a new class of ceria-based materials with Ru properties drastically different from the known M/ceria materials. They show excellent activity in catalytic NO oxidation, a critical step that requires use of large loadings of expensive noble metals in diesel aftertreatment systems. Ru1/CeO2 is stable during continuous cycling, ramping, and cooling as well as the presence of moisture. Furthermore, Ru1/CeO2 shows very high NOx storage properties due to formation of stable Ru-NO complexes as well as a high spill-over rate of NOx onto CeO2. Only ∼0.05 wt % of Ru is required for excellent NOx storage. Ru1O5 sites exhibit much higher stability during calcination in air/steam up to 750 °C in contrast to RuO2 nanoparticles. We clarify the location of Ru(II) ions on the ceria surface and experimentally identify the mechanism of NO storage and oxidation using DFT calculations and in situ DRIFTS/mass spectroscopy. Moreover, we show excellent reactivity of Ru1/CeO2 for NO reduction by CO at low temperatures: only 0.1-0.5 wt % of Ru is sufficient to achieve high activity. Modulation-excitation in situ infrared and XPS measurements reveal the individual elementary steps of NO reduction by CO on an atomically dispersed Ru ceria catalyst, highlighting unique properties of Ru1/CeO2 and its propensity to form oxygen vacancies/Ce+3 sites that are critical for NO reduction, even at low Ru loadings. Our study highlights the applicability of novel ceria-based single-atom catalysts to NO and CO abatement.

3.
J Phys Chem Lett ; 12(12): 3210-3216, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33761261

RESUMEN

Selective catalytic reduction of NOx with NH3 (NH3-SCR) in Cu-SSZ-13 has been proposed to have a unique homogeneous-like mechanism governed by the spatial proximity of mobile Cu ions. Among factors that determine the proximity, the effect of ion density on the SCR reaction is well established; however, it has not been verified how the different mobility of the Cu ion influences the SCR reaction. Herein, we try to reveal the mobility-dependent SCR reaction by controlling the Cu species with different ion mobilities in Cu-SSZ-13. Since the reaction kinetics is governed by the diffusion of Cu ions, the Cu ion mobility determines the reactivity of the Cu-SSZ-13. In terms of this correlation, enhanced ion mobility leads to improved NH3-SCR activity. These findings help understand the behavior of Cu ions in Cu-SSZ-13 under a catalytic reaction and provide insights to design rational catalysts by tuning the ion mobility.

4.
Chemosphere ; 275: 130105, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33676281

RESUMEN

Vanadium oxide-based catalysts are considered a promising catalyst for selective catalytic reduction (SCR) of NO with NH3, which is an effective NOx removal technology. As environmental issues have garnered more attention, however, improvements to vanadium-based SCR catalysts are strongly required. In a previous study, we found that vanadium oxide on microporous titania as a support (V/MPTiO2) has certain advantages, such as improved thermal stability and more suppressed N2O formation, over the use of conventional nanoparticle titania (DT-51) as a support. In this study, widely used promoters, such as W, Sb, and Mo, were added to V/MPTiO2 to investigate whether they have promoting effects on V/MPTiO2 as well. Among these promoters added catalysts, the W and Mo were found to have significant promoting effects on the enhancement of deNOx activities at low temperatures, while the addition of Sb to V/MPTiO2 tended to have a negative effect on the SCR activity. Based on the characterizations, including laser Raman, H2-temperature programmed reduction (H2-TPR), and in situ diffuse reflectance infrared Fourier transform (in situ DRIFT) analysis, we found that the addition of W and Mo increased the degree of polymerization in V/MPTiO2, which generated more reactive vanadia species. Hence, such changes, resulting from the addition of W and Mo promoters to V/MPTiO2, yielded enhanced catalytic activity at low temperatures.


Asunto(s)
Amoníaco , Titanio , Catálisis , Vanadio
5.
Nat Commun ; 12(1): 901, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568656

RESUMEN

NOx abatement has been an indispensable part of environmental catalysis for decades. Selective catalytic reduction with ammonia using V2O5/TiO2 is an important technology for removing NOx emitted from industrial facilities. However, it has been a huge challenge for the catalyst to operate at low temperatures, because ammonium bisulfate (ABS) forms and causes deactivation by blocking the pores of the catalyst. Here, we report that physically mixed H-Y zeolite effectively protects vanadium active sites by trapping ABS in micropores. The mixed catalysts operate stably at a low temperature of 220 °C, which is below the dew point of ABS. The sulfur resistance of this system is fully maintained during repeated aging/regeneration cycles because the trapped ABS easily decomposes at 350 °C. Further investigations reveal that the pore structure and the amount of framework Al determined the trapping ability of various zeolites.

6.
Chem Commun (Camb) ; 56(98): 15450-15453, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33236733

RESUMEN

The involvement of Lewis and Brønsted acid sites on V2O5/TiO2 catalyst in the selective catalytic reduction of NO with NH3 (NH3-SCR) is under debate. Here, a Li doping strategy is applied to selectively block Brønsted sites, which aims to prepare model catalysts with the same V loading but different ratios of the two acid sites. Time-resolved in situ DRIFTS observation demonstrates that the surface ammonia species pre-adsorbed on Lewis and Brønsted sites can participate equally in the reaction. Consideration of site redistribution in the early stages of the transient reaction is key to accurate measurement of the ammonia consumption rate.

7.
ACS Appl Mater Interfaces ; 10(49): 42249-42257, 2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30461264

RESUMEN

Titanate nanotubes are widely applied in various fields, including photocatalysts and electronic devices, but their weak thermal stability limits their application for catalyst support. Here, we found that titanate nanotubes with a thick multiwalled structure of 15 layers or more can be prepared by using rotation-assisted hydrothermal synthesis. The porous structure of conventional nanotubes synthesized without rotation collapsed easily after thermal treatment, whereas the nanotubes having a thick multiwalled structure retained their pore structure and the specific surface area (∼300 m2/g) even after calcination at 400 °C in air. Systematic variation of rotation speed suggested that rotation in the synthesis process accelerated the stacking of layered titanate nanosheets, which are known to be intermediates of nanotubes. Thus, the rapid assembly of titanate nanosheets facilitated by rotation led to the formation of nanotubes with a multiwalled structure. Overly fast rotation, however, caused excessive stacking and created a thicker structure that cannot be easily wrapped into nanotubes. Therefore, it is essential to maintain the optimum rotation speed to obtain both the nanotube morphology and the thick multiwalled structure. Vanadium-tungsten-oxide catalyst supported on the multiwalled titanate nanotubes was used in NH3-selective catalytic reduction, which showed stable NO x reduction performance with high selectivity to N2, which may originate from the suppressed sintering of VO x on multiwalled nanotubes. This study demonstrates that the morphology of nanotubes can be tuned by controlling the degree of interaction supplied by external forces.

8.
J Nanosci Nanotechnol ; 16(5): 4350-6, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27483756

RESUMEN

Recently, various promoters for commercial selective catalytic reduction (SCR) catalysts are used to improve DeNOx activity at low temperature. We aimed at finding the optimum condition to prepare V2O5/TiO2 catalyst by changing promoters (W, Ce, Zr and Mn), not only for improving SCR reactivity, but also for reducing N2O formation at high temperature. In addition, we changed the order of impregnation between promoter and vanadium precursors on TiO2 support and observed its effect on activity and N2O selectivity. We utilized various analytical techniques, such as N2 adsorption-desorption, X-ray Diffraction (XRD), Raman spectroscopy, UV-visible Diffuse Reflectance Spectroscopy (UV-vis DRS) and Temperature Programmed Reduction with hydrogen (H2-TPR) to investigate the physicochemical properties of V2O5/TiO2 catalysts. It was found that W and Ce added V2O5/TiO2 catalysts showed the most active DeNOx properties at low temperature. Additionally, the difference in impregnation order affected the SCR activity. The superiority of low temperature activity of the vanadium firstly added catalysts (W or Ce/V/TiO2) is attributed to the formation of more polymerized V2O5 on the sample.

9.
Sci Rep ; 5: 12702, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-26235671

RESUMEN

Emission of N2O from mobile and off-road engine is now being currently regulated because of its high impact compared to that of CO2, thereby implying that N2O formation from the exhaust gas after-treatment system should be suppressed. Selective catalytic reduction using vanadium supported TiO2 catalyst in mobile and off-road engine has been considered to be major source for N2O emission in the system. Here we have demonstrated that vanadium catalyst supported on zeolitic microporous TiO2 obtained from the hydrothermal reaction of bulk TiO2 at 400 K in the presence of LiOH suppresses significantly the N2O emission compared to conventional VOx/TiO2 catalyst, while maintaining the excellent NOx reduction, which was ascribed to the location of VOx domain in the micropore of TiO2, resulting in the strong metal support interaction. The use of zeolitic microporous TiO2 provides a new way of preparing SCR catalyst with a high thermal stability and superior catalytic performance. It can be also extended further to the other catalytic system employing TiO2-based substrate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA