Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 82(17): 3135-3150.e9, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35914531

RESUMEN

Alternative polyadenylation (APA) enhances gene regulatory potential by increasing the diversity of mRNA transcripts. 3' UTR shortening through APA correlates with enhanced cellular proliferation and is a widespread phenomenon in tumor cells. Here, we show that the ubiquitously expressed transcription factor Sp1 binds RNA in vivo and is a common repressor of distal poly(A) site usage. RNA sequencing identified 2,344 genes (36% of the total mapped mRNA transcripts) with lengthened 3' UTRs upon Sp1 depletion. Sp1 preferentially binds the 3' UTRs of such lengthened transcripts and inhibits cleavage at distal sites by interacting with the subunits of the core cleavage and polyadenylation (CPA) machinery. The 3' UTR lengths of Sp1 target genes in breast cancer patient RNA-seq data correlate with Sp1 expression levels, implicating Sp1-mediated APA regulation in modulating tumorigenic properties. Taken together, our findings provide insights into the mechanism for dynamic APA regulation by unraveling a previously unknown function of the DNA-binding transcription factor Sp1.


Asunto(s)
Poli A , Poliadenilación , Regiones no Traducidas 3' , Humanos , Poli A/metabolismo , ARN Mensajero/metabolismo , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo , Zinc/metabolismo
2.
Nucleic Acids Res ; 52(8): 4483-4501, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587191

RESUMEN

Messenger RNA precursors (pre-mRNA) generally undergo 3' end processing by cleavage and polyadenylation (CPA), which is specified by a polyadenylation site (PAS) and adjacent RNA sequences and regulated by a large variety of core and auxiliary CPA factors. To date, most of the human CPA factors have been discovered through biochemical and proteomic studies. However, genetic identification of the human CPA factors has been hampered by the lack of a reliable genome-wide screening method. We describe here a dual fluorescence readthrough reporter system with a PAS inserted between two fluorescent reporters. This system enables measurement of the efficiency of 3' end processing in living cells. Using this system in combination with a human genome-wide CRISPR/Cas9 library, we conducted a screen for CPA factors. The screens identified most components of the known core CPA complexes and other known CPA factors. The screens also identified CCNK/CDK12 as a potential core CPA factor, and RPRD1B as a CPA factor that binds RNA and regulates the release of RNA polymerase II at the 3' ends of genes. Thus, this dual fluorescence reporter coupled with CRISPR/Cas9 screens reliably identifies bona fide CPA factors and provides a platform for investigating the requirements for CPA in various contexts.


Asunto(s)
Sistemas CRISPR-Cas , Genes Reporteros , Precursores del ARN , Factores de Escisión y Poliadenilación de ARNm , Humanos , Quinasas Ciclina-Dependientes/metabolismo , Quinasas Ciclina-Dependientes/genética , Genoma Humano , Células HEK293 , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética , Poliadenilación , División del ARN , ARN Polimerasa II/metabolismo , Precursores del ARN/metabolismo , Precursores del ARN/genética
3.
FASEB J ; 37(5): e22906, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37052859

RESUMEN

Pulmonary arterial hypertension (PAH) is a progressive and life-threatening disease characterized by pulmonary vascular remodeling, which may cause right heart failure and even death. Accumulated evidence confirmed that microRNA-26 family play critical roles in cardiovascular disease; however, their function in PAH remains largely unknown. Here, we investigated the expression of miR-26 family in plasma from PAH patients using quantitative RT-PCR, and identified miR-26a-5p as the most downregulated member, which was also decreased in hypoxia-induced pulmonary arterial smooth muscle cell (PASMC) autophagy models and lung tissues of PAH patients. Furthermore, chromatin immunoprecipitation (ChIP) analysis and luciferase reporter assays revealed that hypoxia-inducible factor 1α (HIF-1α) specifically interacted with the promoter of miR-26a-5p and inhibited its expression in PASMCs. Tandem mRFP-GFP-LC3B fluorescence microscopy demonstrated that miR-26a-5p inhibited hypoxia-induced PAMSC autophagy, characterized by reduced formation of autophagosomes and autolysosomes. In addition, results showed that miR-26a-5p overexpression potently inhibited PASMC proliferation and migration, as determined by cell counting kit-8, EdU staining, wound-healing, and transwell assays. Mechanistically, PFKFB3, ULK1, and ULK2 were direct targets of miR-26a-5p, as determined by dual-luciferase reporter gene assays and western blots. Meanwhile, PFKFB3 could further enhance the phosphorylation level of ULK1 and promote autophagy in PASMCs. Moreover, intratracheal administration of adeno-miR-26a-5p markedly alleviated right ventricular hypertrophy and pulmonary vascular remodeling in hypoxia-induced PAH rat models in vivo. Taken together, the HIF-1α/miR-26a-5p/PFKFB3/ULK1/2 axis plays critical roles in the regulation of hypoxia-induced PASMC autophagy and proliferation. MiR-26a-5p may represent as an attractive biomarker for the diagnosis and treatment of PAH.


Asunto(s)
Hipertensión Pulmonar , MicroARNs , Hipertensión Arterial Pulmonar , Ratas , Animales , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Remodelación Vascular/genética , Hipoxia/metabolismo , Hipertensión Arterial Pulmonar/genética , MicroARNs/genética , MicroARNs/metabolismo , Arteria Pulmonar/metabolismo , Miocitos del Músculo Liso/metabolismo , Autofagia , Proliferación Celular/genética , Movimiento Celular/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo
4.
Mol Cell Biochem ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980591

RESUMEN

Excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) represent key steps of pulmonary vascular remodeling, leading to the development of pulmonary arterial hypertension (PAH) and right ventricular failure. Niclosamide (NCL), an FDA-approved anthelmintic, has been shown to regulate cell proliferation, migration, invasion, and apoptosis through a variety of signaling pathways. However, its role on modulating the phenotypic switch and inflammatory responses in PASMCs remains unclear. In this study, cell proliferation assay showed that NCL inhibited PDGF-BB induced proliferation of human PASMCs in a dose-dependent manner. Western blot analysis further confirmed a notable reduction in the expression of cyclin D1 and PCNA proteins. Subsequently, flow cytometry analysis demonstrated that NCL induced an increased percentage of cells in the G1 phase while promoting apoptosis in PASMCs. Moreover, both scratch wound assay and transwell assay confirmed that NCL decreased PDGF-BB-induced migration of PASMCs. Mechanistically, western blot revealed that pretreatment of PASMCs with NCL markedly restored the protein levels of SMA, SM22, and calponin, while reducing phosphorylation of P38/STAT3 signaling in the presence of PDGF-BB. Interestingly, macrophages adhesion assay showed that NCL markedly reduced recruitment of Calcein-AM labeled RAW264.7 by TNFα-stimulated PASMCs. Western blot revealed that NCL suppressed TNFα-induced expression of both of VCAM-1 and ICAM-1 proteins. Furthermore, pretreatment of PASMCs with NCL significantly inhibited NLRP3 inflammasome activity through reducing NLRP3, AIM2, mature interleukin-1ß (IL-ß), and cleaved Caspase-1 proteins expression. Together, these results suggested versatile effects of NCL on controlling of proliferation, migration, and inflammatory responses in PASMCs through modulating different pathways, indicating that repurposing of NCL may emerge as a highly effective drug for PAH treatment.

5.
Phys Chem Chem Phys ; 26(18): 13532-13560, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38654597

RESUMEN

As a post-nanotechnology concept, nanoarchitectonics combines nanotechnology with advanced materials science. Molecular machines made by assembling molecular units and their organizational bodies are also products of nanoarchitectonics. They can be regarded as the smallest functional materials. Originally, studies on molecular machines analyzed the average properties of objects dispersed in solution by spectroscopic methods. Researchers' playgrounds partially shifted to solid interfaces, because high-resolution observation of molecular machines is usually done on solid interfaces under high vacuum and cryogenic conditions. Additionally, to ensure the practical applicability of molecular machines, operation under ambient conditions is necessary. The latter conditions are met in dynamic interfacial environments such as the surface of water at room temperature. According to these backgrounds, this review summarizes the trends of molecular machines that continue to evolve under the concept of nanoarchitectonics in interfacial environments. Some recent examples of molecular machines in solution are briefly introduced first, which is followed by an overview of studies of molecular machines and similar supramolecular structures in various interfacial environments. The interfacial environments are classified into (i) solid interfaces, (ii) liquid interfaces, and (iii) various material and biological interfaces. Molecular machines are expanding their activities from the static environment of a solid interface to the more dynamic environment of a liquid interface. Molecular machines change their field of activity while maintaining their basic functions and induce the accumulation of individual molecular machines into macroscopic physical properties molecular machines through macroscopic mechanical motions can be employed to control molecular machines. Moreover, research on molecular machines is not limited to solid and liquid interfaces; interfaces with living organisms are also crucial.

6.
Cancer Cell Int ; 23(1): 20, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36750864

RESUMEN

Despite the rapid development of therapeutic strategies in cancer treatment, metastasis remains the major cause of cancer-related death and scientific challenge. Epithelial-Mesenchymal Transition (EMT) plays a crucial role in cancer invasion and progression, a process by which tumor cells lose cell-cell adhesion and acquire increased invasiveness and metastatic activity. Recent work has uncovered some crucial roles of extracellular adenosine 5'- triphosphate (eATP), a major component of the tumor microenvironment (TME), in promoting tumor growth and metastasis. Intratumoral extracellular ATP (eATP), at levels of 100-700 µM, is 103-104 times higher than in normal tissues. In the current literature, eATP's function in promoting metastasis has been relatively poorly understood as compared with intracellular ATP (iATP). Recent evidence has shown that cancer cells internalize eATP via macropinocytosis in vitro and in vivo, promoting cell growth and survival, drug resistance, and metastasis. Furthermore, ATP acts as a messenger molecule that activates P2 purinergic receptors expressed on both tumor and host cells, stimulating downstream signaling pathways to enhance the invasive and metastatic properties of tumor cells. Here, we review recent progress in understanding eATP's role in each step of the metastatic cascade, including initiating invasion, inducing EMT, overcoming anoikis, facilitating intravasation, circulation, and extravasation, and eventually establishing metastatic colonization. Collectively, these studies reveal eATP's important functions in many steps of metastasis and identify new opportunities for developing more effective therapeutic strategies to target ATP-associated processes in cancer.

7.
Mol Pharm ; 20(8): 4050-4057, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37413788

RESUMEN

The aqueous solubility of active pharmaceutical ingredients (APIs) is one of the most critical factors in determining the absorption of orally administered drugs. Amorphization of API may offer better drug absorption than the crystalline state owing to enhanced solubility. However, if crystal nuclei are formed during storage, they may develop into crystals upon contact with water, thus limiting the dissolution advantage. In an earlier study, we found that the nuclei of amorphous celecoxib (CEL) could be formed at freezing temperatures (FT) without further crystal growth. Following this finding, we compared the dissolution performances of amorphous CEL annealed at room temperature (RT, 25 °C) or FT (-20 °C). We found that only the RT-annealed CEL could achieve a supersaturated state effectively during the dissolution process, which could be explained by the fast conversion of the FT-annealed amorphous CEL to a crystalline state owing to the presence of nuclei. Investigation of the residual solids revealed that supersaturation could be maintained for a while after the appearance of the crystals, which could be explained by heterogeneous nucleation and competition between the dissolution of amorphous parts and crystallization. In addition, a new crystalline form of CEL was observed during dissolution.


Asunto(s)
Frío , Agua , Celecoxib , Solubilidad , Cristalización , Agua/química
8.
Subcell Biochem ; 98: 61-83, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35378703

RESUMEN

Macropinocytosis is one of the major mechanisms by which cancer cells uptake extracellular nutrients from tumor microenvironment (TME) and plays very important roles in various steps of tumorigenesis. We previously reported the unexpected finding that intratumoral and extracellular ATP (eATP), as one of the major drastically upregulated extracellular nutrients and messengers in tumors, is taken up by cancer cells through macropinocytosis in large quantities and significantly contributing to cancer cell growth, survival, and increased resistance to chemo and target drugs. Inhibition of macropinocytosis substantially reduced eATP uptake by cancer cells and slowed down tumor growth in vivo. More recently, we have found the eATP also plays a very important role in inducing epithelial-to-mesenchymal transition (EMT), and that macropinocytosis is an essential facilitator in the induction. Thus, macropinocytosis and eATP, working in coordination, appear to play some previously unrecognized but very important roles in EMT and metastasis. As a result, they are likely to be interactive and communicative with each other, regulating each other's activity for various needs of host tumor cells. They are also likely to be an integral part of the future new anticancer therapeutic strategies. Moreover, it is undoubted that we have not identified all the important activities coordinated by ATP and macropinocytosis. This review describes our findings in how eATP and macropinocytosis work together to promote cancer cell growth, resistance, and EMT. We also list scientific challenges facing eATP research and propose to target macropinocytosis and eATP to reduce drug resistance and slow down metastasis.


Asunto(s)
Neoplasias , Adenosina Trifosfato , Ciclo Celular , Resistencia a Medicamentos , Humanos , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
9.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36982148

RESUMEN

Bioluminescence-based probes have long been used to quantify and visualize biological processes in vitro and in vivo. Over the past years, we have witnessed the trend of bioluminescence-driven optogenetic systems. Typically, bioluminescence emitted from coelenterazine-type luciferin-luciferase reactions activate light-sensitive proteins, which induce downstream events. The development of coelenterazine-type bioluminescence-induced photosensory domain-based probes has been applied in the imaging, sensing, and control of cellular activities, signaling pathways, and synthetic genetic circuits in vitro and in vivo. This strategy can not only shed light on the mechanisms of diseases, but also promote interrelated therapy development. Here, this review provides an overview of these optical probes for sensing and controlling biological processes, highlights their applications and optimizations, and discusses the possible future directions.


Asunto(s)
Fenómenos Biológicos , Mediciones Luminiscentes , Mediciones Luminiscentes/métodos , Luciferasas/genética , Luciferasas/metabolismo , Luciferina de Luciérnaga/metabolismo
10.
Sci Technol Adv Mater ; 23(1): 199-224, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370475

RESUMEN

Like the proposal of nanotechnology by Richard Feynman, the nanoarchitectonics concept was initially proposed by Masakazu Aono. The nanoarchitectonics strategy conceptually fuses nanotechnology with other research fields including organic chemistry, supramolecular chemistry, micro/nanofabrication, materials science, and bio-related sciences, and aims to produce functional materials from nanoscale components. In this review article, bio-interactive nanoarchitectonics and two-dimensional materials and environments are discussed as a selected topic. The account gives general examples of nanoarchitectonics of two-dimensional materials for energy storage, catalysis, and biomedical applications, followed by explanations of bio-related applications with two-dimensional materials such as two-dimensional biomimetic nanosheets, fullerene nanosheets, and two-dimensional assemblies of one-dimensional fullerene nanowhiskers (FNWs). The discussion on bio-interactive nanoarchitectonics in two-dimensional environments further extends to liquid-liquid interfaces such as fluorocarbon-medium interfaces and viscous liquid interfaces as new frontiers of two-dimensional environments for bio-related applications. Controlling differentiation of stem cells at fluidic liquid interfaces is also discussed. Finally, a conclusive section briefly summarizes features of bio-interactive nanoarchitectonics with two-dimensional materials and environments and discusses possible future perspectives.

11.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36499099

RESUMEN

Cancer stem cells (CSCs) are closely associated with metastasis and epithelial mesenchymal transition (EMT). We previously reported that extracellular ATP (eATP) induces and regulates EMT in cancer cells. We recently found that the gene stanniocalcin 1 (STC1) is significantly upregulated by eATP in human non-small lung cancer (NSCLC) A549 cells; however, the relationships among eATP, CSCs, and STC1 were largely unknown. In this study, we performed gene knockdown and knockout, and a wide variety of functional assays to determine if and how eATP and STC1 induce CSCs in NSCLC A549 and H1299 cells. Our data show that, in both cultured cells and tumors, eATP increased the number of CSCs in the cancer cell population and upregulated CSC-related genes and protein markers. STC1 deletion led to drastically slower cell and tumor growth, reduced intracellular ATP levels and CSC markers, and metabolically shifted STC1-deficient cells from an energetic state to a quiescent state. These findings indicate that eATP induces and regulates CSCs at transcriptional, translational, and metabolic levels, and these activities are mediated through STC1 via mitochondria-associated ATP synthesis. These novel findings offer insights into eATP-induced CSCs and identify new targets for inhibiting CSCs.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/metabolismo , Células Madre Neoplásicas/metabolismo , Transición Epitelial-Mesenquimal/genética , Células A549 , Adenosina Trifosfato/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
12.
J Mol Cell Cardiol ; 161: 9-22, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34339758

RESUMEN

OBJECTIVE: Pulmonary vascular remodeling due to excessive growth factor production and pulmonary artery smooth muscle cells (PASMCs) proliferation is the hallmark feature of pulmonary arterial hypertension (PAH). Recent studies suggest that miR-663 is a potent modulator for tumorigenesis and atherosclerosis. However, whether miR-663 involves in pulmonary vascular remodeling is still unclear. METHODS AND RESULTS: By using quantitative RT-PCR, we found that miR-663 was highly expressed in normal human PASMCs. In contrast, circulating level of miR-663 dramatically reduced in PAH patients. In addition, in situ hybridization showed that expression of miR-663 was decreased in pulmonary vasculature of PAH patients. Furthermore, MTT and cell scratch-wound assay showed that transfection of miR-663 mimics significantly inhibited platelet derived growth factor (PDGF)-induced PASMCs proliferation and migration, while knockdown of miR-663 expression enhanced these effects. Mechanistically, dual-luciferase reporter assay revealed that miR-663 directly targets the 3'UTR of TGF-ß1. Moreover, western blots and ELISA results showed that miR-663 decreased PDGF-induced TGF-ß1 expression and secretion, which in turn suppressed the downstream smad2/3 phosphorylation and collagen I expression. Finally, intratracheal instillation of adeno-miR-663 efficiently inhibited the development of pulmonary vascular remodeling and right ventricular hypertrophy in monocrotaline (MCT)-induced PAH rat models. CONCLUSION: These results indicate that miR-663 is a potential biomarker for PAH. MiR-663 decreases PDGF-BB-induced PASMCs proliferation and prevents pulmonary vascular remodeling and right ventricular hypertrophy in MCT-PAH by targeting TGF-ß1/smad2/3 signaling. These findings suggest that miR-663 may represent as an attractive approach for the diagnosis and treatment for PAH.


Asunto(s)
MicroARNs/sangre , Hipertensión Arterial Pulmonar/genética , Factor de Crecimiento Transformador beta1/metabolismo , Remodelación Vascular/genética , Anciano , Animales , Becaplermina/farmacología , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , MicroARNs/genética , Persona de Mediana Edad , Monocrotalina/toxicidad , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Hipertensión Arterial Pulmonar/inducido químicamente , Hipertensión Arterial Pulmonar/metabolismo , Arteria Pulmonar/citología , Ratas Sprague-Dawley , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/genética , Remodelación Vascular/efectos de los fármacos
13.
New Phytol ; 229(6): 3303-3317, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33216996

RESUMEN

DNA methylation plays crucial roles in cellular development and stress responses through gene regulation and genome stability control. Precise regulation of DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), the de novo Arabidopsis DNA methyltransferase, is crucial to maintain DNA methylation homeostasis to ensure genome integrity. Compared with the extensive studies on DRM2 targeting mechanisms, little information is known regarding the quality control of DRM2 itself. Here, we conducted yeast two-hybrid screen assay and identified an E3 ligase, COP9 INTERACTING F-BOX KELCH 1 (CFK1), as a novel DRM2-interacting partner and targets DRM2 for degradation via the ubiquitin-26S proteasome pathway in Arabidopsis thaliana. We also performed whole genome bisulfite sequencing (BS-seq) to determine the biological significance of CFK1-mediated DRM2 degradation. Loss-of-function CFK1 leads to increased DRM2 protein abundance and overexpression of CFK1 showed reduced DRM2 protein levels. Consistently, CFK1 overexpression induces genome-wide CHH hypomethylation and transcriptional de-repression at specific DRM2 target loci. This study uncovered a distinct mechanism regulating de novo DNA methyltransferase by CFK1 to control DNA methylation level.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Metiltransferasas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ADN , Metilación de ADN/genética , Proteínas F-Box/genética , Regulación de la Expresión Génica de las Plantas , Metiltransferasas/metabolismo
14.
Small ; 16(8): e1907309, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31994844

RESUMEN

There is a real need for new antibiotics against self-evolving bacteria. One option is to use biofriendly broad-spectrum and mechanically tunable antimicrobial hydrogels that can combat multidrug-resistant microbes. Whilst appealing, there are currently limited options. Herein, broad-spectrum antimicrobial biometallohydrogels based on the self-assembly and local mineralization of Ag+ -coordinated Fmoc-amino acids are reported. Such biometallohydrogels have the advantages of localized delivery and sustained release, reduced drug dosage and toxicity yet improved bioavailability, prolonged drug effect, and tunable mechanical strength. Furthermore, they can directly interact with the cell walls and membrane, resulting in the detachment of the plasma membrane and leakage of the cytoplasm. This leads to cell death, triggering a significant antibacterial effect against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria in cells and mice. This study paves the way for developing a multifunctional integration platform based on simple biomolecules coordinated self-assembly toward a broad range of biomedical applications.


Asunto(s)
Aminoácidos , Antibacterianos , Hidrogeles , Oligoelementos , Aminoácidos/química , Animales , Antibacterianos/química , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Femenino , Hidrogeles/química , Hidrogeles/farmacología , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Células 3T3 NIH , Plata/química , Plata/farmacología , Staphylococcus aureus/efectos de los fármacos , Oligoelementos/química , Oligoelementos/farmacología
15.
Angew Chem Int Ed Engl ; 59(36): 15424-15446, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32170796

RESUMEN

Incorporation of non-equilibrium actions in the sequence of self-assembly processes would be an effective means to establish bio-like high functionality hierarchical assemblies. As a novel methodology beyond self-assembly, nanoarchitectonics, which has as its aim the fabrication of functional materials systems from nanoscopic units through the methodological fusion of nanotechnology with other scientific disciplines including organic synthesis, supramolecular chemistry, microfabrication, and bio-process, has been applied to this strategy. The application of non-equilibrium factors to conventional self-assembly processes is discussed on the basis of examples of directed assembly, Langmuir-Blodgett assembly, and layer-by-layer assembly. In particular, examples of the fabrication of hierarchical functional structures using bio-active components such as proteins or by the combination of bio-components and two-dimensional nanomaterials, are described. Methodologies described in this review article highlight possible approaches using the nanoarchitectonics concept beyond self-assembly for creation of bio-like higher functionalities and hierarchical structural organization.

16.
J Cell Physiol ; 234(3): 2997-3006, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30146700

RESUMEN

Cardiac fibrosis is a pathological remodeling response to myocardial infarction (MI) and impairs cardiac contractility. Long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is increased in patients with MI. However, the functions of MALAT1 in cardiac fibrosis have not been elucidated. This study elucidates the roles of MALAT1 in MI and the underlying mechanisms. The MI model was established by artificial coronary artery occlusion in mice. Western blot analysis and quantitative reverse transcription-polymerase chain reaction were performed to analyze protein expression and RNA expression, respectively. Cardiac function was measured by echocardiography. Masson's trichrome staining was used to exhibit the fibrotic area in MI hearts. Cardiac fibroblasts were isolated from newborn pups, and cell proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Upregulation of MALAT1 and downregulation of microRNA-145 (miR-145) were induced in MI heart and angiotensin II (AngII)-treated cardiac fibroblasts, and the inhibition of miR-145 expression was reversed by MALAT1 depletion. Knockdown MALAT1 ameliorated MI-impaired cardiac function and prevented AngII-induced fibroblast proliferation, collagen production, and α-SMA expression in cardiac fibroblasts. MALAT1 stability and transforming growth factor-ß1 (TGF-ß1) activity were regulated by miR-145. AngII-induced TGF-ß1 activity in cardiac fibroblasts was blocked by MALAT1 knockdown. Based on these results, we concluded that lncRNA MALAT1 promotes cardiac fibrosis and deteriorates cardiac function post-MI by regulating TGF-ß1 activity via miR-145.


Asunto(s)
MicroARNs/genética , Infarto del Miocardio/genética , ARN Largo no Codificante/genética , Factor de Crecimiento Transformador beta1/genética , Actinas/genética , Animales , Proliferación Celular/genética , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Ratones , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocardio/patología , Interferencia de ARN
17.
Angew Chem Int Ed Engl ; 57(6): 1537-1542, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29266653

RESUMEN

Secondary structures such as α-helix and ß-sheet are the major structural motifs within the three-dimensional geometry of proteins. Therefore, structure transitions from ß-sheet to α-helix not only can serve as an effective strategy for the therapy of neurological diseases through the inhibition of ß-sheet aggregation but also extend the application of α-helix fibrils in biomedicine. Herein, we present a charge-induced secondary structure transition of amyloid-derived dipeptide assemblies from ß-sheet to α-helix. We unravel that the electrostatic (charge) repulsion between the C-terminal charges of the dipeptide molecules are responsible for the conversion of the secondary structure. This finding provides a new perspective to understanding the secondary structure formation and transformation in the supramolecular organization and life activity.


Asunto(s)
Amiloide/química , Dipéptidos/química , Dicroismo Circular , Hidrogeles/química , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía de Fuerza Atómica , Nanofibras/química , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Electricidad Estática
18.
BMC Med Genet ; 18(1): 64, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28587604

RESUMEN

BACKGROUND: Type 2 diabetes (T2D) is a worldwide epidemic with considerable health and economic consequences. Sulfonylureas are widely used drugs for the treatment of patients with T2D. KCNJ11 and ABCC8 encode the Kir6.2 (pore-forming subunit) and SUR1 (regulatory subunit that binds to sulfonylurea) of pancreatic ß cell KATP channel respectively with a critical role in insulin secretion and glucose homeostasis. TCF7L2 encodes a transcription factor expressed in pancreatic ß cells that regulates insulin production and processing. Because mutations of these genes could affect insulin secretion stimulated by sulfonylureas, the aim of this study is to assess associations between molecular variants of KCNJ11, ABCC8 and TCF7L2 genes and response to sulfonylurea treatment and to predict their potential functional effects. METHODS: Based on a comprehensive literature search, we found 13 pharmacogenetic studies showing that single nucleotide polymorphisms (SNPs) located in KCNJ11: rs5219 (E23K), ABCC8: rs757110 (A1369S), rs1799854 (intron 15, exon 16 -3C/T), rs1799859 (R1273R), and TCF7L2: rs7903146 (intron 4) were significantly associated with responses to sulfonylureas. For in silico bioinformatics analysis, SIFT, PolyPhen-2, PANTHER, MutPred, and SNPs3D were applied for functional predictions of 36 coding (KCNJ11: 10, ABCC8: 24, and TCF7L2: 2; all are missense), and HaploReg v4.1, RegulomeDB, and Ensembl's VEP were used to predict functions of 7 non-coding (KCNJ11: 1, ABCC8: 1, and TCF7L2: 5) SNPs, respectively. RESULTS: Based on various in silico tools, 8 KCNJ11 missense SNPs, 23 ABCC8 missense SNPs, and 2 TCF7L2 missense SNPs could affect protein functions. Of them, previous studies showed that mutant alleles of 4 KCNJ11 missense SNPs and 5 ABCC8 missense SNPs can be successfully rescued by sulfonylurea treatments. Further, 3 TCF7L2 non-coding SNPs (rs7903146, rs11196205 and rs12255372), can change motif(s) based on HaploReg v4.1 and are predicted as risk factors by Ensembl's VEP. CONCLUSIONS: Our study indicates that a personalized medicine approach by tailoring sulfonylurea therapy of T2D patients according to their genotypes of KCNJ11, ABCC8, and TCF7L2 could attain an optimal treatment efficacy.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Canales de Potasio de Rectificación Interna/genética , Compuestos de Sulfonilurea/uso terapéutico , Receptores de Sulfonilureas/genética , Proteína 2 Similar al Factor de Transcripción 7/genética , Alelos , Biología Computacional , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Exones , Genotipo , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina , Mutación Missense , Estudios Observacionales como Asunto , Polimorfismo de Nucleótido Simple , Medicina de Precisión , Ensayos Clínicos Controlados Aleatorios como Asunto
19.
J Cell Sci ; 127(Pt 15): 3257-68, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24829148

RESUMEN

Analyses of supernatants from apoptotic cells have helped in the identification of many signals that modulate the states of cell activation and differentiation. However, the current knowledge about the soluble factors that are released during apoptosis is rather limited. Previous studies have shown that S5a and angiocidin (both encoded by PSMD4) induce human acute monocytic leukemia cells (THP-1 cells) to differentiate into macrophages, but the cell-surface receptor of S5a has not been identified. In this study, we show that apoptotic THP-1 cells release endogenous S5a that binds to death receptor-6 (DR6, also known as TNFRSF1), which was identified as an orphan receptor, to induce THP-1 cells to differentiate. Furthermore, we found that the NF-κB pathway is activated, and that the transcription factors WT1 (Wilms' tumor 1) and c-myb mediate S5a-induced THP-1 differentiation. We also show that differentiation is blocked by anti-DR6 antibody, DR6 siRNA, DR6-Fc, NF-κB inhibitor or WT1 siRNA treatment. Our findings indicate that the interaction between cells can determine their differentiation, and we provide evidence for a functional interaction between S5a and DR6, which provides a novel potential mechanism to induce the differentiation of cancer cells, especially during biotherapy for leukemia.


Asunto(s)
Monocitos/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas c-myb/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Proteínas WT1/metabolismo , Anticuerpos Bloqueadores/farmacología , Apoptosis/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Humanos , FN-kappa B/metabolismo , Fosforilación/genética , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Proteínas Proto-Oncogénicas c-myb/genética , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN , Receptores del Factor de Necrosis Tumoral/genética , Receptores del Factor de Necrosis Tumoral/inmunología , Transducción de Señal/genética , Proteínas WT1/genética
20.
Biochem Biophys Res Commun ; 478(3): 1165-72, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27544030

RESUMEN

microRNAs (miRNAs) are short noncoding RNAs that function in RNA silencing and post-transcriptional regulation of gene expression. They play critical regulatory roles in many cardiovascular diseases, including ischemia-induced cardiac injury. Here, we report microRNA-22, highly expressed in the heart, can protect cardiomyocytes from starvation-induced injury through promoting autophagy and inhibiting apoptosis. Quantitative real-time PCR (qPCR) demonstrated that the expression of miR-22 in starvation-treated neonatal rat cardiomyocytes (NRCMs) was markedly down-regulated. Over-expression of miR-22 significantly promoted starvation-induced autophagy and inhibited starvation-induced apoptosis in NRCMs. In contrast, reduction of miR-22 suppressed autophagy and accelerated apoptosis in starving NRCMs. Immunohistochemistry and TUNEL staining results also provided further evidence that miR-22 promoted autophagy and inhibited apoptosis in myocardial cells. Furthermore, both luciferase reporter assay and western blot analysis were performed to identify p38α as a direct target of miR-22. Taken together, miR-22 plays an important role in regulating autophagy and apoptosis in ischemic myocardium through targeting p38α. miR-22 may represent a potential therapeutic target for the treatment of ischemic heart diseases.


Asunto(s)
Apoptosis , Autofagia , MicroARNs/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Animales Recién Nacidos , Secuencia de Bases , Citoprotección , Regulación de la Expresión Génica , Ratones Endogámicos C57BL , MicroARNs/genética , Modelos Biológicos , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA