Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38255907

RESUMEN

Tight junction (TJ) proteins (Tjps), Tjp1 and Tjp2, are tight junction-associated scaffold proteins that bind to the transmembrane proteins of tight junctions and the underlying cytoskeleton. In this study, we first analyzed the tumorigenic characteristics of B16-F10 melanoma cells, including cell proliferation, migration, invasion, metastatic potential, and the expression patterns of related proteins, after the CRISPR-Cas9-mediated knockout (KO) of Tjp genes. The proliferation of Tjp1 and Tjp2 KO cells significantly increased in vitro. Other tumorigenic characteristics, including migration and invasion, were significantly enhanced in Tjp1 and Tjp2 KO cells. Zonula occludens (ZO)-associated protein Claudin-1 (CLDN-1), which is a major component of tight junctions and functions in controlling cell-to-cell adhesion, was decreased in Tjp KO cells. Additionally, Tjp KO significantly stimulated tumor growth and metastasis in an in vivo mouse model. We performed a transcriptome analysis using next-generation sequencing (NGS) to elucidate the key genes involved in the mechanisms of action of Tjp1 and Tjp2. Among the various genes affected by Tjp KO-, cell cycle-, cell migration-, angiogenesis-, and cell-cell adhesion-related genes were significantly altered. In particular, we found that the Ninjurin-1 (Ninj1) and Catenin alpha-1 (Ctnna1) genes, which are known to play fundamental roles in Tjps, were significantly downregulated in Tjp KO cells. In summary, tumorigenic characteristics, including cell proliferation, migration, invasion, tumor growth, and metastatic potential, were significantly increased in Tjp1 and Tjp2 KO cells, and the knockout of Tjp genes significantly affected the expression of related proteins.


Asunto(s)
Melanoma Experimental , Uniones Estrechas , Animales , Ratones , Carcinogénesis/genética , Proliferación Celular , Proteínas de Uniones Estrechas/genética , Melanoma Experimental/genética , Factores de Crecimiento Nervioso , Moléculas de Adhesión Celular Neuronal
2.
Int J Mol Sci ; 24(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37240145

RESUMEN

Epithelial-to-mesenchymal transition (EMT) plays a critical role in the development and progression of lung cancer by promoting its invasiveness and metastasis. Using integrative analyses of the public lung cancer database, we found that the expression levels of the tight junction proteins, zonula occluden (ZO)-1 and ZO-2, were lower in lung cancer tissues, including both lung adenocarcinoma and lung squamous cell carcinoma than in normal lung tissues analyzed using The Cancer Genome Atlas (TCGA). Although the ectopic expression or knockdown of ZO-1 and ZO-2 did not affect the growth of lung cancer cells, they significantly regulated cell migration and invasion. When M0 macrophages were co-cultured with ZO-1 or ZO-2 knockdown Calu-1 cells, M2-like polarization was efficiently induced. Conversely, co-culture of M0 THP-1 cells with A549 cells stably expressing ZO-1 or ZO-2 significantly reduced M2 differentiation. We also identified G protein subunit alpha q (GNAQ) as a potential ZO-1- and ZO-2-specific activator through analysis of correlated genes with the TCGA lung cancer database. Our results suggest that the GNAQ-ZO-1/2 axis may play a tumor-suppressive role in lung cancer development and progression and highlight ZO-1 and ZO-2 as key EMT- and tumor microenvironment-suppressive proteins. These findings provide new insights for the development of targeted therapies for lung cancer.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Uniones Estrechas/metabolismo , Microambiente Tumoral/genética , Neoplasias Pulmonares/genética , Transición Epitelial-Mesenquimal/genética , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo
3.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37686124

RESUMEN

Urban particulate matter (UPM) is a high-hazard cause of various diseases in humans, including in the respiratory tract, skin, heart, and even brain. Unfortunately, there is no established treatment for the damage caused by UPM in the respiratory epithelium. In addition, although RIPK3 is known to induce necroptosis, its intracellular role as a negative regulator in human lungs and bronchial epithelia remains unclear. Here, the endogenous expression of RIPK3 was significantly decreased 6 h after exposure to UPM. In RIPK3-ovexpressed cells, RIPK3 was not moved to the cytoplasm from the nucleus. Interestingly, the overexpression of RIPK3 dramatically decreased TEER and F-actin formation. Its overexpression also decreased the expression of genes for pro-inflammatory cytokines (IL-6 and IL-8) and tight junctions (ZO-1, -2, -3, E-cadherin, and claudin) during UPM-induced airway inflammation. Importantly, overexpression of RIPK3 inhibited the UPM-induced ROS production by inhibiting the activation of iNOS and eNOS and by regulating mitochondrial fission processing. In addition, UPM-induced activation of the iκB and NF-κB signaling pathways was dramatically decreased by RIPK3, and the expression of pro-inflammatory cytokines was decreased by inhibiting the iκB signaling pathway. Our data indicated that RIPK3 is essential for the UPM-induced inflammatory microenvironment to maintain homeostasis. Therefore, we suggest that RIPK3 is a potential therapeutic candidate for UPM-induced pulmonary inflammation.


Asunto(s)
Inflamación , Material Particulado , Proteínas de Uniones Estrechas , Humanos , Claudinas , Homeostasis , Inflamación/inducido químicamente , Mucosa Respiratoria , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Material Particulado/efectos adversos , Material Particulado/metabolismo
4.
J Cell Mol Med ; 26(21): 5506-5516, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36226560

RESUMEN

Although the physiological function of receptor-interacting protein kinase (RIPK) 3 has emerged as a critical mediator of programmed necrosis/necroptosis, the intracellular role it plays as an attenuator in human lungs and human bronchial epithelia remains unclear. Here, we show that the expression of RIPK3 dramatically decreased in the inflamed tissues of human lungs, and moved from the nucleus to the cytoplasm. The overexpression of RIPK3 dramatically increased F-actin formation and decreased the expression of genes for pro-inflammatory cytokines (IL-6 and IL-1ß), but not siRNA-RIPK3. Interestingly, whereas RIPK3 was bound to histone 1b without LPS stimulation, the interaction between them was disrupted after 15 min of LPS treatment. Histone methylation could not maintain the binding of RIPK3 and activated movement towards the cytoplasm. In the cytoplasm, overexpressed RIPK3 continuously attenuated pro-inflammatory cytokine gene expression by inhibiting NF-κB activation, preventing the progression of inflammation during Pseudomonas aeruginosa infection. Our data indicated that RIPK3 is critical for the regulation of the LPS-induced inflammatory microenvironment. Therefore, we suggest that RIPK3 is a potential therapeutic candidate for bacterial infection-induced pulmonary inflammation.


Asunto(s)
Lipopolisacáridos , Pseudomonas aeruginosa , Humanos , Histonas , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Necrosis , Inflamación/metabolismo , Citocinas/metabolismo
5.
Gen Physiol Biophys ; 41(4): 263-274, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35938960

RESUMEN

Platycodin D (PD) is a triterpenoid saponin, a major bioactive constituent of the roots of Platycodon grandiflorum, which is well known for possessing various pharmacological properties. However, the anti-cancer mechanism of PD in bladder cancer cells remains poorly understood. In the current study, we investigated the effect of PD on the growth of human bladder urothelial carcinoma cells. PD treatment significantly reduced the cell survival of bladder cancer cells associated with induction of apoptosis and DNA damage. PD inhibited the expression of inhibitor of apoptosis family members, activated caspases, and induced cleavage of poly (ADP-ribose) polymerase. PD also increased the release of cytochrome c into the cytoplasm by disrupting the mitochondrial membrane potential while upregulating the expression ratio of Bax to Bcl-2. The PD-mediated anti-proliferative effect was significantly inhibited by pre-treatment with a pancaspase inhibitor, but not by an inhibitor of necroptosis. Moreover, PD suppressed the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway, and the apoptosis-inducing effect of PD was further enhanced by a PI3K inhibitor. In addition, PD increased the accumulation of reactive oxygen species (ROS), whereas N-acetyl cysteine (NAC), an ROS inhibitor, significantly attenuated the growth inhibition and inactivation of the PI3K/Akt/mTOR signaling caused by PD. Furthermore, NAC significantly suppressed apoptosis, DNA damage, and decreased cell viability induced by PD treatment. Collectively, our findings indicated that PD blocked the growth of bladder urothelial carcinoma cells by inducing ROS-mediated inactivation of the PI3K/Akt/mTOR signaling.


Asunto(s)
Carcinoma de Células Transicionales , Saponinas , Triterpenos , Neoplasias de la Vejiga Urinaria , Apoptosis , Humanos , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasa/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Saponinas/farmacología , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Triterpenos/farmacología , Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología
6.
J Cell Mol Med ; 24(20): 12211-12218, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32931139

RESUMEN

Although diesel airborne particulate matter (PM2.5) has been known to play a role in many human diseases, there is no direct evidence that therapeutic drugs or proteins can diminish PM2.5-induced diseases. Nevertheless, studies examining the negative control mechanisms of PM2.5-induced diseases are critical to develop novel therapeutic medications. In this study, the consensus PDZ peptide of ZO-1 inhibited PM2.5-induced inflammatory cell infiltration, pro-inflammatory cytokine gene expression, and TEER in bronchoalveolar lavage (BAL) fluid and AM cells. Our data indicated that the PDZ domain in ZO-1 is critical for regulation of the PM2.5-induced inflammatory microenvironment. Therefore, the PDZ peptide may be a potential therapeutic candidate during PM-induced respiratory diseases.


Asunto(s)
Regulación hacia Abajo , Gasolina/efectos adversos , Material Particulado/efectos adversos , Péptidos/farmacología , Neumonía/inducido químicamente , Neumonía/patología , Proteína de la Zonula Occludens-1/química , Secuencias de Aminoácidos , Línea Celular , Regulación hacia Abajo/efectos de los fármacos , Humanos , Dominios PDZ , Tamaño de la Partícula
7.
Pflugers Arch ; 472(2): 235-244, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31111223

RESUMEN

In general, acute exercise is thought to inhibit immune function and increase the risk of opportunistic infections, but there is some opposition to this due to a lack of quantitative evaluation. Therefore, we quantified the effect of exercise on immune function and observed the interaction between antigens and cytokines using an intramuscular infection with Trichinella spiralis (T. spiralis), a common parasitic infection model. C57BL/6 mice were used for a non-infection experiment and an infection (Inf) experiment. Each experiment was divided further into three groups: one control (CON) group, and an exercise pre-infection (PIE)-only group and exercise-sustained (ES) group, each of which was subjected to exercise for 7 weeks. All animals in the infection experiment were infected with T. spiralis 30 min after acute exercise. After infection, the ES and Inf-ES groups continued exercise for 7 additional weeks. The number of T. spiralis nurse cells remaining in skeletal muscles was fewer in the infected exercise groups compared with the infected control. Expression of interleukin-6 (IL-6) and interleukin-10 (IL-10) was higher in the Inf-CON group and transforming growth factor beta (TGF-ß) expression was lower in the Inf-CON group than in the CON group, as measured by RT-PCR. In the infection experiment, only IL-10 had significant differences between the groups. Immunofluorescence revealed that most cytokines were specifically expressed around the antigenic nurse cells following exercise. In conclusion, exercise training does not increase the risk of opportunistic infections even after acute exercise, but rather reduces it. These results may be due to antigen-specific immune responses.


Asunto(s)
Antígenos Helmínticos/inmunología , Interleucina-10/inmunología , Interleucina-6/inmunología , Condicionamiento Físico Animal/métodos , Triquinelosis/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Animales , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Trichinella spiralis/inmunología , Triquinelosis/prevención & control
8.
Cell Physiol Biochem ; 50(4): 1414-1428, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30355912

RESUMEN

BACKGROUND/AIMS: Malaria is the most deadly parasitic infection in the world, resulting in damage to various organs, including the liver, of the infected organism; however, the mechanism causing this damage in the liver remains unclear. Liver fibrosis, a major characteristic of liver diseases, occurs in response to liver injury and is regulated by a complex network of signaling pathways. Hedgehog (Hh) signaling orchestrates a number of hepatic responses including hepatic fibrogenesis. Therefore, we investigated whether Hh signaling influenced the liver's response to malarial infection. METHODS: Eight-week-old male C57BL/6 mice inoculated with blood containing Plasmodium berghei ANKA (PbA)-infected erythrocytes were sacrificed when the level of parasitemia in the blood reached 10% or 30%, and the livers were collected for biochemical analysis. Liver responses to PbA infection were examined by hematoxylin and eosin staining, real-time polymerase chain reaction, immunohistochemistry and western blot. RESULTS: Severe hepatic injury, such as ballooned hepatocytes, sinusoidal dilatation, and infiltrated leukocytes, was evident in the livers of the malaria-infected mice. Hypoxia was also induced in 30% parasitemia group. With the accumulation of Kupffer cells, inflammation markers, TNF-α, interleukin-1ß, and chemokine (C-X-C motif) ligand 1, were significantly upregulated in the infected group compared with the control group. Expression of fibrotic markers, including transforming growth factor-ß, α-smooth muscle actin (α-SMA), collagen 1a1, thymosin ß4, and vimentin, were significantly higher in the infected groups than in the control group. With increased collagen deposition, hepatic stellate cells expressing α-SMA accumulated in the liver of the PbA-infected mice, whereas those cells were rarely detected in the livers of the control mice. The levels of Hh signaling and Yes-associated protein (YAP), two key regulators for hepatic fibrogenesis, were significantly elevated in the infected groups compared with the control group. Treatment of mice with Hh inhibitor, GDC-0449, reduced hepatic inflammation and fibrogenesis with Hh suppression in PbA-infected mice. CONCLUSION: Our results demonstrate that HSCs are activated in and Hh and YAP signaling are associated with this process, contributing to increased hepatic fibrosis in malaria-infected livers.


Asunto(s)
Proteínas Hedgehog/metabolismo , Hígado/metabolismo , Plasmodium berghei/patogenicidad , Transducción de Señal/fisiología , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Anilidas/uso terapéutico , Animales , Proteínas de Ciclo Celular , Quimiocinas C/metabolismo , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Proteínas Hedgehog/antagonistas & inhibidores , Células Estrelladas Hepáticas/citología , Células Estrelladas Hepáticas/metabolismo , Hígado/parasitología , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Malaria/parasitología , Malaria/patología , Malaria/veterinaria , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfoproteínas/metabolismo , Plasmodium berghei/crecimiento & desarrollo , Piridinas/uso terapéutico , Timosina/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Regulación hacia Arriba , Vimentina/metabolismo , Proteínas Señalizadoras YAP
9.
Phytother Res ; 32(3): 504-513, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29193390

RESUMEN

Decoctions obtained from the dried flowers of Lonicera japonica Thunb. (Indongcho) have been utilized in folk remedies against inflammatory diseases. Recently, many agents that have used for inflammatory diseases are showing anticancer effects. Here, we have isolated polyphenols extracted from lyophilized Lonicera japonica Thunb (PELJ) and investigated the anticancer effects of PELJ on U937 cells. Here, we demonstrated that PELJ induced apoptosis by upregulation of DR4 and Fas, and further it is augmented by suppression of XIAP. In addition, The PELJ-induced apoptosis is at least in part by blocking PI3K/Akt pathway. These findings suggest that PELJ may provide evidence of anticancer activities on U937 cells. Further study for detailed mechanism and the effects on animal models is warranted to determine whether PELJ provide more conclusive evidence that PELJ which may provide a beneficial effect for treating cancer.


Asunto(s)
Caspasas/metabolismo , Leucemia/metabolismo , Lonicera/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Muerte Celular/metabolismo , Apoptosis , Humanos , Células U937
10.
Mediators Inflamm ; 2016: 7984853, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27034593

RESUMEN

Mucus secretion is often uncontrolled in many airway inflammatory diseases of humans. Identifying the regulatory pathway(s) of mucus gene expression, mucus overproduction, and hypersecretion is important to alleviate airway inflammation in these diseases. However, the regulatory signaling pathway controlling mucus overproduction has not been fully identified yet. In this study, we report that the ATP/P2Y2 complex secretes many cytokines and chemokines to regulate airway inflammation, among which IL-1 receptor antagonist (IL-1ra) downregulates MUC5AC gene expression via the inhibition of Gαq-induced Ca(2+) signaling. IL-1ra inhibited IL-1α protein expression and secretion, and vice versa. Interestingly, ATP/P2Y2-induced IL-1ra and IL-1α secretion were both mediated by PLCß3. A dominant-negative mutation in the PDZ-binding domain of PLCß3 inhibited ATP/P2Y2-induced IL-1ra and IL-1α secretion. IL-1α in the presence of the ATP/P2Y2 complex activated the ERK1/2 pathway in a greater degree and for a longer duration than the ATP/P2Y2 complex itself, which was dramatically inhibited by IL-1ra. These findings suggest that secreted IL-1ra exhibits a regulatory effect on ATP/P2Y2-induced MUC5AC gene expression, through inhibition of IL-1α secretion, to maintain the mucus homeostasis in the airway. Therefore, IL-1ra could be an excellent modality for regulating inflamed airway microenvironments in respiratory diseases.


Asunto(s)
Inflamación/metabolismo , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Mucina 5AC/metabolismo , Fosfolipasa C beta/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Adenosina Trifosfato , Calcio/metabolismo , Línea Celular , Humanos
11.
Am J Physiol Lung Cell Mol Physiol ; 308(6): L495-502, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25575516

RESUMEN

Mucin hypersecretion and overproduction are frequent manifestations of respiratory disease. Determining the physiological function of airway mucin is presently considered more important than identifying the relevant signaling pathways. The lack of a full-length human mucin 8 (MUC8) cDNA sequence has hindered the generation of a Muc8 knockout mouse line. Thus, the precise physiological functions of MUC8 are unclear. Herein, we investigated the function of MUC8 using a small-interfering RNA (siRNA)-mediated genetic silencing approach in human airway epithelial cells. Herein, intracellular IL-1α production was stimulated by an ATP/P2Y2 complex. While ATP/P2Y2 increased IL-1α secretion in a time-dependent manner, treatment with P2Y2-specific siRNA significantly decreased IL-1α secretion. Moreover, ATP increased P2Y2-mediated upregulation of MUC8 expression; however, IL-1α significantly decreased the extent to which ATP/P2Y2 upregulated MUC8 expression. Interestingly, treatment with MUC8-specific siRNA decreased the production of anti-inflammatory cytokines (TGF-ß and IL-1 receptor antagonist) and increased the production of inflammatory cytokines (IL-1α and IL-6) in our system. In addition, siRNA-mediated knockdown of MUC8 expression dramatically increased the secretion of inflammatory chemokines and resulted in an approximately threefold decrease in cell chemotaxis. We propose that MUC8 may function as an anti-inflammatory mucin that participates in inflammatory response by attracting immune cells/cytokines to the site of inflammation. Our results provide new insight into the physiological function of MUC8 and enhance our understanding of mucin overproduction during airway inflammation.


Asunto(s)
Adenosina Trifosfato/metabolismo , Silenciador del Gen , Mucinas/biosíntesis , ARN Interferente Pequeño , Receptores Purinérgicos P2Y2/metabolismo , Enfermedades Respiratorias/metabolismo , Animales , Línea Celular Tumoral , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Proteína Antagonista del Receptor de Interleucina 1/genética , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Ratones , Ratones Noqueados , Mucinas/genética , Receptores Purinérgicos P2Y2/genética , Enfermedades Respiratorias/genética , Enfermedades Respiratorias/patología , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
12.
Biol Pharm Bull ; 37(9): 1486-94, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25177032

RESUMEN

Mucins are highly glycosylated secretary proteins produced by most epithelial cells. Hypersecretion of mucins is one of the prominent symptoms of several airway diseases, including asthma, cystic fibrosis, nasal allergy, rhinitis, and sinusitis. Paraquat (PQ), a common herbicide, has been associated with pulmonary damage and is a potent reactive oxygen species (ROS) producer. However, until now the role of PQ on mucin overproduction has not been studied. The aim of this study is to explore how kaempferol (KM), a widely used dietary flavonoid, affects the protection of human PQ-exposed bronchial epithelium BEAS-2B cells by suppressing Mucin gene expression via nuclear factor-kappa B (NF-κB). We observed that PQ generates intracellular ROS, and also induces lipid peroxidation in BEAS-2B cells. Additionally, we found that PQ effectively induces the expression of the MUC5AC gene; however, co-treatment of PQ with KM drastically reduces its expression. Furthermore, we observed that PQ activates NF-κB, while co-treatment with KM occludes its nuclear translocation, and additionally KM repressed the PQ phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) in BEAS-2B cells. Based on our data, we believe that KM can suppress the over-expression of the MUC5AC gene. This would contribute to the protection of PQ cytotoxicity to exposed BEAS-2B cells, and allow further study toward a better understanding of ROS-associated diseases.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Herbicidas/toxicidad , Quempferoles/farmacología , Mucina 5AC/genética , Paraquat/toxicidad , Sustancias Protectoras/farmacología , Línea Celular , Citoprotección/efectos de los fármacos , Células Epiteliales/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Expresión Génica/efectos de los fármacos , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Peroxidación de Lípido/efectos de los fármacos , FN-kappa B/metabolismo , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo
13.
J Mol Graph Model ; 130: 108789, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38718434

RESUMEN

Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that modulates integrin and growth factor signaling pathways and is implicated in cancer cell migration, proliferation, and survival. Over the past decade various, FAK kinase, FERM, and FAT domain inhibitors have been reported and a few kinase domain inhibitors are under clinical consideration. However, few of them were identified as multikinase inhibitors. In kinase drug design selectivity is always a point of concern, to improve selectivity allosteric inhibitor development is the best choice. The current research utilized a pharmacophore modeling (PM) approach to identify novel allosteric inhibitors of FAK. The all-available allosteric inhibitor bound 3D structures with PDB ids 4EBV, 4EBW, and 4I4F were utilized for the pharmacophore modeling. The validated PM models were utilized to map a database of 770,550 compounds prepared from ZINC, EXIMED, SPECS, ASINEX, and InterBioScreen, aiming to identify potential allosteric inhibitors. The obtained compounds from screening step were forwarded to molecular docking (MD) for the prediction of binding orientation inside the allosteric site and the results were evaluated with the known FAK allosteric inhibitor (REF). Finally, 14 FAK-inhibitor complexes were selected from the docking study and were studied under molecular dynamics simulations (MDS) for 500 ns. The complexes were ranked according to binding free energy (BFE) and those demonstrated higher affinity for allosteric site of FAK than REF inhibitors were selected. The selected complexes were further analyzed for intermolecular interactions and finally, three potential allosteric inhibitor candidates for the inhibition of FAK protein were identified. We believe that identified scaffolds may help in drug development against FAK as an anticancer agent.


Asunto(s)
Proteína-Tirosina Quinasas de Adhesión Focal , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Regulación Alostérica , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Proteína-Tirosina Quinasas de Adhesión Focal/química , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Sitio Alostérico , Unión Proteica , Diseño de Fármacos , Sitios de Unión , Farmacóforo
14.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38139776

RESUMEN

PROteolysis TArgeting Chimera (PROTAC) is an emerging technology in chemical biology and drug discovery. This technique facilitates the complete removal of the target proteins that are "undruggable" or challenging to target through chemical molecules via the Ubiquitin-Proteasome System (UPS). PROTACs have been widely explored and outperformed not only in cancer but also in other diseases. During the past few decades, several academic institutes and pharma companies have poured more efforts into PROTAC-related technologies, setting the stage for several major degrader trial readouts in clinical phases. Despite their promising results, the formation of robust ternary orientation, off-target activity, poor permeability, and binding affinity are some of the limitations that hinder their development. Recent advancements in computational technologies have facilitated progress in the development of PROTACs. Researchers have been able to utilize these technologies to explore a wider range of E3 ligases and optimize linkers, thereby gaining a better understanding of the effectiveness and safety of PROTACs in clinical settings. In this review, we briefly explore the computational strategies reported to date for the formation of PROTAC components and discuss the key challenges and opportunities for further research in this area.

15.
J Ginseng Res ; 47(2): 311-318, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36926611

RESUMEN

Background: The beneficial effects of compound K (CK) on different chronic diseases have been shown to be at least related to antioxidant action. Nevertheless, since its antioxidant activity in human retinal pigment epithelial (RPE) cells is still unknown, here we investigated whether CK alleviates oxidative stress-stimulated damage in RPE ARPE-19 cells. Methods: The cytoprotective consequence of CK in hydrogen peroxide (H2O2)-treated cells was evaluated by cell viability, DNA damage, and apoptosis assays. Fluorescence analysis and immunoblotting were performed to investigate the inhibitory action of CK on reactive oxygen species (ROS) production and mitochondrial dysfunction. Results: H2O2-promoted cytotoxicity, oxidative stress, DNA damage, mitochondrial impairment, and apoptosis were significantly attenuated by CK in ARPE-19 cells. Furthermore, nuclear factor erythroid 2-related factor 2 (Nrf2) phosphorylation level and its shuttling to the nucleus were increased, which was correlated with upregulated activation of heme oxygenase-1 (HO-1). However, zinc protoporphyrin, a blocker of HO-1, significantly abrogated the preventive action of CK in H2O2-treated ARPE-19 cells. Conclusion: This study indicates that activation of Nrf2/HO-1 signaling by CK plays an important role in rescuing ARPE-19 cells from oxidative cellular damage.

16.
Cells ; 12(22)2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37998363

RESUMEN

Iron homeostasis is considered a key factor in human metabolism, and abrogation in the system could create adverse effects, including cancer. Moreover, 6-gingerol is a widely used bioactive phenolic compound with anticancer activity, and studies on its exact mechanisms on non-small cell lung cancer (NSCLC) cells are still undergoing. This study aimed to find the mechanism of cell death induction by 6-gingerol in NSCLC cells. Western blotting, real-time polymerase chain reaction, and flow cytometry were used for molecular signaling studies, and invasion and tumorsphere formation assay were also used with comet assay for cellular processes. Our results show that 6-gingerol inhibited cancer cell proliferation and induced DNA damage response, cell cycle arrest, and apoptosis in NSCLC cells, and cell death induction was found to be the mitochondrial-dependent intrinsic apoptosis pathway. The role of iron homeostasis in the cell death induction of 6-gingerol was also investigated, and iron metabolism played a vital role in the anticancer ability of 6-gingerol by downregulating EGFR/JAK2/STAT5b signaling or upregulating p53 and downregulating PD-L1 expression. Also, 6-gingerol induced miR-34a and miR-200c expression, which may indicate regulation of PD-L1 expression by 6-gingerol. These results suggest that 6-gingerol could be a candidate drug against NSCLC cells and that 6-gingerol could play a vital role in cancer immunotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , MicroARNs/genética , Hierro
17.
Antioxidants (Basel) ; 12(7)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37507949

RESUMEN

Diabetic retinopathy (DR) is the leading cause of vision loss and a major complication of diabetes. Hyperglycemia-induced accumulation of reactive oxygen species (ROS) is an important risk factor for DR. ß-asarone, a major component of volatile oil extracted from Acori graminei Rhizoma, exerts antioxidant effects; however, its efficacy in DR remains unknown. In this study, we investigated whether ß-asarone inhibits high-glucose (HG)-induced oxidative damage in human retinal pigment epithelial (RPE) ARPE-19 cells. We found that ß-asarone significantly alleviated cytotoxicity, apoptosis, and DNA damage in HG-treated ARPE-19 cells via scavenging of ROS generation. ß-Asarone also significantly attenuated the excessive accumulation of lactate dehydrogenase and mitochondrial ROS by increasing the manganese superoxide dismutase and glutathione activities. HG conditions markedly increased the release of interleukin (IL)-1ß and IL-18 and upregulated their protein expression and activation of the nuclear factor-kappa B (NF-κB) signaling pathway, whereas ß-asarone reversed these effects. Moreover, expression levels of the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome multiprotein complex molecules, including thioredoxin-interacting protein, NLRP3, apoptosis-associated speck-like protein containing a caspase-recruitment domain, and cysteinyl aspartate-specific proteinase-1, were increased in ARPE-19 cells under HG conditions. However, their expression levels remained similar to those in the control group in the presence of ß-asarone. Therefore, ß-asarone protects RPE cells from HG-induced injury by blocking ROS generation and NF-κB/NLRP3 inflammasome activation, indicating its potential as a therapeutic agent for DR treatment.

18.
Mol Cells ; 46(11): 700-709, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37750239

RESUMEN

Mucus hyperproduction and hypersecretion are observed often in respiratory diseases. MUC8 is a glycoprotein synthesized by epithelial cells and generally expressed in the respiratory track. However, the physiological mechanism by which extracellular nucleotides induce MUC8 gene expression in human airway epithelial cells is unclear. Here, we show that UTP could induce MUC8 gene expression through P2Y2-PLCß3-Ca2+ activation. Because the full-length cDNA sequence of MUC8 has not been identified, a specific siRNA-MUC8 was designed based on the partial cDNA sequence of MUC8. siRNA-MUC8 significantly increased TNF-α production and decreased IL-1Ra production, suggesting that MUC8 may downregulate UTP/P2Y2-induced airway inflammation. Interestingly, the PDZ peptide of ZO-1 protein strongly abolished UTP-induced TNF-α production and increased IL-1Ra production and MUC8 gene expression. In addition, the PDZ peptide dramatically increased the levels of UTP-induced ZO proteins and TEER (trans-epithelial electrical resistance). These results show that the anti-inflammatory mucin MUC8 may contribute to homeostasis, and the PDZ peptide can be a novel therapeutic candidate for UTP-induced airway inflammation.


Asunto(s)
Proteína Antagonista del Receptor de Interleucina 1 , Mucinas , Humanos , Mucinas/genética , Mucinas/metabolismo , Uridina Trifosfato/metabolismo , ADN Complementario , Factor de Necrosis Tumoral alfa/metabolismo , Células Epiteliales/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , ARN Interferente Pequeño/metabolismo , Inflamación/metabolismo
19.
BMB Rep ; 54(7): 368-373, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33691904

RESUMEN

The vertebrate genome contains an endogenous retrovirus that has been inherited from the past millions of years. Although approximately 8% of human chromosomal DNA consists of sequences derived from human endogenous retrovirus (HERV) fragments, most of the HERVs are currently inactive and noninfectious due to recombination, deletions, and mutations after insertion into the host genome. Several studies suggested that Human endogenous retroviruses (HERVs) factors are significantly related to certain cancers. However, only limited studies have been conducted to analyze the expression of HERV derived elements at protein levels in certain cancers. Herein, we analyzed the expression profiles of HERV-K envelope (Env) and HERV-R Env proteins in eleven different kinds of cancer tissues. Furthermore, the expression patterns of both protein and correlation with various clinical data in each tissue were analyzed. The expressions of both HERV-K Env and HERV-R Env protein were identified to be significantly high in most of the tumors compared with normal surrounding tissues. Correlations between HERV Env expressions and clinical investigations varied depending on the HERV types and cancers. Overall expression patterns of HERV-K Env and HERV-R Env proteins were different in every individual but a similar pattern of expressions was observed in the same individual. These results demonstrate the expression profiles of HERV-K and HERV-R Env proteins in various cancer tissues and provide a good reference for the association of endogenous retroviral Env proteins in the progression of various cancers. Furthermore, the results elucidate the relationship between HERV-Env expression and the clinical significance of certain cancers. [BMB Reports 2021; 54(7): 368-373].


Asunto(s)
Retrovirus Endógenos/genética , Genes env/genética , Neoplasias/genética , Retrovirus Endógenos/metabolismo , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Productos del Gen env/genética , Productos del Gen env/metabolismo , Humanos , Análisis de Matrices Tisulares/métodos , Transcriptoma/genética
20.
Antioxidants (Basel) ; 10(2)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498524

RESUMEN

Urban particulate matter (UPM) is recognized as a grave public health problem worldwide. Although a few studies have linked UPM to ocular surface diseases, few studies have reported on retinal dysfunction. Thus, the aim of the present study was to evaluate the influence of UPM on the retina and identify the main mechanism of UPM toxicity. In this study, we found that UPM significantly induced cytotoxicity with morphological changes in ARPE-19 human retinal pigment epithelial (RPE) cells and increased necrosis and autophagy but not apoptosis. Furthermore, UPM significantly increased G2/M arrest and simultaneously induced alterations in cell cycle regulators. In addition, DNA damage and mitochondrial dysfunction were remarkably enhanced by UPM. However, the pretreatment with the potent reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC) effectively suppressed UPM-mediated cytotoxicity, necrosis, autophagy, and cell cycle arrest. Moreover, NAC markedly restored UPM-induced DNA damage and mitochondrial dysfunction. Meanwhile, UPM increased the expression of mitophagy-regulated proteins, but NAC had no effect on mitophagy. Taken together, although further studies are needed to identify the role of mitophagy in UPM-induced RPE injury, the present study provides the first evidence that ROS-mediated cellular damage through necrosis and autophagy is one of the mechanisms of UPM-induced retinal disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA