RESUMEN
Implantation of the human embryo begins a critical developmental stage that comprises profound events including axis formation, gastrulation and the emergence of haematopoietic system1,2. Our mechanistic knowledge of this window of human life remains limited due to restricted access to in vivo samples for both technical and ethical reasons3-5. Stem cell models of human embryo have emerged to help unlock the mysteries of this stage6-16. Here we present a genetically inducible stem cell-derived embryoid model of early post-implantation human embryogenesis that captures the reciprocal codevelopment of embryonic tissue and the extra-embryonic endoderm and mesoderm niche with early haematopoiesis. This model is produced from induced pluripotent stem cells and shows unanticipated self-organizing cellular programmes similar to those that occur in embryogenesis, including the formation of amniotic cavity and bilaminar disc morphologies as well as the generation of an anterior hypoblast pole and posterior domain. The extra-embryonic layer in these embryoids lacks trophoblast and shows advanced multilineage yolk sac tissue-like morphogenesis that harbours a process similar to distinct waves of haematopoiesis, including the emergence of erythroid-, megakaryocyte-, myeloid- and lymphoid-like cells. This model presents an easy-to-use, high-throughput, reproducible and scalable platform to probe multifaceted aspects of human development and blood formation at the early post-implantation stage. It will provide a tractable human-based model for drug testing and disease modelling.
Asunto(s)
Desarrollo Embrionario , Estratos Germinativos , Hematopoyesis , Saco Vitelino , Humanos , Implantación del Embrión , Endodermo/citología , Endodermo/embriología , Estratos Germinativos/citología , Estratos Germinativos/embriología , Saco Vitelino/citología , Saco Vitelino/embriología , Mesodermo/citología , Mesodermo/embriología , Células Madre Pluripotentes Inducidas/citología , Amnios/citología , Amnios/embriología , Cuerpos Embrioides/citología , Linaje de la Célula , Biología Evolutiva/métodos , Biología Evolutiva/tendenciasRESUMEN
Inference of global gene regulatory networks from omics data is a long-term goal of systems biology. Most methods developed for inferring transcription factor (TF)-gene interactions either relied on a small dataset or used snapshot data which is not suitable for inferring a process that is inherently temporal. Here, we developed a new computational method that combines neural networks and multi-task learning to predict RNA velocity rather than gene expression values. This allows our method to overcome many of the problems faced by prior methods leading to more accurate and more comprehensive set of identified regulatory interactions. Application of our method to atlas scale single cell data from 6 HuBMAP tissues led to several validated and novel predictions and greatly improved on prior methods proposed for this task.
Asunto(s)
Biología Computacional , Algoritmos , Redes Reguladoras de Genes , Biología de Sistemas , Análisis de la Célula Individual , Atlas como AsuntoRESUMEN
Noradrenergic activation of the basolateral amygdala (BLA) by emotional arousal enhances different forms of recognition memory via functional interactions with the insular cortex (IC). Human neuroimaging studies have revealed that the anterior IC (aIC), as part of the salience network, is dynamically regulated during arousing situations. Emotional stimulation first rapidly increases aIC activity but suppresses it in a delayed fashion. Here, we investigated in male Sprague-Dawley rats whether the BLA influence on recognition memory is associated with an increase or suppression of aIC activity during the postlearning consolidation period. We first employed anterograde and retrograde viral tracing and found that the BLA sends dense monosynaptic projections to the aIC. Memory-enhancing norepinephrine administration into the BLA following an object training experience suppressed aIC activity 1 h later, as determined by a reduced expression of the phosphorylated form of the transcription factor cAMP response element-binding (pCREB) protein and neuronal activity marker c-Fos. In contrast, the number of perisomatic γ-aminobutyric acid (GABA)ergic inhibitory synapses per pCREB-positive neuron was significantly increased, suggesting a dynamic up-regulation of GABAergic tone. In support of this possibility, pharmacological inhibition of aIC activity with a GABAergic agonist during consolidation enhanced object recognition memory. Norepinephrine administration into the BLA did not affect neuronal activity within the posterior IC, which receives sparse innervation from the BLA. The evidence that noradrenergic activation of the BLA enhances the consolidation of object recognition memory via a mechanism involving a suppression of aIC activity provides insight into the broader brain network dynamics underlying emotional regulation of memory.
Asunto(s)
Complejo Nuclear Basolateral , Emociones , Corteza Insular , Inhibición Neural , Reconocimiento en Psicología , Percepción Visual , Animales , Nivel de Alerta , Complejo Nuclear Basolateral/efectos de los fármacos , Complejo Nuclear Basolateral/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Emociones/efectos de los fármacos , Emociones/fisiología , Agonistas del GABA/farmacología , Corteza Insular/efectos de los fármacos , Corteza Insular/fisiología , Masculino , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Norepinefrina/administración & dosificación , Norepinefrina/farmacología , Ratas , Ratas Sprague-Dawley , Reconocimiento en Psicología/efectos de los fármacos , Reconocimiento en Psicología/fisiología , Percepción Visual/fisiologíaRESUMEN
BACKGROUND: Immunotherapy targeting PD-1/PD-L1 has revolutionized the treatment of extensive-stage small cell lung cancer (ES-SCLC). However, clinical trials suggest differential efficacy of anti-PD-1 agents and anti-PD-L1 agents in first-line treatment of ES-SCLC. This retrospective multicenter study aimed to compare the efficacy and safety of anti-PD-1 agents versus anti-PD-L1 agents in first-line treatment of ES-SCLC in real-world practice. METHODS: Patients with pathologically or cytologically confirmed ES-SCLC treated with platinum plus etoposide combined with anti-PD-1 or PD-L1 agents as first-line treatment in different centers of PLA General Hospital between January 2017 and October 2021 were included for this study. Survival outcomes and safety were compared between patients receiving anti-PD-1 and PD-L1 agents. RESULTS: Of the total 154 included patients, 68 received anti-PD-1 agents plus chemotherapy (PD-1 group), and 86 received anti-PD-L1 agents plus chemotherapy (PD-L1 group). Progression-free survival (PFS) and overall survival (OS) in the entire cohort were 7.6 months (95% confidence interval [CI]: 6.5-8.2 months) and 17.4 months (95% CI: 15.3-19.3 months), respectively. Median PFS and OS were comparable between the PD-1 group and PD-L1 group (PFS: 7.6 months vs. 8.3 months, HR = 1.13, 95% CI: 0.79-1.62, p = 0.415; OS: 26.9 months vs. 25.6 months, HR = 0.96, 95% CI: 0.63-1.47, p = 0.859. The objective response rate and disease control rate were comparable between the two groups: 79.4% vs. 79.1% and 92.6% vs. 94.2%, respectively. The 6-month, 12-month, and 18-month PFS and OS rates were slightly higher in the PD-L1 group than in the PD-1 group, while the 24-month PFS rate was slightly higher in the PD-1 group than in the PD-L1 group. Stratified analysis showed that locoregional thoracic radiotherapy and normal lactate dehydrogenase level were independent predictors of better OS in ES-SCLC patients treated with first-line chemotherapy plus ICI. Adverse events were not significantly different between the two groups. CONCLUSIONS: Anti-PD-1 agents and anti-PD-L1 agents combined with chemotherapy as first-line treatment for ES-SCLC are comparably effective and well tolerated.
Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Antígeno B7-H1 , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Neoplasias Pulmonares/tratamiento farmacológico , Receptor de Muerte Celular Programada 1 , Estudios Retrospectivos , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológicoRESUMEN
The aim of the study was to explore the clinical features related to early hypothyroidism and the relationship between the changes of thyrotropin receptor antibodies (TRAb) and early hypothyroidism in the course of 131I treatment for Graves' disease. This study was a retrospective observation, including 226 patients who received the first 131I treatment. The general information and laboratory tests were collected before and after 131I treatment, and the laboratory data affecting the difference in disease outcome were analyzed. According to the changes of antibodies in the third month, whether the changes of antibodies were involved in the occurrence of early-onset hypothyroidism was analyzed. Early onset hypothyroidism occurred in 165 of 226 patients, and the results showed that the incidence of early hypothyroidism was higher in patients with low baseline TRAb level (p=0.03) and increased TRAb after treatment (p=0.007). Both baseline TRAb levels (p<0.001) and the 24-hour iodine uptake rate (p=0.004) are significant factors influencing the changes in TRAb. The likelihood of a rise in TRAb was higher when the baseline TRAb was less than 18.55 U/l and the 24-hour iodine uptake level exceeded 63.61%. Low baseline and elevated post-treatment levels of TRAb were significantly associated with early-onset hypothyroidism after 131I treatment. Monitoring this index during RAI treatment is helpful in identifying early-onset hypothyroidism and mastering the clinical outcome and prognosis of Graves' disease.
RESUMEN
OBJECTIVE: Current gene therapy of inherited retinal diseases is achieved mainly by subretinal injection, which is invasive with severe adverse effects. Intravitreal injection is a minimally invasive alternative for gene therapy of inherited retinal diseases. This work explores the efficacy of intravitreal delivery of PEGylated ECO (a multifunctional pH-sensitive amphiphilic amino lipid) plasmid DNA (pGRK1-ABCA4-S/MAR) nanoparticles (PEG-ELNP) for gene therapy of Stargardt disease. METHODS: Pigmented Abca4-/- knockout mice received 1 µL of PEG-ELNP solution (200 ng/uL, pDNA concentration) by intravitreal injections at an interval of 1.5 months. The expression of ABCA4 in the retina was determined by RT-PCR and immunohistochemistry at 6 months after the second injection. A2E levels in the treated eyes and untreated controls were determined by HPLC. The safety of treatment was monitored by scanning laser ophthalmoscopy and electroretinogram (ERG). RESULTS: PEG-ELNP resulted in significant ABCA4 expression at both mRNA level and protein level at]6 months after 2 intravitreal injections, and a 40% A2E accumulation reduction compared with non-treated controls. The PEG-ELNP also demonstrated excellent safety as shown by scanning laser ophthalmoscopy, and the eye function evaluation from electroretinogram. CONCLUSIONS: Intravitreal delivery of the PEG-ELNP of pGRK1-ABCA4-S/MAR is a promising approach for gene therapy of Stargardt Disease, which can also be a delivery platform for gene therapy of other inherited retinal diseases.
Asunto(s)
Nanopartículas , Retina , Ratones , Animales , Enfermedad de Stargardt/genética , Enfermedad de Stargardt/metabolismo , Enfermedad de Stargardt/terapia , Retina/metabolismo , Terapia Genética/métodos , Plásmidos/genética , ADN/metabolismo , Ratones Noqueados , Polietilenglicoles/metabolismo , Inyecciones Intravítreas , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismoRESUMEN
Organic-inorganic hybrid phase-transition materials have attracted widespread attention in energy storage and sensor applications due to their structural adaptability and facile synthesis. However, increasing the phase-transition temperature (Tc) effectively remains a formidable challenge. In this study, we employed a strategy to regulate intermolecular interactions (different types of hydrogen bonds and other weak interactions), utilizing bismuth chloride as an inorganic framework and azetidine, 3,3-difluoro azetidine, and 3-carboxyl azetidine as organic components to synthesize three compounds with different Tc values: [C3H8N]2BiCl5 (1, 234 K), [C3H6NF2]3BiCl6 (2, 256 K), and [C4H8O2N]3BiCl6 (3, 350 K). 1 is a one-dimensional chain structure and 2 and 3 are zero-dimensional structures. Analysis of the crystal structure and the Hirshfeld surface and 2D fingerprints further suggests that the intermolecular forces are efficiently modulated. These findings emphasize the efficacy of our strategy in enhancing Tc and may facilitate further research in this area.
RESUMEN
CONTEXT: Water intake in drinks and food is essential for life. Multiple guidelines exist to help give recommendations for healthy water intake and urine output, but few of these are specific to patients with lower urinary tract symptoms. METHODS: A debate held at the International Consultation on Incontinence-Research Society meeting, held in Bristol in June 2024, considered ways to improve this situation. RESULTS AND CONCLUSION: There are challenges in measuring both total water intake and also urine output, but we suggest that urine output may be the most helpful measure to focus on for future guidelines for patients.
RESUMEN
AIMS: The integration of artificial intelligence (AI) into functional urology management must be assessed for its clinical utility, but hopefully will change, perhaps to revolutionize the way LUTD and other conditions are assessed, the aim being to offer patients more rapid and effective management which enhances patient outcomes. The aim of this proposal, discussed at the ICI-RS annual meeting, is to evaluate the available evidence on AI and the way it might change the approach to urodynamic (UDS) diagnoses, including overactive bladder syndrome (OAB), and perhaps other LUTDs such as bladder outflow obstruction. METHODS: A compendium of discussion based on the current evidence related to AI and its potential applications in UDS and OAB. RESULTS: AI-powered diagnostic tools are being developed to analyze complex datasets from urodynamic studies, imaging, and other diagnostic tests. AI systems can leverage large volumes of clinical data to recommend personalized treatment plans based on individual patient profiles to optimize surgical procedures, enhance diagnostic precision, tailor the therapy, reduce the risk of complications, and improve outcomes. In the future, AI will be able to provide tailored counseling regarding the outcomes and potential side effects of drugs and procedures to a given patient. CONCLUSION: AI's role in functional urology has been poorly investigated, and its implementation across several areas may improve clinical care and the pathophysiological understanding of functional urologic conditions.
RESUMEN
The practical application of Na-based solid-state electrolytes (SSEs) is limited by their low level of conduction. To evaluate the impact of tetrahedral anion groups on carrier migration, we designed a set of anti-perovskite SSEs theoretically based on the previously reported Na4OBr2, including Na4O(BH4)2, Na4O(BF4)2, and Na4O(AlH4)2. It is essential to note that the excessive radius of anionic groups inevitably leads to lattice distortion, resulting in asymmetric migration paths and a limited improvement in carrier migration rate. Na4O(AlH4)2 provides a clear example of where Na+ migrates in two distinct environments. In addition, due to different spatial charge distributions, the interaction strength between anionic groups and Na+ is different. Strong interactions can cause carriers to appear on a swing, leading to a decrease in conductivity. The low conductivity of Na4O(BF4)2 is a typical example. This study demonstrates that Na4O(BH4)2 exhibits remarkable mechanical and dynamic stability and shows ionic conductivity of 1.09 × 10-4 S cm-1, two orders of magnitude higher than that of Na4OBr2. This is attributed to the expansion of the carrier migration channels by the anion groups, the moderate interaction between carriers and anionic groups, and the "paddle-wheel" effect generated by the anion groups, indicating that the "paddle-wheel" effect is still effective in low-dimensional anti-perovskite structures, in which atoms are arranged asymmetrically.
RESUMEN
UBE2T is an oncogene in varying tumors, including lung adenocarcinoma (LUAD). SORBS3 is an important signaling regulatory protein that plays a crucial role in many cancers. This study aimed to investigate whether UBE2T promoted LUAD development by mediating the ubiquitination of SORBS3 and further explore its mechanism. Bioinformatics analysis was conducted to examine the expression of SORBS3 in LUAD tissues. Cell Counting Kit-8, Transwell, and flow cytometry were employed to analyze the cellular functions of SORBS3. Co-immunoprecipitation and ubiquitination analysis were employed to observe the correlation between UBE2T and SORBS3. In vitro and in vivo experiments verified the role of UBE2T in mediating SORBS3 ubiquitination to enhance interleukin-6/signal transducer and activator of transcription 3 (IL-6/STAT3) signaling and promote LUAD development. We observed significant downregulation of SORBS3 in LUAD tissues and cells. Furthermore, SORBS3 inhibited the proliferation, migration, and invasion of LUAD cells, while facilitating apoptosis in vitro. UBE2T enhanced IL-6/STAT3 signaling by mediating ubiquitination and degradation of SORBS3, thereby promoting LUAD progression. Additionally, this mechanism was further validated in the xenograft animal model in vivo. This study confirmed that UBE2T-mediated SORBS3 ubiquitination enhanced IL-6/STAT3 signaling and promoted LUAD progression, providing a novel therapeutic target for LUAD.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Adenocarcinoma del Pulmón , Interleucina-6 , Neoplasias Pulmonares , Proteínas Musculares , Factor de Transcripción STAT3 , Transducción de Señal , Enzimas Ubiquitina-Conjugadoras , Ubiquitinación , Animales , Femenino , Humanos , Masculino , Ratones , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/genética , Línea Celular Tumoral , Proliferación Celular , Progresión de la Enfermedad , Interleucina-6/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Ratones Endogámicos BALB C , Ratones Desnudos , Factor de Transcripción STAT3/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Musculares/metabolismoRESUMEN
This study aimed to explore the impact of different pH values of resuscitation fluid on traumatic hemorrhagic shock (THS), focusing on their effects on glycocalyx and inflammation. A rat model of THS was induced by hemorrhage from a left femur fracture, while an oxygen-glucose deprivation/reoxygenation (OGD/R)-induced HULEC-5a cell model was considered as an in vitro THS model. The lung tissue pathology and glycocalyx structure were assessed through hematoxylin-eosin (H&E) staining and transmission electron microscope examination. The levels of glycocalyx-related factors and inflammation-related factors were determined by enzyme-linked immunosorbent assay (ELISA). The expression of glycocalyx-related proteins, cell junction-related proteins, and proteins involved in the PI3K/Akt/NF-κB signaling pathway was analyzed by western blot. The results showed that both sodium bicarbonate Ringer's solution (BRS) and lactate Ringer's solution (LRS) were effective in restoring mean arterial pressure and heart rate in THS rats. However, LRS has a stronger impact on promoting inflammation and damaging the glycocalyx compared with BRS. In OGD/R-induced HULEC-5a cells, a pH of 7.4 and 6.5 increased inflammation and disrupted the glycocalyx, while a pH of 8.1 had no significant effect on inflammation or glycocalyx. Furthermore, the PI3K/Akt/NF-κB signaling pathway was activated by fluid resuscitation and different pH values. However, the activating effect of BRS and pH 8.1 on the PI3K/Akt/NF-κB signaling pathway was milder compared with LRS and pH6.5. In conclusion, an alkaline recovery environment was more beneficial for the treatment of THS.
Asunto(s)
Lesión Pulmonar , Choque Hemorrágico , Ratas , Animales , Choque Hemorrágico/tratamiento farmacológico , Choque Hemorrágico/metabolismo , Choque Hemorrágico/patología , Solución de Ringer , Soluciones Isotónicas/química , Soluciones Isotónicas/farmacología , Bicarbonato de Sodio , Proteínas Proto-Oncogénicas c-akt , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas , Ratas Sprague-Dawley , Hemorragia , Lactato de Ringer , Inflamación , Modelos Animales de EnfermedadRESUMEN
Tryptoquivalines are highly toxic metabolites initially isolated from the fungus Aspergillus clavatus. The relative and absolute configuration of tryptoquivaline derivates was primarily established by comparison of the chemical shifts, NOE data, and ECD calculations. A de novo determination of the complete relative configuration using NMR spectroscopy was challenging due to multiple spatially separated stereocenters, including one nonprotonated carbon. In this study, we isolated a new tryptoquivaline derivative, 12S-deoxynortryptoquivaline (1), from the marine ascidian-derived fungus Aspergillus clavatus AS-107. The correct assignment of the relative configuration of 1 was accomplished using anisotropic NMR spectroscopy, while the absolute configuration was determined by comparing calculated and experimental ECD spectra. This case study highlights the effectiveness of anisotropic NMR parameters over isotropic NMR parameters in determining the relative configuration of complex natural products without the need for crystallization.
Asunto(s)
Urocordados , Animales , Espectroscopía de Resonancia Magnética/métodos , Aspergillus/química , Hongos , Estructura MolecularRESUMEN
Alkaline thermal hydrolysis of sewage sludge produces nutrients and biostimulants that enhance plant growth, attracting considerable interest in agriculture. However, the metabolic differences and regulatory mechanisms of sewage sludge-derived biostimulants (SS-BS) on the phenotypic traits, nutritional quality, and safety indicators of harvested crops remain unclear. This study investigates the impact of SS-BS on rice quality on an agricultural production scale. The research reveals that rice treated with SS-BS complies with safety standards comparable to premium rice. SS-BS significantly enhances nutrient enrichment in the endosperm, increasing protein, vitamin B1, dietary fiber, and vitamin E content by 7%, 7.2%, 23.2%, and 42.2%, respectively. Furthermore SS-BS upregulates the FG2 gene,leading to increased Nictoflorin content and activation of the gene expression of UGT73C6 and CYP75A, which catalyze O-glycosylation and promot glycosyl transfer. By inhibiting the synthesis of Trifolin, Scolymoside, and Swertiajaponin, SS-BS favors the synthesis of glycosylated derivatives of Tricin and Luteolin, which exhibit higher anti-inflammatory activity. Additionally, two novel genes, novel.2100 and novel.1300, and an uncharacterized gene, LOC9269295, are closely associated with the production of anti-inflammatory and antioxidant compounds. This study provides new evidence for SS-BS application and insights into their regulatory mechanisms affecting crop quality, contributing to the development of functional foods and sustainable agriculture.
RESUMEN
We develop and demonstrate how to use the Graphical Unitary Group Approach (GUGA)-based MRCISD with Core-Valence Separation (CVS) approximation to compute the core-excited states. First, perform a normal Self-Consistent-Field (SCF) or valence MCSCF calculation to optimize the molecular orbitals. Second, rotate the optimized target core orbitals and append to the active space, form an extended CVS active space, and perform a CVS-MCSCF calculation for core-excited states. Finally, construct the CVS-MRCISD expansion space and perform a CVS-MRCISD calculation to optimize the CI coefficients based on the variational method. The CVS approximation with GUGA-based methods can be implemented by flexible truncation of the Distinct Row Table. Eliminating the valence-excited configurations from the CVS-MRCISD expansion space can prevent variational collapse in the Davidson iteration diagonalization. The accuracy of the CVS-MRCISD scheme was investigated for excitation energies and compared with that of the CVS-MCSCF and CVS-CASPT2 methods using the same active space. The results show that CVS-MRCISD is capable of reproducing well-matched vertical core excitation energies that are consistent with experiments by combining large basis sets and a rational reference space. The calculation results also highlight the fact that the dynamic correlation between electrons makes an undeniable contribution in core-excited states.
RESUMEN
The generation and control of the Goos-Hänchen (GH) shift is a vital step toward its realistic applications, but investigations have mainly been limited to the directional-dependent ones; i.e., the GH shift is reciprocal for two opposite propagating directions. Here, by designing the asymmetrical multilayered structure with three-dimensional bulky Dirac semimetal (BDS) films, we theoretically confirm the footprint of the pronounced directional-dependent GH shift, and that it can be switched by the Fermi energy of the BDS. In addition to this electric field induced switching, the period numbers of the unit cells in the asymmetrical structure can also modulate the directional-dependent GH shift. The asymmetrical feature of the multilayered structure dominantly causes the emergence of the directional-dependent GH shift. Our discovery related to the directional-dependent GH shift constitutes an important ingredient for directional-dependent optophotonic devices such as directional sensors, optical switches, and detectors.
RESUMEN
Aluminum (Al) exposure significantly interferes with the energy supply in astrocytes, which may be a potential mechanism of Al-induced neurotoxicity. This study was designed to explore the mechanisms of Al-induced energy supply impairment in rat C6 astroglioma cell line. Aluminum-maltolate (Al(mal)3) (0.1 mM, 24 h) exposure significantly decreased brain-type creatine kinase (BCK) co-localization with the endoplasmic reticulum (ER) and resulted in mitochondrial dysfunctions, accompanied by a decrease in AMPK phosphorylation. The results of molecular docking showed that Al(mal)3 increased BCK's hydrophobicity and hindered the localization movement of BCK between subcells·H2O2 co-administration was found to exacerbate mitochondrial dysfunction, Ca2+ dyshomeostasis, and apoptosis. After treated with Al(mal)3, additional oxidative stress contributed to BCK activity inhibition but did not promote a further decrease in AMPK phosphorylation. The activation of p-AMPK by its agonist can partially restore mitochondrial function, BCK activity, and ER-localized-BCK levels in Al(mal)3-treated astrocytes. In summary, Al exposure resulted in a sustained depletion of the mitochondrial and antioxidant systems, which was associated with reduced p-AMPK activity and decreased ER-localized-BCK levels in astrocytes. This study provides a theoretical basis for exploring the mechanisms of neurotoxicity induced by Al exposure.
Asunto(s)
Proteínas Quinasas Activadas por AMP , Aluminio , Compuestos Organometálicos , Pironas , Ratas , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Aluminio/toxicidad , Peróxido de Hidrógeno , Simulación del Acoplamiento Molecular , Apoptosis , Estrés OxidativoRESUMEN
BACKGROUND: To explore the effect of Ganshuang granule on anti-alcoholic and anti-hangover and its potential mechanism. METHODS: SPF SD rats' drunken model and SPF Kunming mice's hangover model were used as models. RESULTS: Ganshuang granule could significantly reduce sleep time, the time to climb in mice, and significantly prolong the tolerance time and shorten sleep time in rats (p < 0.05). The blood ethanol concentration of rats in each administration group was lower than that in the model group at each time point (p < 0.05). Compared with the control group, the activities of ADH and ALDH in the liver of the model group were significantly decreased (p < 0.05); the content of DA and 5-HT in the striatum of the model group was significantly increased (p < 0.05); and the activity of AchE in the hippocampus was significantly decreased (p < 0.05). The above processes could be improved and regulated in the drug administration group. Compared with the control group, there was no significant difference between ADH and ALDH in the serum of the model group (p > 0.05). However, the activities of ADH and ALDH in the liver of drunk rats could be upregulated by Ganshuang granule (p < 0.05). CONCLUSION: Ganshuang granule has the pharmacological effects of anti-alcoholic and anti-hangover, which is related to regulating the activities of ADH and ALDH in the liver, the contents of DA and 5-HT in striatum, and the activity of AchE in the hippocampus.
RESUMEN
Skeletal muscle grows in response to a combination of genetic and environmental factors, and its growth and development influence the quality of pork. Elucidating the molecular mechanisms regulating the growth and development of skeletal muscle is of great significance to both animal husbandry and farm management. The Jiangquan black pig is an excellent pig breed based on the original Yimeng black pig, importing the genes of the Duroc pig for meat traits, and cultivated through years of scientific selection and breeding. In this study, full-length transcriptome sequencing was performed on three growth stages of Jiangquan black pigs, aiming to study the developmental changes in Jiangquan black pigs at different developmental stages at the molecular level and to screen the key genes affecting the growth of skeletal muscle in Jiangquan black pigs. We performed an enrichment analysis of genes showing differential expression and constructed a protein-protein interaction network with the aim of identifying core genes involved in the development of Jiangquan black pigs. Notably, genes such as TNNI2, TMOD4, PLDIM3, MYOZ1, and MYH1 may be potential regulators of muscle development in Jiangquan black pigs. Our results contribute to the understanding of the molecular mechanisms of skeletal muscle development in this pig breed, which will facilitate molecular breeding efforts and the development of pig breeds to meet the needs of the livestock industry.
Asunto(s)
Perfilación de la Expresión Génica , Músculo Esquelético , Transcriptoma , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Porcinos/genética , Porcinos/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Desarrollo de Músculos/genética , Cruzamiento , Mapas de Interacción de Proteínas/genéticaRESUMEN
BACKGROUND: This study aimed to analyse the expression of microRNA-223 (miR-223) in embryo culture medium and its correlation with pregnancy outcomes. METHODS: Two hundred and two patients undergoing in vitro fertilisation/intracytoplasmic sperm injection (IVF/ICSI) were divided into clinical pregnancy group (n = 101) and non-pregnant group (n = 101). The baseline data, clinical indicators, and the expression level of miR-223 in the embryo medium were compared between the two groups. Logistic regression analysis was used to analyse the relationship between each index and the pregnancy outcome. Receiver operator characteristic curve was carried out to evaluate the differential ability of miR-223 in pregnancy status. Bioinformatics methods were used to identify the target genes of miR-223 and elucidate their functions. RESULTS: Compared with pregnancy group, the non-pregnancy group exhibited a reduction in miR-223 expression (p < 0.001). Multivariate analysis revealed that miR-223 reduction was an independent factor for pregnancy failure (p < 0.05). The ROC curve demonstrated the discriminative capability of miR-223 in distinguishing pregnancy and non-pregnancy. In addition, bioinformatics analysis indicated that the target genes of miR-223 were predominantly located in the endocytic vesicle membrane and were primarily enriched in adenosine monophosphate-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathways. CONCLUSION: In this study, levels of miR-223 in the embryo culture medium predicted pregnancy outcomes in subjects undergoing IVF/ICSI. Low expression of miR-223 was a risk factor for adverse pregnancy outcomes in subjects.
In this study, 202 patients who underwent IVF/ICSI were retrospectively analysed and categorised into pregnant and non-pregnant groups based on their pregnancy status. The examination of embryo culture medium samples from both groups revealed that the non-pregnant group exhibited lower miR-223 expression compared to the pregnant group. Subsequent ROC analysis demonstrated the clinical relevance of miR-223 in effectively distinguishing between pregnant and non-pregnant states. Multi-factor analysis further established that the diminished expression of miR-223 independently influenced the likelihood of successful pregnancy.