Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Nat Mater ; 23(1): 71-78, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37919349

RESUMEN

Light scattered or radiated from a material carries valuable information on the said material. Such information can be uncovered by measuring the light field at different angles and frequencies. However, this technique typically requires a large optical apparatus, hampering the widespread use of angle-resolved spectroscopy beyond the lab. Here we demonstrate compact angle-resolved spectral imaging by combining a tunable metasurface-based spectrometer array and a metalens. With this approach, even with a miniaturized spectrometer footprint of only 4 × 4 µm2, we demonstrate a wavelength accuracy of 0.17 nm, spectral resolution of 0.4 nm and a linear dynamic range of 149 dB. Moreover, our spectrometer has a detection limit of 1.2 fJ, and can be patterned to an array for spectral imaging. Placing such a spectrometer array directly at the back focal plane of a metalens, we achieve an angular resolution of 4.88 × 10-3 rad. Our angle-resolved spectrometers empowered by metalenses can be employed towards enhancing advanced optical imaging and spectral analysis applications.

2.
Opt Lett ; 49(8): 2157-2160, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621100

RESUMEN

Significantly increased interests have been witnessed for the 2 µm waveband which is considered to be a promising alternative window for fiber and free-space optical communications. However, the less mature device technology at this wavelength range is one of the primary obstacles toward practical applications. In this work, we demonstrate an efficient and high-speed silicon modulator based on carrier depletion in a coupling tunable resonator. A benchmark high modulation efficiency of 0.75 V·cm is achieved. The 3-dB electro-optic bandwidth is measured to be 26 GHz allowing for up to 34 Gbit/s on-off keying modulation with a low energy consumption of ∼0.24 pJ/bit. It provides a solution for the silicon modulator with high-speed and low power consumption in the 2-µm waveband.

3.
Opt Lett ; 49(11): 3202-3205, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824363

RESUMEN

The weak free carrier dispersion effect significantly hinders the adoption of silicon modulators in low-power applications. While various structures have been demonstrated to reduce the half-wave voltage, it is always challenging to balance the trade-off between modulation efficiency and the bandwidth. Here, we demonstrated a slow-wave Michelson structure with 1-mm-long active length. The modulator was designed at the emerging 2-µm wave band which has a stronger free carrier effect. A record high modulation efficiency of 0.29 V·cm was achieved under a carrier depletion mode. The T-rail traveling wave electrodes were designed to improve the modulation bandwidth to 13.3 GHz. Up to 20 Gb/s intensity modulation was achieved at a wavelength of 1976 nm.

4.
Opt Lett ; 49(4): 1085-1088, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38359259

RESUMEN

Recently, the 2-µm wave band has gained increased interest due to its potential application for the next-generation optical communication. As a proven integration platform, silicon photonics also benefit from the lower nonlinear absorption and larger electro-optic coefficient. However, this spectral range is far beyond the photodetection range of germanium, which places an ultimate limit for on-chip applications. In this work, we demonstrate a waveguide-coupled photodetector enabled by a tensile strain-induced absorption in germanium. Responsivity is greatly enhanced by the proposed interleaved junction structure. The device is designed on a 220-nm silicon-on-insulator and is fabricated via a standard silicon photonic foundry process. By utilizing different interleaved PN junction spacing configurations, we were able to measure a responsivity of 0.107 A/W at 1950 nm with a low bias voltage of -6.4 V for the 500-µm-long device. Additionally, the 3-dB bandwidth of the device was measured to be up to 7.1 GHz. Furthermore, we successfully achieved data transmission at a rate of 20 Gb/s using non-return-to-zero on-off keying modulation.

5.
Nano Lett ; 23(8): 3459-3466, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37039431

RESUMEN

In-plane diffractive optical networks based on meta-surfaces are promising for on-chip application. The design constraints of regular antenna unit place ultimate limits on the functionalities of the meta-systems. This fundamental limitation has been reflected by the large footprints of cascaded meta-surfaces. Here, we propose a digital meta-lens with a large degree of design freedom, enabling significantly improved beam focusing, collimation, and deflection capabilities. A highly dispersive and compact diffractive optical system is constructed for spectrometer via five layers of meta-lenses in a folded configuration. The device only occupies a 100 µm × 100 µm chip area on a silicon photonic platform. Sparse and continuous spectra reconstruction is achieved over a 35 nm bandwidth. Fine spectral lines separated by 0.14 nm are resolved. In addition to such a compact and high-resolution on-chip spectrometer, it is also expected to be promising for imaging, optical computing, and other applications due to the great versatility of the digital lens design.

6.
Nano Lett ; 23(8): 3418-3425, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37042745

RESUMEN

Lead halide perovskites have been promising platforms for micro- and nanolasers. However, the fragile nature of perovskites poses an extreme challenge to engineering a cavity boundary and achieving high-quality (Q) modes, severely hindering their practical applications. Here, we combine an etchless bound state in the continuum (BIC) and a chemically synthesized single-crystalline CsPbBr3 microplate to demonstrate on-chip integrated perovskite microlasers with ultrahigh Q factors. By pattering polymer microdisks on CsPbBr3 microplates, we show that record high-Q BIC modes can be formed by destructive interference between different in-plane radiation from whispering gallery modes. Consequently, a record high Q-factor of 1.04 × 105 was achieved in our experiment. The high repeatability and high controllability of such ultrahigh Q BIC microlasers have also been experimentally confirmed. This research provides a new paradigm for perovskite nanophotonics.

7.
Opt Express ; 31(3): 4569-4579, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36785421

RESUMEN

The hybrid microcavity composed of different materials shows unique thermal-optical properties such as resonance frequency shift and small thermal noise fluctuations with the temperature variation. Here, we have fabricated the hybrid Si3N4 - TiO2 microring, which decreases the effective thermo-optical coefficients (TOC) from 23.2pm/K to 11.05pm/K due to the opposite TOC of these two materials. In this hybrid microring, we experimentally study the thermal dynamic with different input powers and scanning speeds. The distorted transmission and thermal oscillation are observed, which results from the non-uniform scanning speed and the different thermal relaxation times of the Si3N4 and the TiO2. We calibrate the distorted transmission spectrum for the resonance measurement at the reverse scanning direction and explain the thermal oscillation with a thermal-optical coupled model. Finally, we analyse the thermal oscillation condition and give the diagram about the oscillation region, which has significant guidance for the occurrence and avoidance of the thermal oscillation in practical applications.

8.
Opt Lett ; 48(16): 4368-4371, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582034

RESUMEN

Growing research interests have been directed to the emerging optical communication band at 2-µm wavelengths. The silicon photonic components are highly desired to operate over a broad bandwidth covering both C-band and the emerging 2-µm wave band. However, the dispersions of the silicon waveguides eventually limit the optical bandwidth of the silicon photonic devices. Here, we introduce a topology-optimized Y-junction with a shallow-etched trench and its utility to reverse the detrimental dispersion effect. The shallow trench enables the Y-junction to have an adaptive splitting capability over a broad spectral range. The 0.2-dB bandwidth of the power splitter exceeds 800 nm from 1400 nm to 2200 nm. The device has a compact footprint of 3 µm × 1.64 µm. The device is characterized at the C-band and 2-µm band with a measured excess loss below 0.4 dB for a proof-of-concept demonstration.

9.
Environ Sci Technol ; 57(29): 10686-10695, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37437160

RESUMEN

Significant knowledge gaps exist regarding the emission of elemental mercury (Hg0) from the tropical forest floor, which limit our understanding of the Hg mass budget in forest ecosystems. In this study, biogeochemical processes of Hg0 deposition to and evasion from soil in a Chinese tropical rainforest were investigated using Hg stable isotopic techniques. Our results showed a mean air-soil flux as deposition of -4.5 ± 2.1 ng m-2 h-1 in the dry season and as emission of +7.4 ± 1.2 ng m-2 h-1 in the rainy season. Hg re-emission, i.e., soil legacy Hg evasion, induces negative transitions of Δ199Hg and δ202Hg in the evaded Hg0 vapor, while direct atmospheric Hg0 deposition does not exhibit isotopic fractionation. Using an isotopic mass balance model, direct atmospheric Hg0 deposition to soil was estimated to be 48.6 ± 13.0 µg m-2 year-1. Soil Hg0 re-emission was estimated to be 69.5 ± 10.6 µg m-2 year-1, of which 63.0 ± 9.3 µg m-2 year-1 is from surface soil evasion and 6.5 ± 5.0 µg m-2 year-1 from soil pore gas diffusion. Combined with litterfall Hg deposition (∼34 µg m-2 year-1), we estimated a ∼12.6 µg m-2 year-1 net Hg0 sink in the tropical forest. The fast nutrient cycles in the tropical rainforests lead to a strong Hg0 re-emission and therefore a relatively weaker atmospheric Hg0 sink.


Asunto(s)
Mercurio , Mercurio/análisis , Ecosistema , Monitoreo del Ambiente , Bosques , Suelo
10.
Nano Lett ; 22(10): 3993-3999, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35510871

RESUMEN

On-chip integrated orbital angular momentum (OAM) sorting is of great importance in tackling the severe challenge of exponential growth in data traffic. Despite the continuous success, current demultiplexing techniques either scarify efficiency dramatically or lose the compactness of a system. Here we experimentally demonstrate an ultracompact OAM sorter using TiO2 metasurfaces integrated onto a complementary metal-oxide-semiconductor (CMOS) camera. By utilizing the propagation phases, we transfer the unitary transformation theory in bulky systems into two TiO2 metasurfaces, responsible for the functions of log-polar transformation and fan-out beam copying and focusing as well as the functions of phase correction and Fourier transform. The flatform metasurface doublet enables one to integrate the OAM sorter onto a camera chip. Consequently, OAM beams with topological charges of m = -3 to 3 were separated by a CMOS camera with an average crosstalk of -6.43 dB. This approach shall shed light on next-generation OAM modes processing.


Asunto(s)
Óxidos , Semiconductores
11.
Opt Express ; 30(15): 26266-26274, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-36236821

RESUMEN

Optical power splitters are fundamental blocks for photonic integrated circuits. Conventional 3-dB power splitters are either constrained to single-mode regime or to the limited optical bandwidth. In this paper, an alternative design approach is proposed via combined method of topology optimizations on both analog and digital meta-structure. Based on this approach, a dual-mode power splitter is designed on silicon-on-insulator with an ultra-broad bandwidth from 1588 nm - 2033nm and an ultra-compact footprint of only 5.4 µm × 2.88 µm. The minimum feature size is 120 nm which can be compatible with silicon photonic foundry process. The simulated excess loss and crosstalk over this wavelength range for the two lowest TE modes are lower than 0.83 dB and -22 dB, respectively. To the best of our knowledge, this is a record large optical bandwidth for an integrated dual-mode 3-dB power splitter on silicon.

12.
Opt Lett ; 47(5): 1186-1189, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35230323

RESUMEN

Driven by the demand to extend optical fiber communications wavelengths beyond the C + L band, the 2 µm wave band has proven to be a promising candidate. Extensive efforts have been directed into developing high-performance and functional photonic devices. Here we report an integrated silicon photonic arrayed waveguide grating (AWG) fabricated in a commercial foundry. The device has 64 channels with a spacing of approximately 50 GHz (0.7 nm), covering the bandwidth from 1967 nm to 2012 nm. The on-chip insertion loss of the AWG is measured to be approximately 5 dB. By implementing a TiN metal layer, the AWG spectrum can be thermally tuned with an efficiency of 0.27 GHz/mW. The device has a very compact configuration with a footprint of 2.3 mm × 2 mm. The demonstrated AWG can potentially be used for dense wavelength division multiplexing in the 2 µm spectral band.

13.
Nano Lett ; 21(17): 7191-7197, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34428057

RESUMEN

Multiphoton absorption and luminescence are fundamentally important nonlinear processes for utilizing efficient light-matter interaction. Resonant enhancement of nonlinear processes has been demonstrated for many nanostructures; however, it is believed that all higher-order processes are always much weaker than their corresponding linear processes. Here, we study multiphoton luminescence from structured surfaces and, combining multiple advantages of perovskites with the concept of metasurfaces, we demonstrate that the efficiency of nonlinear multiphoton processes can become comparable to the efficiency of the linear process. We reveal that the perovskite metasurface can enhance substantially two-photon stimulated emission with the threshold being comparable with that of the one-photon process. Our modeling of free-carrier dynamics and exciton recombination upon nonlinear photoexcitation uncovers that this effect can be attributed to the local field enhancement in structured media, a substantial increase of the mode overlap, and the selection rules of two-photon absorption in perovskites.

14.
Glob Chang Biol ; 27(23): 6192-6205, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34525229

RESUMEN

Subtropical forests are important ecosystems globally due to their extensive role in carbon sequestration. Extreme climate events are known to introduce disturbances in the ecosystem that cause long-term changes in carbon balance and radiation reflectance. However, how these ecosystem function changes contribute to global warming in terms of radiative forcing (RF), especially in the years following a disturbance, still needs to be investigated. We studied an extreme snow event that occurred in a subtropical evergreen broadleaved forest in south-western China in 2015 and used 9 years (2011-2019) of net ecosystem CO2 exchange (NEE) and surface albedo (α) data to investigate the effect of the event on the ecosystem RF changes. In the year of the disturbance, leaf area index (LAI) declined by 40% and α by 32%. The annual NEE was -718 ±â€…128 g C m-2 as a sink in the pre-disturbance years (2011-2014), but after the event, the sink strength dropped significantly by 76% (2015). Both the vegetation, indicated by LAI, and α recovered to pre-disturbance levels in the fourth post-disturbance year (2018). However, the NEE recovery lagged and occurred a year later in 2019, suggesting a more severe and lasting impact on the ecosystem carbon balance. Overall, the extreme event caused a positive (warming effect) net RF which was predominantly caused by changes in α (90%-93%) rather than those in NEE. This result suggests that, compared to the climate effect caused by forest carbon sequestration changes, the climate effect of α alterations can be more sensitive to vegetation damage induced by natural disturbances. Moreover, this study demonstrates the important role of vegetation recovery in driving canopy reflectance and ecosystem carbon balance during the post-disturbance period, which determines the ecosystem feedbacks to the climate change.


Asunto(s)
Ecosistema , Nieve , Carbono , Dióxido de Carbono , Cambio Climático , Bosques
15.
Opt Lett ; 46(17): 4232-4235, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34469982

RESUMEN

Extending the optical communication wavelengths to 2 µm can significantly increase data capacity. Silicon photonics, which is a proven device integration technology, has made rapid progress at 2 µm recently. As a fundamental functional element in the photonic design kit, the 3 dB power splitter has been extensively studied in both the 1.55 µm and 2 µm regime. While the device is highly desirable to operate over both wave bands, the large waveguide dispersion in silicon makes it challenging. In this work, we demonstrate an ultra-broadband power splitter on silicon, which has a 0.2 dB bandwidth exceeding 520 nm from 1500 to 2020 nm according to simulations. The beam splitter is realized by a triple tapered Y-junction, and its operational bandwidth is greatly increased by subwavelength grating structure. The device has an ultra-compact footprint of only 3µm×2µm. Due to the limitations on the setup and coupling technique, we measure the device bandwidth in 1.55 µm and 2 µm wave bands. The device insertion loss is measured to be below 0.4 dB from 1500 to 1620 nm and from 1960 to 2020 nm, respectively. According to these results, the proposed device is believed to be capable of operating over a broadband from 1.55 µm and 2 µm wavelengths.

16.
Electrophoresis ; 41(16-17): 1418-1424, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31797398

RESUMEN

Whispering gallery mode (WGM) resonators have received extensive attention because of their nonlinear optical application in lasers and sensors. Optical microcavities are excellent candidates for constructing powerful microlasers and label-free biosensors, owing to their low optical losses and small size. However, most of these microcavity syntheses rely on sophisticated fabrication methods and cannot be manipulated easily. To achieve facile and versatile microcavity fabrication, we present a robust microfluidics method for monodispersed self-coupling optical microcavity fabrication with a fine tunability. The microcavity polydispersity was less than 3%. The optical microcavity size could be varied from 10 to 30 µm with a steady quality factor (Q) of approximately 1000. The lowest laser threshold that we obtained was 0.82 µJ with a microcavity size of 20 µm. The doped fluorescent dye concentration can be tuned precisely from 0.001 to 0.05 wt% to explore an optimized fluorescent background. The experimental results and theoretical simulation match well in terms of Q and the electrometric resonance field intensity. Compared with previous precise and practical fabrication methods, we have demonstrated a facile approach for versatile optical microcavity fabrication. This method can vary the microcavity materials, size, doped fluorescent dye concentration, WGM resonance spectrum, Q factor, and laser threshold easily to adapt to various circumstances and specific applications.


Asunto(s)
Técnicas Biosensibles/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Microtecnología/métodos , Diseño de Equipo , Colorantes Fluorescentes/química , Rayos Láser , Óptica y Fotónica/instrumentación
17.
J Environ Manage ; 254: 109810, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31698300

RESUMEN

In order to predict the effects of climate change on the global carbon cycle, it is crucial to understand the environmental factors that affect soil carbon storage in grasslands. In the present study, we attempted to explain the relationships between the distribution of soil carbon storage with climate, soil types, soil properties and topographical factors across different types of grasslands with different grazing regimes. We measured soil organic carbon in 92 locations at different soil depth increments, from 0 to 100 cm in southwestern China. Among soil types, brown earth soils (Luvisols) had the highest carbon storage with 19.5 ±â€¯2.5 kg m-2, while chernozem soils had the lowest with 6.8 ±â€¯1.2 kg m-2. Mean annual temperature and precipitation, exerted a significant, but, contrasting effects on soil carbon storage. Soil carbon storage increased as mean annual temperature decreased and as mean annual precipitation increased. Across different grassland types, the mean carbon storage for the top 100 cm varied from 7.6 ±â€¯1.3 kg m-2 for temperate desert to 17.3 ±â€¯2.9 kg m-2 for alpine meadow. Grazing/cutting regimes significantly affected soil carbon storage with lowest value (7.9 ±â€¯1.5 kg m-2) recorded for cutting grass, while seasonal (11.4 ±â€¯1.3 kg m-2) and year-long (12.2 ±â€¯1.9 kg m-2) grazing increased carbon storage. The highest carbon storage was found in the completely ungrazed areas (16.7 ±â€¯2.9 kg m-2). Climatic factors, along with soil types and topographical factors, controlled soil carbon density along a soil depth in grasslands. Environmental factors alone explained about 60% of the total variation in soil carbon storage. The actual depth-wise distribution of soil carbon contents was significantly influenced by the grazing intensity and topographical factors. Overall, policy-makers should focus on reducing the grazing intensity and land conversion for the sustainable management of grasslands and C sequestration.


Asunto(s)
Carbono , Suelo , Ciclo del Carbono , China , Pradera , Poaceae
18.
Opt Lett ; 44(18): 4495-4498, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31517915

RESUMEN

An ultra-compact polarization splitter-rotator with a discretized subwavelength nanostructure is demonstrated on the silicon-on-insulator platform. The device has a length of only 7.92 µm. For TE0-TE0, a low insertion loss (<0.2 dB), low crosstalk (<-20 dB), and high extinction ratio (>40 dB) are achieved over a broad wavelength range from 1500 nm to 1600 nm. For TM0-TE0, the insertion loss is lower than 1 dB over 40 nm bandwidth (1530-1570 nm). The crosstalk is lower than -25 dB, and the extinction ratio is larger than 20 dB, from 1500 nm to 1600 nm.

19.
Phys Rev Lett ; 123(16): 165701, 2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-31702358

RESUMEN

The topological edge state (TES) in a one-dimensional optical lattice has exhibited robust field localization or waveguiding against the structural perturbations that would give rise to fault-tolerant photonic integrations. However, the zero mode as a kind of TES usually deviates from the exact zero-energy state in a finite Hermitian lattice due to the coupling between these edge states, which inevitably weaken the topological protection. Here, we first show such a breakup of zero modes in finite Su-Schriffer-Heeger optical lattices and then reveal their recovery by introducing non-Hermitian degeneracies with parity-time (PT) symmetry. We carry out experiments in a finite silicon waveguide lattice, where a passive-PT symmetry was implemented with carefully controlled lossy silicon waveguides. The experimental results are fully compatible with the theoretical prediction. Our results show that the topological property of an open system can be tuned by non-Hermitian lattice engineering, which offers a route to enhance the topological protection in a finite system.

20.
Nano Lett ; 18(12): 8054-8061, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30481040

RESUMEN

Nonlinear holographic metasurfaces have been intensively studied due to their potentials in practical applications. So far, nonlinear holographic metasurfaces have only been realized with plasmonic nanoantennas, suffering from high absorption loss and low damage threshold. Herein we propose and experimentally demonstrate a novel mechanism for nonlinear holographic metasurfaces. In contrast with conventional studies, the all-dielectric metasurface is composed of C-shaped Si nanoantennas. The incident laser is enhanced by their fundamental resonance, whereas the generated third-harmonic generation (THG) signals are redistributed to the air gap region via the higher order resonance, significantly reducing the absorption loss at short wavelength and resulting in an enhancement factor as high as 230. After introducing abrupt phase changes from 0 to 2π to the C elements, high-efficiency cyan and blue THG holograms have been experimentally generated with the Si metasurface for the very first time. This research shall shed light on the advances of nonlinear all-dielectric metasurfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA