Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Genes Dev ; 35(3-4): 286-299, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33446571

RESUMEN

RNase E is an essential, multifunctional ribonuclease encoded in E. coli by the rne gene. Structural analysis indicates that the ribonucleolytic activity of this enzyme is conferred by rne-encoded polypeptide chains that (1) dimerize to form a catalytic site at the protein-protein interface, and (2) multimerize further to generate a tetrameric quaternary structure consisting of two dimerized Rne-peptide chains. We identify here a mutation in the Rne protein's catalytic region (E429G), as well as a bacterial cell wall peptidoglycan hydrolase (Amidase C [AmiC]), that selectively affect the specific activity of the RNase E enzyme on long RNA substrates, but not on short synthetic oligonucleotides, by enhancing enzyme multimerization. Unlike the increase in specific activity that accompanies concentration-induced multimerization, enhanced multimerization associated with either the E429G mutation or interaction of the Rne protein with AmiC is independent of the substrate's 5' terminus phosphorylation state. Our findings reveal a previously unsuspected substrate length-dependent regulatory role for RNase E quaternary structure and identify cis-acting and trans-acting factors that mediate such regulation.


Asunto(s)
Endorribonucleasas/química , Endorribonucleasas/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Escherichia coli/genética , Modelos Moleculares , Amidohidrolasas/metabolismo , Dominio Catalítico , Endorribonucleasas/genética , Proteínas de Escherichia coli/genética , Mutación/genética , Estructura Cuaternaria de Proteína , ARN Bacteriano/metabolismo , Regulación hacia Arriba/genética
2.
Biochim Biophys Acta Biomembr ; 1860(4): 868-877, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28847505

RESUMEN

The uptake of nutrients, including metals, amino acids and peptides are required for many biological processes. Pathogenic bacteria scavenge these essential nutrients from microenvironments to survive within the host. Pathogens must utilize a myriad of mechanisms to acquire these essential nutrients from the host while mediating the effects of toxicity. Bacteria utilize several transport proteins, including ATP-binding cassette (ABC) transporters to import and expel substrates. ABC transporters, conserved across all organisms, are powered by the energy from ATP to move substrates across cellular membranes. In this review, we will focus on nutrient uptake, the role of ABC importers at the host-pathogen interface, and explore emerging therapies to combat pathogenesis. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Proteínas Bacterianas/química , Modelos Moleculares , Conformación Proteica , Transportadoras de Casetes de Unión a ATP/clasificación , Transportadoras de Casetes de Unión a ATP/metabolismo , Bacterias/metabolismo , Bacterias/patogenicidad , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/microbiología , Proteínas Bacterianas/metabolismo , Transporte Biológico , Interacciones Huésped-Patógeno , Virulencia
3.
Proc Natl Acad Sci U S A ; 112(20): 6443-8, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25931525

RESUMEN

OxyR, a bacterial peroxide sensor, is a LysR-type transcriptional regulator (LTTR) that regulates the transcription of defense genes in response to a low level of cellular H2O2. Consisting of an N-terminal DNA-binding domain (DBD) and a C-terminal regulatory domain (RD), OxyR senses H2O2 with conserved cysteine residues in the RD. However, the precise mechanism of OxyR is not yet known due to the absence of the full-length (FL) protein structure. Here we determined the crystal structures of the FL protein and RD of Pseudomonas aeruginosa OxyR and its C199D mutant proteins. The FL crystal structures revealed that OxyR has a tetrameric arrangement assembled via two distinct dimerization interfaces. The C199D mutant structures suggested that new interactions that are mediated by cysteine hydroxylation induce a large conformational change, facilitating intramolecular disulfide-bond formation. More importantly, a bound H2O2 molecule was found near the Cys199 site, suggesting the H2O2-driven oxidation mechanism of OxyR. Combined with the crystal structures, a modeling study suggested that a large movement of the DBD is triggered by structural changes in the regulatory domains upon oxidation. Taken together, these findings provide novel concepts for answering key questions regarding OxyR in the H2O2-sensing and oxidation-dependent regulation of antioxidant genes.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/fisiología , Peróxido de Hidrógeno/metabolismo , Modelos Moleculares , Transactivadores/química , Transactivadores/metabolismo , Sitios de Unión/genética , Cristalización , Regulación Bacteriana de la Expresión Génica/genética , Estructura Molecular , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Reacción en Cadena de la Polimerasa , Unión Proteica , Conformación Proteica , Difracción de Rayos X
4.
Biochem Biophys Res Commun ; 494(3-4): 668-673, 2017 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-29061301

RESUMEN

The MacAB-TolC tripartite efflux pump is involved in resistance to macrolide antibiotics and secretion of protein toxins in many Gram-negative bacteria. The pump spans the entire cell envelope and operates by expelling substances to extracellular space. X-ray crystal and electron microscopic structures have revealed the funnel-like MacA hexamer in the periplasmic space and the cylindrical TolC trimer. Nonetheless, the inner membrane transporter MacB still remains ambiguous in terms of its oligomeric state in the functional complex. In this study, we purified a stable binary complex using a fusion protein of MacA and MacB of Escherichia coli, and then supplemented MacA to meet the correct stoichiometry between the two proteins. The result demonstrated that MacB is a homodimer in the complex, which is consistent with results from the recent complex structure using cryo-electron microscopy single particle analysis. Structural comparison with the previously reported MacB periplasmic domain structure suggests a molecular mechanism for regulation of the activity of MacB via an interaction between the MacB periplasmic domain and MacA. Our results provide a better understanding of the tripartite pumps at the molecular level.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/ultraestructura , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/ultraestructura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestructura , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/ultraestructura , Sitios de Unión , Simulación por Computador , Modelos Químicos , Modelos Moleculares , Unión Proteica , Conformación Proteica
5.
Infect Immun ; 83(11): 4266-76, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26283336

RESUMEN

MdsABC is a Salmonella-specific tripartite efflux pump that has been implicated in the virulence of Salmonella enterica serovar Typhimurium; however, little is known about the virulence factors associated with this pump. We observed MdsABC expression-dependent alterations in the degree of resistance to extracellular oxidative stress and macrophage-mediated killing. Thin-layer chromatography and tandem mass spectrometry analyses revealed that overexpression of MdsABC led to increased secretion of 1-palmitoyl-2-stearoyl-phosphatidylserine (PSPS), affecting the ability of the bacteria to invade and survive in host cells. Overexpression of MdsABC and external addition of PSPS similarly rendered the mdsABC deletion strain resistant to diamide. Diagonal gel analysis showed that PSPS treatment reduced the diamide-mediated formation of disulfide bonds, particularly in the membrane fraction of the bacteria. Salmonella infection of macrophages induced the upregulation of MdsABC expression and led to an increase of intracellular bacterial number and host cell death, similar to the effects of MdsABC overexpression and PSPS pretreatment on the mdsABC deletion strain. Our study shows that MdsABC mediates a previously uncharacterized pathway that involves PSPS as a key factor for the survival and virulence of S. Typhimurium in phagocytic cells.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Infecciones por Salmonella/microbiología , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidad , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Humanos , Macrófagos/metabolismo , Macrófagos/microbiología , Proteínas de Transporte de Membrana/genética , Salmonella typhimurium/genética , Virulencia
6.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 10): 1998-2008, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26457424

RESUMEN

Histidine-containing phosphocarrier protein (HPr) is a general component of the bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) involved in the phosphorylation-coupled transport of numerous sugars called PTS sugars. HPr mainly exists in a dephosphorylated form in the presence of PTS sugars in the medium, while its phosphorylation increases in the absence of PTS sugars. A recent study revealed that the dephosphorylated form of HPr binds and antagonizes the function of the antisigma factor Rsd. This anti-sigma factor sequesters the housekeeping sigma factor σ(70) to facilitate switching of the sigma subunit on RNA polymerase from σ(70) to the stress-responsive sigma factor σ(S) in stationary-phase cells. In this study, the structure of the complex of Rsd and HPr was determined at 2.1 Šresolution and revealed that the binding site for HPr on the surface of Rsd partly overlaps with that for σ(70). The localization of the phosphorylation site on HPr at the binding interface for Rsd explains why phosphorylation of HPr abolishes its binding to Rsd. The mutation of crucial residues involved in the HPr-Rsd interaction significantly influenced the competition between HPr and σ(70) for binding to Rsd both in vitro and in vivo. The results provide a structural basis for the linkage of global gene regulation to nutrient availability in the external environment.


Asunto(s)
Proteínas Bacterianas/química , ARN Polimerasas Dirigidas por ADN/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/química , Proteínas Represoras/química , Factor sigma/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Unión Proteica , Conformación Proteica , Proteínas Represoras/metabolismo , Factor sigma/metabolismo
7.
Curr Microbiol ; 68(6): 729-34, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24515351

RESUMEN

Gram-negative bacteria use tripartite pumps to transport antibacterial drugs and other toxic compounds across the inner and outer membranes, which are separated by the periplasmic space. The TolC protein is an outer membrane factor that participates in the formation of tripartite efflux pumps. The genome of Vibrio vulnificus encodes two E. coli TolC homologs, TolCV1 and TolCV2. Here, we show that both TolCV1 and TolCV2 are involved in the efflux of antimicrobial agents. Deletion of tolCV1 resulted in increased susceptibility of V. vulnificus to chemical detergents, DNA intercalating agents, and antibiotics including erythromycin, novobiocin, and tetracycline, whereas deletion of tolCV2 rendered V. vulnificus more susceptible to the above mentioned antibiotics only. We also observed that tolCV1 deletion resulted in reduced motility of V. vulnificus. Our results indicate active roles for TolCV1 and TolCV2 in the physiology of V. vulnificus.


Asunto(s)
Antiinfecciosos/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Vibrio vulnificus/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Eliminación de Gen , Proteínas de Transporte de Membrana/genética , Pruebas de Sensibilidad Microbiana , Vibrio vulnificus/genética
8.
J Microbiol ; 62(4): 261-275, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38816673

RESUMEN

Lipopolysaccharide (LPS) is a critical component of the extracellular leaflet within the bacterial outer membrane, forming an effective physical barrier against environmental threats in Gram-negative bacteria. After LPS is synthesized and matured in the bacterial cytoplasm and the inner membrane (IM), LPS is inserted into the outer membrane (OM) through the ATP-driven LPS transport (Lpt) pathway, which is an energy-intensive process. A trans-envelope complex that contains seven Lpt proteins (LptA-LptG) is crucial for extracting LPS from the IM and transporting it across the periplasm to the OM. The last step in LPS transport involves the mediation of the LptDE complex, facilitating the insertion of LPS into the outer leaflet of the OM. As the Lpt system plays an essential role in maintaining the impermeability of the OM via LPS decoration, the interactions between these interconnected subunits, which are meticulously regulated, may be potential targets for the development of new antibiotics to combat multidrug-resistant Gram-negative bacteria. In this review, we aimed to provide an overview of current research concerning the structural interactions within the Lpt system and their implications to clarify the function and regulation of LPS transport in the overall process of OM biogenesis. Additionally, we explored studies on the development of therapeutic inhibitors of LPS transport, the factors that limit success, and future prospects.


Asunto(s)
Antibacterianos , Bacterias Gramnegativas , Lipopolisacáridos , Lipopolisacáridos/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Antibacterianos/química , Bacterias Gramnegativas/metabolismo , Bacterias Gramnegativas/efectos de los fármacos , Transporte Biológico , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Membrana Externa Bacteriana/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple
9.
J Biol Chem ; 286(20): 17910-20, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21454662

RESUMEN

Gram-negative bacteria expel diverse toxic chemicals through the tripartite efflux pumps spanning both the inner and outer membranes. The Escherichia coli AcrAB-TolC pump is the principal multidrug exporter that confers intrinsic drug tolerance to the bacteria. The inner membrane transporter AcrB requires the outer membrane factor TolC and the periplasmic adapter protein AcrA. However, it remains ambiguous how the three proteins are assembled. In this study, a hexameric model of the adapter protein was generated based on the propensity for trimerization of a dimeric unit, and this model was further validated by presenting its channel-forming property that determines the substrate specificity. Genetic, in vitro complementation, and electron microscopic studies provided evidence for the binding of the hexameric adapter protein to the outer membrane factor in an intermeshing cogwheel manner. Structural analyses suggested that the adapter covers the periplasmic region of the inner membrane transporter. Taken together, we propose an adapter bridging model for the assembly of the tripartite pump, where the adapter protein provides a bridging channel and induces the channel opening of the outer membrane factor in the intermeshing tip-to-tip manner.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Farmacorresistencia Bacteriana Múltiple/fisiología , Proteínas de Escherichia coli/química , Escherichia coli/química , Lipoproteínas/química , Proteínas de Transporte de Membrana/química , Modelos Moleculares , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Proteínas Periplasmáticas/química , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Periplasmáticas/genética , Proteínas Periplasmáticas/metabolismo , Estructura Cuaternaria de Proteína
10.
J Biol Chem ; 286(15): 13541-9, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21325274

RESUMEN

Macrolide-specific efflux pump MacAB-TolC has been identified in diverse gram-negative bacteria including Escherichia coli. The inner membrane transporter MacB requires the outer membrane factor TolC and the periplasmic adaptor protein MacA to form a functional tripartite complex. In this study, we used a chimeric protein containing the tip region of the TolC α-barrel to investigate the role of the TolC α-barrel tip region with regard to its interaction with MacA. The chimeric protein formed a stable complex with MacA, and the complex formation was abolished by substitution at the functionally essential residues located at the MacA α-helical tip region. Electron microscopic study delineated that this complex was made by tip-to-tip interaction between the tip regions of the α-barrels of TolC and MacA, which correlated well with the TolC and MacA complex calculated by molecular dynamics. Taken together, our results demonstrate that the MacA hexamer interacts with TolC in a tip-to-tip manner, and implies the manner by which MacA induces opening of the TolC channel.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Aggregatibacter actinomycetemcomitans/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Macrólidos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Complejos Multiproteicos/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Aggregatibacter actinomycetemcomitans/genética , Proteínas de la Membrana Bacteriana Externa/genética , Transporte Biológico , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Membrana/genética , Complejos Multiproteicos/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
11.
Methods Mol Biol ; 2507: 375-387, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35773593

RESUMEN

The development of styrene maleic acid (SMA) and diisobutylene maleic acid (DIBMA) copolymers provides an alternative to traditional detergent extraction of integral membrane proteins. By inserting into the membrane, these polymers can extract membrane proteins along with lipids in the form of native nanodiscs made by poly(styrene co-maleic anhydride) derivatives. Unlike detergent solubilization, where membrane proteins may lose annular lipids necessary for proper folding and stability, native nanodiscs allow for proteins to reside in the natural lipid environment. In addition, polymer-based nanodiscs can be purified using common chromatography methods similar to protocols established with detergent solubilization purification. Here we describe the solubilization screening and purification of an integral membrane protein using several commercial copolymers.


Asunto(s)
Detergentes , Proteínas de la Membrana , Detergentes/química , Membrana Dobles de Lípidos/química , Lípidos/química , Proteínas de la Membrana/química , Polímeros/química , Poliestirenos/química , Estirenos
12.
Biochem Biophys Res Commun ; 394(4): 962-5, 2010 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-20307498

RESUMEN

The tripartite efflux pump MacAB-TolC found in gram-negative bacteria is involved in resistance to antibiotics. We previously reported the funnel-like hexameric structure of the adaptor protein MacA to be physiologically relevant. In this study, we investigated the role of the tip region of its alpha-hairpin, which forms a cogwheel structure in the funnel-like shape of the MacA hexamer. Mutational and biochemical analyses revealed that the conserved residues located at the tip region of the alpha-hairpin of MacA play an essential role in the binding of TolC. Our findings offer a molecular basis for understanding the drug resistance of pathogenic bacteria.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Farmacorresistencia Bacteriana , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Secuencia de Aminoácidos , Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Secuencia Conservada , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Datos de Secuencia Molecular , Estructura Secundaria de Proteína
13.
14.
J Microbiol ; 55(5): 388-395, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28455590

RESUMEN

Bacterial ribonuclease E (RNase E) plays a crucial role in the processing and decay of RNAs. A small protein named RraA negatively regulates the activity of RNase E via protein-protein interaction in various bacteria. Recently, RraAS1 and RraAS2, which are functional homologs of RraA from Escherichia coli, were identified in the Gram-positive species Streptomyces coelicolor. RraAS1 and RraAS2 inhibit RNase ES ribonuclease activity in S. coelicolor. RraAS1 and RraAS2 have a C-terminal extension region unlike typical bacterial RraA proteins. In this study, we present the crystal structure of RraAS2, exhibiting a hexamer arranged in a dimer of trimers, consistent with size exclusion chromatographic results. Importantly, the C-terminal extension region formed a long α-helix at the junction of the neighboring subunit, which is similar to the trimeric RraA orthologs from Saccharomyces cerevisiae. Truncation of the C-terminal extension region resulted in loss of RNase ES inhibition, demonstrating its crucial role. Our findings present the first bacterial RraA that has a hexameric assembly with a C-terminal extension α-helical region, which plays an essential role in the regulation of RNase ES activity in S. coelicolor.


Asunto(s)
Proteínas Bacterianas/química , Endorribonucleasas/antagonistas & inhibidores , Streptomyces coelicolor/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalización , Cristalografía por Rayos X , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Escherichia coli/genética , Modelos Moleculares , Unión Proteica , Conformación Proteica , Multimerización de Proteína , ARN Bacteriano/metabolismo , Saccharomyces cerevisiae/genética , Homología de Secuencia , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo
15.
Mol Cells ; 40(4): 299-306, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28427249

RESUMEN

The transcriptional activator AphB has been implicated in acid resistance and pathogenesis in the food borne pathogens Vibrio vulnificus and Vibrio cholerae. To date, the full-length AphB crystal structure of V. cholerae has been determined and characterized by a tetrameric assembly of AphB consisting of a DNA binding domain and a regulatory domain (RD). Although acidic pH and low oxygen tension might be involved in the activation of AphB, it remains unknown which ligand or stimulus activates AphB at the molecular level. In this study, we determine the crystal structure of the AphB RD from V. vulnificus under aerobic conditions without modification at the conserved cysteine residue of the RD, even in the presence of the oxidizing agent cumene hydroperoxide. A cysteine to serine amino acid residue mutant RD protein further confirmed that the cysteine residue is not involved in sensing oxidative stress in vitro. Interestingly, an unidentified small molecule was observed in the inter-subdomain cavity in the RD when the crystal was incubated with cumene hydroperoxide molecules, suggesting a new ligand-binding site. In addition, we confirmed the role of AphB in acid tolerance by observing an aphB-dependent increase in cadC transcript level when V. vulnificus was exposed to acidic pH. Our study contributes to the understanding of the AphB molecular mechanism in the process of recognizing the host environment.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/fisiología , Genes Reguladores , Transactivadores/química , Transactivadores/fisiología , Vibriosis/microbiología , Vibrio vulnificus/patogenicidad , Derivados del Benceno/química , Sitios de Unión , Cristalografía por Rayos X , Cisteína/química , Cisteína/genética , Regulación Bacteriana de la Expresión Génica , Concentración de Iones de Hidrógeno , Ligandos , Modelos Moleculares , Estrés Oxidativo/fisiología , Dominios y Motivos de Interacción de Proteínas , Análisis de Secuencia de Proteína , Serina/química , Serina/genética , Vibrio vulnificus/genética , Virulencia/genética
16.
PLoS One ; 12(12): e0190064, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29261778

RESUMEN

RNase E has a pivotal role in the degradation and processing of RNAs in Escherichia coli, and protein inhibitors RraA and RraB control its enzymatic activity. The halophilic pathogenic bacterium Vibrio vulnificus also expresses orthologs of RNase E and RraA-RNase EV, RraAV1, and RraAV2 (herein renamed as VvRNase E, VvRraA1, and VvRraA2). A previous study showed that VvRraA1 actively inhibits the ribonucleolytic activity of VvRNase E by interacting with the C-terminal region of VvRNase E. However, the molecular mechanism underlying the effect of VvRraA1 on the ribonucleolytic activity of VvRNase E has not yet been elucidated. In this study, we report that the oligomer formation of VvRraA proteins affects binding efficiency to VvRNase E as well as inhibitory activity on VvRNase E action. The hexameric structure of VvRraA1 was converted to lower oligomeric forms when the Cys 9 residue was substituted with an Asp residue (VvRraA1-C9D), showing decreased inhibitory activity of VvRraA1 on VvRNase E in vivo. These results indicated that the intermolecular disulfide linkage contributed critically to the hexamerization of VvRraA1 for its proper function. On the contrary, the VvRraA2 that existed in a trimeric state did not bind to or inhibit VvRNase E. An in vitro cleavage assay further showed the reduced inhibitory effect of VvRraA-C9D on VvRNase E activity compared to wild-type VvRraA1. These findings provide insight into how VvRraA proteins can regulate VvRNase E action on its substrate RNA in V. vulnificus. In addition, based on structural and functional comparison of RraA homologs, we suggest that hexameric assembly of RraA homologs may well be required for their action on RNase E-like proteins.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Multimerización de Proteína , Vibrio vulnificus/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/química , Proteínas Mutantes/metabolismo , Mutación/genética , Unión Proteica , Alineación de Secuencia , Homología de Secuencia de Aminoácido
17.
Structure ; 24(3): 477-85, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26833388

RESUMEN

The protein toxin HlyA of Escherichia coli is exported without a periplasmic intermediate by the type I secretion system (T1SS). The T1SS is composed of an inner membrane ABC transporter HlyB, an outer-membrane channel protein TolC, and a membrane fusion protein HlyD. However, the assembly of the T1SS remains to be elucidated. In this study, we determine the crystal structure of a part of the C-terminal periplasmic domain of HlyD. The long α-helical domain consisting of three α helices and a lipoyl domain was identified in the crystal structure. Based on the HlyD structure, we modeled the hexameric assembly of HlyD with a long α-helical barrel, which formed a complex with TolC in an intermeshing cogwheel-to-cogwheel manner, as observed in tripartite RND-type drug efflux pumps. These observations provide a structural blueprint for understanding the type I secretion system in pathogenic Gram-negative bacteria.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Cristalografía por Rayos X , Escherichia coli/química , Modelos Moleculares , Dominios Proteicos , Estructura Secundaria de Proteína , Sistemas de Secreción Tipo I/química , Sistemas de Secreción Tipo I/metabolismo
18.
Structure ; 24(2): 272-6, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26777412

RESUMEN

The resistance-nodulation-division type tripartite pump AcrAB-TolC and its homologs are responsible for multidrug resistance in Gram-negative bacteria by expelling a wide variety of toxic substrates. The three essential components, AcrA, AcrB, and TolC, must function in concert with each respective binding partner within the complex. In this study, we report an 8.2-Å resolution cryo-electron microscopy (cryo-EM) 3D reconstruction of the complex that consists of an AcrAB fusion protein and a chimeric TolC protein. The pseudoatomic structure derived from the cryo-EM reconstruction clearly demonstrates a model only compatible with the adaptor bridging mechanism, wherein the funnel-like AcrA hexamer forms an intermeshing cogwheel-like interaction with the α-barrel tip region of TolC. These observations provide a structural milestone for understanding multidrug resistance in pathogenic Gram-negative bacteria, and may also lead to the design of new antibacterial drugs.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Bacterias Gramnegativas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , Farmacorresistencia Bacteriana Múltiple , Bacterias Gramnegativas/química , Modelos Moleculares , Simulación del Acoplamiento Molecular , Multimerización de Proteína , Estructura Secundaria de Proteína
19.
J Microbiol ; 54(10): 660-6, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27687228

RESUMEN

RraA is a protein inhibitor of RNase E (Rne), which catalyzes the endoribonucleolytic cleavage of a large proportion of RNAs in Escherichia coli. The antibiotic-producing bacterium Streptomyces coelicolor also contains homologs of RNase E and RraA, designated as RNase ES (Rns), RraAS1, and RraAS2, respectively. Here, we report that RraAS2 requires both scaffold domains of RNase ES for high-affinity binding and inhibitory action on the ribonucleolytic activity. Analyses of the steady-state level of RNase E substrates indicated that coexpression of RraAS2 in E. coli cells overproducing Rns effectively inhibits the ribonucleolytic activity of full-length RNase ES, but its inhibitory effects were moderate or undetectable on other truncated forms of Rns, in which the N- or/and C-terminal scaffold domain was deleted. In addition, RraAS2 more efficiently inhibited the in vitro ribonucleolytic activity of RNase ES than that of a truncated form containing the catalytic domain only. Coimmunoprecipitation and in vivo cross-linking experiments further showed necessity of both scaffold domains of RNase ES for high-affinity binding of RraAS2 to the enzyme, resulting in decreased RNA-binding capacity of RNase ES. Our results indicate that RraAS2 is a protein inhibitor of RNase ES and provide clues to how this inhibitor affects the ribonucleolytic activity of RNase ES.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endorribonucleasas/antagonistas & inhibidores , Endorribonucleasas/metabolismo , Streptomyces coelicolor/metabolismo , Proteínas Bacterianas/genética , Dominio Catalítico , Endorribonucleasas/química , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Unión Proteica , Estabilidad del ARN , ARN Bacteriano/metabolismo
20.
J Microbiol ; 53(6): 355-64, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26025167

RESUMEN

Gram-negative bacteria expel a wide range of toxic substances through tripartite drug efflux pumps consisting of an inner membrane transporter, an outer membrane channel protein, and a periplasmic adaptor protein. These pumps form tripartite assemblies which can span the entire cell envelope, including the inner and outer membranes. There have been controversial findings regarding the assembly of the individual components in tripartite drug efflux pumps. Recent structural and functional studies have advanced our understanding of the assembly and working mechanisms of the pumps. Here, we re-evaluate the assembly models based on recent structural and functional studies. In particular, this study focuses on the 'adaptor bridging model', highlighting the intermeshing cogwheel-like interactions between the tip regions of the outer membrane channel protein and the periplasmic adaptor protein in the hexameric assembly.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Transporte Biológico Activo , Bacterias Gramnegativas/química , Proteínas de Transporte de Membrana/química , Proteínas Periplasmáticas/química , Multimerización de Proteína , Proteínas de la Membrana Bacteriana Externa/metabolismo , Bacterias Gramnegativas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Modelos Biológicos , Modelos Moleculares , Proteínas Periplasmáticas/metabolismo , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA