Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell Environ ; 47(2): 511-526, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37869766

RESUMEN

Brassinosteroid (BR) has been shown to modulate plant tolerance to various stresses. S-nitrosoglutathione reductase (GSNOR) is involved in the plant response to environment stress by fine-turning the level of nitric oxide (NO). However, whether GSNOR is involved in BR-regulated Na+ /K+ homeostasis to improve the salt tolerance in halophyte is unknown. Here, we firstly reported that high salinity increases the expression of BR-biosynthesis genes and the endogenous levels of BR in mangrove Kandelia obovata. Then, salt-induced BR triggers the activities and gene expressions of GSNOR and antioxidant enzymes, thereafter decrease the levels of malondialdehyde, hydrogen peroxide. Subsequently, BR-mediated GSNOR negatively regulates NO contributions to the reduction of reactive oxygen species generation and induction of the gene expression related to Na+ and K+ transport, leading to the decrease of Na+ /K+ ratio in the roots of K. obovata. Finally, the applications of exogenous BR, NO scavenger, BR biosynthetic inhibitor and GSNOR inhibitor further confirm the function of BR. Taken together, our result provides insight into the mechanism of BR in the response of mangrove K. obovata to high salinity via GSNOR and NO signaling pathway by reducing oxidative damage and modulating Na+ /K+ homeostasis.


Asunto(s)
Óxido Nítrico , Rhizophoraceae , Óxido Nítrico/metabolismo , Oxidorreductasas/metabolismo , Brasinoesteroides/farmacología , Brasinoesteroides/metabolismo , Rhizophoraceae/genética , Rhizophoraceae/metabolismo , Tolerancia a la Sal , Transducción de Señal
2.
Plant Cell Environ ; 47(3): 832-853, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37984066

RESUMEN

Aquaporins (AQPs) regulate the transport of water and other substrates, aiding plants in adapting to stressful environments. However, the knowledge of AQPs in salt-secreting and viviparous Avicennia marina is limited. In this study, 46 AmAQPs were identified in A. marina genome, and their subcellular localisation and function in transporting H2 O2 and boron were assessed through bioinformatics analysis and yeast transformation. Through analysing their expression patterns via RNAseq and real-time quantitative polymerase chain reaction, we found that most AmAQPs were downregulated in response to salt and tidal flooding. AmPIP (1;1, 1;7, 2;8, 2;9) and AmTIP (1;5, 1;6) as salt-tolerant candidate genes may contribute to salt secretion together with Na+ /H+ antiporters. AmPIP2;1 and AmTIP1;5 were upregulated during tidal flooding and may be regulated by anaerobic-responsive element and ethylene-responsive element cis-elements, aiding in adaptation to tidal inundation. Additionally, we found that the loss of the seed desiccation and dormancy-related TIP3 gene, and the loss of the seed dormancy regulator DOG1 gene, or DOG1 protein lack heme-binding capacity, may be genetic factors contributing to vivipary. Our findings shed light on the role of AQPs in A. marina adaptation to intertidal environments and their relevance to salt secretion and vivipary.


Asunto(s)
Acuaporinas , Avicennia , Avicennia/metabolismo , Ecosistema , Agua/metabolismo , Acuaporinas/genética , Acuaporinas/metabolismo
3.
J Exp Bot ; 75(8): 2266-2279, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38190348

RESUMEN

In plants, C-to-U RNA editing mainly occurs in plastid and mitochondrial transcripts, which contributes to a complex transcriptional regulatory network. More evidence reveals that RNA editing plays critical roles in plant growth and development. However, accurate detection of RNA editing sites using transcriptome sequencing data alone is still challenging. In the present study, we develop PlantC2U, which is a convolutional neural network, to predict plastid C-to-U RNA editing based on the genomic sequence. PlantC2U achieves >95% sensitivity and 99% specificity, which outperforms the PREPACT tool, random forests, and support vector machines. PlantC2U not only further checks RNA editing sites from transcriptome data to reduce possible false positives, but also assesses the effect of different mutations on C-to-U RNA editing based on the flanking sequences. Moreover, we found the patterns of tissue-specific RNA editing in the mangrove plant Kandelia obovata, and observed reduced C-to-U RNA editing rates in the cold stress response of K. obovata, suggesting their potential regulatory roles in plant stress adaptation. In addition, we present RNAeditDB, available online at https://jasonxu.shinyapps.io/RNAeditDB/. Together, PlantC2U and RNAeditDB will help researchers explore the RNA editing events in plants and thus will be of broad utility for the plant research community.


Asunto(s)
Aprendizaje Profundo , Edición de ARN , Edición de ARN/genética , Plantas/metabolismo , Plastidios/genética , Plastidios/metabolismo , Transcriptoma , ARN de Planta/genética , ARN de Planta/metabolismo
4.
J Prosthet Dent ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38760310

RESUMEN

A digital workflow for the rapid design and fabrication of interim fixed prostheses using an open-access software program and 3-dimensional printing technology is described. After obtaining intraoral scanning data, the prostheses are designed by offset, margin sculpting, and a Boolean operation. Then, the prostheses are finalized and manufactured additively. The use of the open-access software program and simplified design steps enhances the manufacturing efficiency and accessibility of computer-aided design and computer-aided manufacturing of interim restorations.

5.
Plant Mol Biol ; 111(4-5): 393-413, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36645624

RESUMEN

NAC (NAM, ATAF1/2, CUC2) transcription factors (TFs) constitute a plant-specific gene family. It is reported that NAC TFs play important roles in plant growth and developmental processes and in response to biotic/abiotic stresses. Nevertheless, little information is known about the functional and evolutionary characteristics of NAC TFs in mangrove plants, a group of species adapting coastal intertidal habitats. Thus, we conducted a comprehensive investigation for NAC TFs in Avicennia marina, one pioneer species of mangrove plants. We totally identified 142 NAC TFs from the genome of A. marina. Combined with NAC proteins having been functionally characterized in other organisms, we built a phylogenetic tree to infer the function of NAC TFs in A. marina. Gene structure and motif sequence analyses suggest the sequence conservation and transcription regulatory regions-mediated functional diversity. Whole-genome duplication serves as the driver force to the evolution of NAC gene family. Moreover, two pairs of NAC genes were identified as positively selected genes of which AmNAC010/040 may be imposed on less constraint toward neofunctionalization. Quite a few stress/hormone-related responsive elements were found in promoter regions indicating potential response to various external factors. Transcriptome data revealed some NAC TFs were involved in pneumatophore and leaf salt gland development and response to salt, flooding and Cd stresses. Gene co-expression analysis found a few NAC TFs participates in the special biological processes concerned with adaptation to intertidal environment. In summary, this study provides detailed functional and evolutionary information about NAC gene family in mangrove plant A. marina and new perspective for adaptation to intertidal habitats.


Asunto(s)
Avicennia , Avicennia/química , Avicennia/genética , Avicennia/metabolismo , Filogenia , Factores de Transcripción/metabolismo , Genes de Plantas , Ecosistema
6.
Planta ; 259(1): 12, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057597

RESUMEN

MAIN CONCLUSION: Transcriptional and metabolic regulation of lignin biosynthesis and lignification plays crucial roles in Avicennia marina pneumatophore development, facilitating its adaptation to coastal habitats. Avicennia marina is a pioneer mangrove species in coastal wetland. To cope with the periodic intertidal flooding and hypoxia environment, this species has developed a complex and extensive root system, with its most unique feature being a pneumatophore with a distinct above- and below-ground morphology and vascular structure. However, the characteristics of pneumatophore lignification remain unknown. Studies comparing the anatomy among above-ground pneumatophore, below-ground pneumatophore, and feeding root have suggested that vascular structure development in the pneumatophore is more like the development of a stem than of a root. Metabolome and transcriptome analysis illustrated that the accumulation of syringyl (S) and guaiacyl (G) units in the pneumatophore plays a critical role in lignification of the stem-like structure. Fourteen differentially accumulated metabolites (DAMs) and 10 differentially expressed genes involved in the lignin biosynthesis pathway were targeted. To identify genes significantly associated with lignification, we analyzed the correlation between 14 genes and 8 metabolites and further built a co-expression network between 10 transcription factors (TFs), including 5 for each of MYB and NAC, and 23 enzyme-coding genes involved in lignin biosynthesis. 4-Coumarate-CoA ligase, shikimate/quinate hydroxycinnamoyl transferase, cinnamyl alcohol dehydrogenase, caffeic acid 3-O-methyltransferase, phenylalanine ammonia-lyase, and peroxidase were identified to be strongly correlated with these TFs. Finally, we examined 9 key candidate genes through quantitative real-time PCR to validate the reliability of transcriptome data. Together, our metabolome and transcriptome findings reveal that lignin biosynthesis and lignification regulate pneumatophore development in the mangrove species A. marina and facilitate its adaptation to coastal habitats.


Asunto(s)
Avicennia , Avicennia/genética , Avicennia/metabolismo , Lignina/metabolismo , Reproducibilidad de los Resultados , Perfilación de la Expresión Génica , Transcriptoma/genética , Metaboloma
7.
Plant Cell Environ ; 46(5): 1521-1539, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36658747

RESUMEN

Hydrogen sulfide (H2 S) is considered to mediate plant growth and development. However, whether H2 S regulates the adaptation of mangrove plant to intertidal flooding habitats is not well understood. In this study, sodium hydrosulfide (NaHS) was used as an H2 S donor to investigate the effect of H2 S on the responses of mangrove plant Avicennia marina to waterlogging. The results showed that 24-h waterlogging increased reactive oxygen species (ROS) and cell death in roots. Excessive mitochondrial ROS accumulation is highly oxidative and leads to mitochondrial structural and functional damage. However, the application of NaHS counteracted the oxidative damage caused by waterlogging. The mitochondrial ROS production was reduced by H2 S through increasing the expressions of the alternative oxidase genes and increasing the proportion of alternative respiratory pathway in the total mitochondrial respiration. Secondly, H2 S enhanced the capacity of the antioxidant system. Meanwhile, H2 S induced Ca2+ influx and activated the expression of intracellular Ca2+ -sensing-related genes. In addition, the alleviating effect of H2 S on waterlogging can be reversed by Ca2+ chelator and Ca2+ channel blockers. In conclusion, this study provides the first evidence to explain the role of H2 S in waterlogging adaptation in mangrove plants from the mitochondrial aspect.


Asunto(s)
Avicennia , Sulfuro de Hidrógeno , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Calcio/metabolismo , Avicennia/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo
8.
Plant Cell Rep ; 42(9): 1473-1485, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37516984

RESUMEN

KEY MESSAGE: This study provided important insights into the genetic architecture of variations in A. thaliana leaf ionome in a cell-type-specific manner. The functional interpretation of traits associated variants by expression quantitative trait loci (eQTL) analysis is usually performed in bulk tissue samples. While the regulation of gene expression is context-dependent, such as cell-type-specific manner. In this study, we estimated cell-type abundances from 728 bulk tissue samples using single-cell RNA-sequencing dataset, and performed cis-eQTL mapping to identify cell-type-interaction eQTL (cis-eQTLs(ci)) in A. thaliana. Also, we performed Genome-wide association studies (GWAS) analyses for 999 accessions to identify the genetic basis of variations in A. thaliana leaf ionome. As a result, a total of 5,664 unique eQTL genes and 15,038 unique cis-eQTLs(ci) were significant. The majority (62.83%) of cis-eQTLs(ci) were cell-type-specific eQTLs. Using colocalization, we uncovered one interested gene AT2G25590 in Phloem cell, encoding a kind of plant Tudor-like protein with possible chromatin-associated functions, which colocalized with the most significant cis-eQTL(ci) of a Mo-related locus (Chr2:10,908,806:A:C; P = 3.27 × 10-27). Furthermore, we prioritized eight target genes associated with AT2G25590, which were previously reported in regulating the concentration of Mo element in A. thaliana. This study revealed the genetic regulation of ionomic variations and provided a foundation for further studies on molecular mechanisms of genetic variants controlling the A. thaliana ionome.


Asunto(s)
Arabidopsis , Sitios de Carácter Cuantitativo , Arabidopsis/genética , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética
9.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37569274

RESUMEN

Flowering Chinese cabbage (Brassica campestris L. ssp. Chinensis var. utilis Tsen et Lee) is a widely consumed vegetable in southern China with significant economic value. Developing product organs in the flowering Chinese cabbage involves two key processes: bolting and flowering. Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor known for its crucial role in various plant developmental processes. However, there is limited information available on the involvement of this gene family during flowering during Chinese cabbage development. In this study, 49 BcNF-Y genes were identified and characterized along with their physicochemical properties, gene structure, chromosomal location, collinearity, and expression patterns. We also conducted subcellular localization, yeast two-hybrid, and transcriptional activity assays on selected BcNF-Y genes. The findings of this study revealed enhanced expression levels of specific BcNF-Y genes during the stalk development and flowering stages in flowering Chinese cabbage. Notably, BcNF-YA8, BcNF-YB14, BcNF-YB20, and BcNF-YC5 interacted with BcRGA1, a negative regulator of GA signaling, indicating their potential involvement in GA-mediated stalk development. This study provides valuable insights into the role of BcNF-Y genes in flowering Chinese cabbage development and suggests that they are potential candidates for further investigating the key regulators of cabbage bolting and flowering.

10.
J Prosthet Dent ; 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37604754

RESUMEN

This clinical report describes a fully digital workflow for replicating removable partial dentures (RPDs). The artificial teeth and denture base of existing dentures were duplicated and applied to new dentures with a redesigned framework. After the components of RPDs had been separated from the scan data of the existing dentures, they were fabricated using 3-dimensional printing and assembled to create a new denture.

11.
Planta ; 256(1): 6, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35678934

RESUMEN

MAIN CONCLUSION: Whole-genome duplication, gene family and lineage-specific genes analysis based on high-quality genome reveal the adaptation mechanisms of Avicennia marina to coastal intertidal habitats. Mangrove plants grow in a complex habitat of coastal intertidal zones with high salinity, hypoxia, etc. Therefore, it is an interesting question how mangroves adapt to the unique intertidal environment. Here, we present a chromosome-level genome of the Avicennia marina, a typical true mangrove with a size of 480.43 Mb, contig N50 of 11.33 Mb and 30,956 annotated protein-coding genes. We identified 621 Avicennia-specific genes that are mainly related to flavonoid and lignin biosynthesis, auxin homeostasis and response to abiotic stimulus. We found that A. marina underwent a novel specific whole-genome duplication, which is in line with a brief era of global warming that occurred during the paleocene-eocene maximum. Comparative genomic and transcriptomic analyses outline the distinct evolution and sophisticated regulations of A. marina adaptation to the intertidal environments, including expansion of photosynthesis and oxidative phosphorylation gene families, unique genes and pathways for antibacterial, detoxifying antioxidant and reactive oxygen species scavenging. In addition, we also analyzed salt gland secretion-related genes, and those involved in the red bark-related flavonoid biosynthesis, while significant expansions of key genes such as NHX, 4CL, CHS and CHI. High-quality genomes in future investigations will facilitate the understand of evolution of mangrove and improve breeding.


Asunto(s)
Avicennia , Adaptación Fisiológica/genética , Avicennia/genética , Ecosistema , Flavonoides/genética , Fitomejoramiento
12.
Int J Mol Sci ; 23(14)2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35886968

RESUMEN

Ultraviolet-A (UVA) (315-400 nm) is an essential environmental signal that regulates plant development and affects phytochemicals biosynthesis, including glucosinolate biosynthesis. The effects of different UVA (380 ± 10 nm, 40 µmol/m2/s) exposure durations, including 0 h/d (UV0), 6 h/d (UV6) and 12 h/d (UV12), on the growth and phytochemicals of Chinese kale (Brassica alboglabra) under white 250 µmol/m2/s LEDs were investigated. UVA exposure of different durations influenced the growth and phytochemicals biosynthesis of Chinese kale. Prolonging UVA irradiation throughout the growth cycle positively affected the growth and the development of Chinese kale, with evident increases in the dry weights of shoots and roots, plant height, stem diameter, specific leaf weight and flower budding rate. The application of UVA increased the soluble sugar content, whereas higher flavonoid content and antioxidant capacity (FRAP) and lower nitrate content were only observed in Chinese kale exposed to UV6 treatment. Besides, the qPCR assay showed that supplemental UVA-radiation exposure up-regulated the gene expressions of UVR8, transcription factors genes and genes related to the glucosinolate biosynthesis pathway, thereby promoting the accumulation of glucosinolates. Therefore, supplemental UVA-radiation exposure for 12 h/d was more conducive to plant growth, while supplemental UVA-radiation exposure for 6 h/d was better for phytochemical biosynthesis in Chinese kale in an artificial-light plant factory.


Asunto(s)
Brassica , Exposición a la Radiación , Brassica/metabolismo , China , Glucosinolatos/metabolismo , Fitoquímicos/química
13.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35408819

RESUMEN

Flowering Chinese cabbage is one of the most economically important stalk vegetables. However, the molecular mechanisms underlying bolting, which is directly related to stalk quality and yield, in this species remain unknown. Previously, we examined five key stem development stages in flowering Chinese cabbage. Here, we identified a gene, BcSOC1 (SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1), in flowering Chinese cabbage using transcriptome analysis, whose expression was positively correlated with bolting. Exogenous gibberellin (GA3) and low-temperature treatments significantly upregulated BcSOC1 and promoted early bolting and flowering. Additionally, BcSOC1 overexpression accelerated early flowering and stem elongation in both Arabidopsis and flowering Chinese cabbage, whereas its knockdown dramatically delayed bolting and flowering and inhibited stem elongation in the latter; the inhibition of stem elongation was more notable than delayed flowering. BcSOC1 overexpression also induced cell expansion by upregulating genes encoding cell wall structural proteins, such as BcEXPA11 (cell wall structural proteins and enzymes) and BcXTH3 (xyloglucan endotransglycosidase/hydrolase), upon exogenous GA3 and low-temperature treatments. Moreover, the length of pith cells was correlated with stem height, and BcSOC1 interacted with BcAGL6 (AGAMOUS-LIKE 6) and BcAGL24 (AGAMOUS-LIKE 24). Thus, BcSOC1 plays a vital role in bolting and stem elongation of flowering Chinese cabbage and may play a novel role in regulating stalk development, apart from the conserved function of Arabidopsis SOC1 in flowering alone.


Asunto(s)
Arabidopsis , Brassica , Arabidopsis/genética , Arabidopsis/metabolismo , Brassica/metabolismo , China , Flores , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Int J Mol Sci ; 23(13)2022 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-35806416

RESUMEN

Flowering Chinese cabbage (Brassica campestris L. ssp. Chinensis var. utilis Tsen et Lee) is an important and extensively cultivated vegetable in south China, whose major food product is the stalk. In the process of stalk formation, its initiation and development are regulated by a series of hormonal signals, such as cytokinin and gibberellin. In this study, we analyzed the effects of zeatin (ZT) and gibberellin A3 (GA3), and their interaction, on the bolting of flowering Chinese cabbage. The results indicated that the three-true-leaf spraying of ZT and GA synthesis inhibitor (PAC) inhibited plant height but increased stem diameter. Cytokinin (CTK) synthesis inhibitor (YZJ) and GA3 treatment increased plant height and decreased stem diameter. In addition, ZT and GA3 co-treated plants displayed antagonistic effect. Further, 19 type-B authentic response regulators (ARR-Bs), the positive regulators of cytokinin signal transduction were identified from flowering Chinese cabbage. Comprehensive analysis of phylogeny showed BcARR-Bs clustered into three subfamilies with 10 conserved motifs. Analysis of their expression patterns in different tissues and at various growth stage, and their response to hormone treatment suggest that ARR1-b localized in the nucleus displayed unique highest expression patterns in stem tips, are responsive both to ZT and GA, suggesting a significant role in mediating the crosstalk of ZT and GA in the bolting of flowering Chinese cabbage.


Asunto(s)
Brassica , Citocininas , Brassica/metabolismo , Citocininas/metabolismo , Citocininas/farmacología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Filogenia , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Molecules ; 27(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36144541

RESUMEN

Melatonin (MT) and nitric oxide (NO) in plants can function cooperatively to alleviate salt stress, sodic alkaline stress and immune response, as well as adventitious root formation. The interaction of MT and NO on the nitrate stress tolerance of cucumber seedlings are not well understood. We investigated the effects of exogenous MT, NO donor (SNP) and NO scavenger (cPTIO) on the growth; photosynthesis; characteristics of root morphological; accumulation of mineral elements, endogenous NO, MT, IAA and ABA; and related genes expression in cucumber (Cucumis sativus L. "Jin You No. 1") seedlings grown under high nitrate condition (HN). The results showed that MT and NO independently alleviated the inhibition of growth and photosynthesis capacity of cucumber seedlings under nitrate stress. NO was required for MT to enhance the root activity, root length, lateral root number and the accumulation of calcium, magnesium and iron in the roots of cucumber seedlings grown under nitrate stress. Consistently, the expression of adventitious rootless 1 gene (CsARL1) was modulated. Furthermore, exogenous MT induced accumulation of endogenous MT, NO, indole-3-acetic acid (IAA) and abscisic acid (ABA), mainly within 24 h after treatment, in which MT and NO were further increased at 48 h and 96 h, IAA and ABA were further increased at 16 h in the presence of SNP. In contrast, the accumulation of endogenous IAA, MT and ABA slightly decreased within 24 h, NO significantly decreased at 192 h in the presence of cPTIO. Correspondingly, the expression levels of genes involved in nitrogen metabolism (CsNR1 and CsNR2), MT metabolism (CsT5H, CsSNAT2 and Cs2-ODD33), auxin carriers and response factors (CsAUX1, CsGH3.5, CsARF17), ABA synthesis and catabolism (CsNCED1, CsNCED3 and CsCYP707A1) were upregulated by MT, in which CsNR1, CsNR2, CsAUX1, CsNCED3 and CsT5H were further induced in the presence of SNP in roots of cucumber seedlings. These observations indicated that NO act as a crucial factor in MT, alleviating nitrate stress through regulating the mechanism of root growth in cucumber seedlings.


Asunto(s)
Cucumis sativus , Melatonina , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Benzoatos , Calcio/metabolismo , Imidazoles , Ácidos Indolacéticos/metabolismo , Hierro/metabolismo , Magnesio/farmacología , Melatonina/farmacología , Minerales/metabolismo , Nitratos/metabolismo , Nitratos/farmacología , Óxido Nítrico/metabolismo , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Plantones
16.
J Integr Plant Biol ; 64(11): 2150-2167, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35980297

RESUMEN

Malformed fruits depreciate a plant's market value. In tomato (Solanum lycopersicum), fruit malformation is associated with the multi-locule trait, which involves genes regulating shoot apical meristem (SAM) development. The expression pattern of TOPLESS3 (SlTPL3) throughout SAM development prompted us to investigate its functional significance via RNA interference (RNAi) and clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9 (Cas9)-mediated gene editing. Lower SlTPL3 transcript levels resulted in larger fruits with more locules and larger SAMs at the 5 d after germination (DAG5) stage. Differentially expressed genes in the SAM of wild-type (WT) and SlTPL3-RNAi plants, identified by transcriptome deep sequencing (RNA-seq), were enriched in the gibberellin (GA) biosynthesis and plant hormone signaling pathways. Moreover, exogenous auxin and paclobutrazol treatments rescued the multi-locule phenotype, indicating that SlTPL3 affects SAM size by mediating auxin and GA levels in the SAM. Furthermore, SlTPL3 interacted with WUSCHEL (SlWUS), which plays an important role in SAM size maintenance. We conducted RNA-seq and DNA affinity purification followed by sequencing (DAP-seq) analyses to identify the genes regulated by SlTPL3 and SlWUS in the SAM and to determine how they regulate SAM size. We detected 24 overlapping genes regulated by SlTPL3 and SlWUS and harboring an SlWUS-binding motif in their promoters. Furthermore, functional annotation revealed a notable enrichment for functions in auxin transport, auxin signal transduction, and GA biosynthesis. Dual-luciferase assays also revealed that SlTPL3 enhances SlWUS-mediated regulation (repression and activation) of SlPIN3 and SlGA2ox4 transcription, indicating that the SlTPL3-SlWUS module regulates SAM size by mediating auxin distribution and GA levels, and perturbations of this module result in enlarged SAM. These results provide novel insights into the molecular mechanism of SAM maintenance and locule formation in tomato and highlight the SlTPL3-SlWUS module as a key regulator.


Asunto(s)
Meristema , Solanum lycopersicum , Meristema/metabolismo , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Mol Genet Genomics ; 296(6): 1235-1247, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34363105

RESUMEN

Lineage-specific genes (LSGs) are the genes that have no recognizable homology to any sequences in other species, which are important drivers for the generation of new functions, phenotypic changes, and facilitating species adaptation to environment. Aegiceras corniculatum is one of major mangrove plant species adapted to waterlogging and saline conditions, and the exploration of aegiceras-specific genes (ASGs) is important to reveal its adaptation to the harsh environment. Here, we performed a systematic analysis on ASGs, focusing on their sequence characterization, origination and expression patterns. Our results reveal that there are 4823 ASGs in the genome, approximately 11.84% of all protein-coding genes. High proportion (45.78%) of ASGs originate from gene duplication, and the time of gene duplication of ASGs is consistent with the timing of two genome-wide replication (WGD) events that occurred in A. corniculatum, and also coincides with a short period of global warming during the Paleocene-Eocene Maximum (PETM, 55.5 million years ago). Gene structure analysis showed that ASGs have shorter protein lengths, fewer exons, and higher isoelectric point. Expression patterns analysis showed that ASGs had low levels of expression and more tissue-specific expression. Weighted gene co-expression network analysis (WGCNA) revealed that 86 ASGs co-expressed gene modules were primarily involved in pathways related to adversity stress, including plant hormone signal transduction, phenylpropanoid biosynthesis, photosynthesis, peroxisome and pentose phosphate pathway. This study provides a comprehensive analysis of the characteristics and potential functions of ASGs and identifies key candidate genes, which will contribute to the subsequent further investigation of the adaptation of A. corniculatum to intertidal coastal wetland habitats.


Asunto(s)
Adaptación Fisiológica/genética , Linaje de la Célula/genética , Duplicación de Gen/genética , Primulaceae/genética , Primulaceae/metabolismo , Perfilación de la Expresión Génica , Genoma de Planta/genética , Transcriptoma/genética , Humedales
18.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34829974

RESUMEN

Flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) is an important and extensively cultivated vegetable in south China, and its stalk development is mainly regulated by gibberellin (GA). DELLA proteins negatively regulate GA signal transduction and may play an important role in determining bolting and flowering. Nevertheless, no systematic study of the DELLA gene family has been undertaken in flowering Chinese cabbage. In the present study, we found that the two-true-leaf spraying of gibberellin A3 (GA3) did not promote bolting but did promote flowering, whereas the three-true-leaf spraying of GA3 promoted both bolting and flowering. In addition, we identified five DELLA genes in flowering Chinese cabbage. All five proteins contained DELLA, VHYNP, VHIID, and SAW conserved domains. Protein-protein interaction results showed that in the presence of GA3, all five DELLA proteins interacted with BcGID1b (GA-INSENSITIVE DWARF 1b) but not with BcGID1a (GA-INSENSITIVE DWARF 1a) or BcGID1c (GA-INSENSITIVE DWARF 1c). Their expression analysis showed that the DELLA genes exhibited tissue-specific expression, and their reversible expression profiles responded to exogenous GA3 depending on the treatment stage. We also found that the DELLA genes showed distinct expression patterns in the two varieties of flowering Chinese cabbage. BcRGL1 may play a major role in the early bud differentiation process of different varieties, affecting bolting and flowering. Taken together, these results provide a theoretical basis for further dissecting the DELLA regulatory mechanism in the bolting and flowering of flowering Chinese cabbage.


Asunto(s)
Brassica/genética , Flores/genética , Giberelinas/metabolismo , Proteínas de Plantas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brassica/crecimiento & desarrollo , China , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Familia de Multigenes/genética , Hojas de la Planta/genética , Receptores de Superficie Celular/genética
19.
Molecules ; 26(23)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34885984

RESUMEN

Three different LED spectra (W: White light; WFR: W + far-red light; WB: W + blue light) with similar photosynthetic photon flux density (PPFD) were designed to explore the effects of supplementary far-red and blue lights on leaf color, biomass and phytochemicals of two cultivars of red-leaf lettuce ("Yanzhi" and "Red Butter") in an artificial lighting plant factory. Lettuce plants under WB had redder leaf color and significantly higher contents of pigments, such as chlorophyll a, chlorophyll b, chlorophyll (a + b) and anthocyanins. The accumulation of health-promoting compounds, such as vitamin C, vitamin A, total phenolic compounds, total flavonoids and anthocyanins in the two lettuce cultivars were obviously enhanced by WB. Lettuce under WFR showed remarkable increase in fresh weight and dry weight; meanwhile, significant decreases of pigments, total phenolic compounds, total flavonoids and vitamin C were found. Thus, in the plant factory system, the application of WB can improve the coloration and quality of red leaf lettuce while WFR was encouraged for the purpose of elevating the yield of lettuce.


Asunto(s)
Biomasa , Lactuca/clasificación , Lactuca/metabolismo , Iluminación , Fitoquímicos/análisis , Pigmentos Biológicos/análisis , Antocianinas/análisis , Antocianinas/biosíntesis , Ácido Ascórbico/análisis , Ácido Ascórbico/biosíntesis , Clorofila/análisis , Clorofila A/análisis , Flavonoides/análisis , Flavonoides/biosíntesis , Lactuca/química , Fenoles/análisis , Fotosíntesis , Fitoquímicos/biosíntesis , Vitamina A/análisis , Vitamina A/biosíntesis
20.
Molecules ; 26(15)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34361799

RESUMEN

Addition of selenium or application of ultraviolet A (UVA) radiation for crop production could be an effective way of producing phytochemical-rich food. This study was conducted to investigate the effects of selenium and UVA radiation, as well as their combination on growth and phytochemical contents in broccoli microgreens. There were three treatments: Se (100 µmol/L Na2SeO3), UVA (40 µmol/m2/s) and Se + UVA (with application of Se and UVA). The control (CK) was Se spraying-free and UVA radiation-free. Although treatment with Se or/and UVA inhibited plant growth of broccoli microgreens, results showed that phytochemical contents increased. Broccoli microgreens under the Se treatment had higher contents of total soluble sugars, total phenolic compounds, total flavonoids, ascorbic acid, Fe, and organic Se and had lower Zn content. The UVA treatment increased the contents of total chlorophylls, total soluble proteins, total phenolic compounds, and FRAP. However, the Se + UVA treatment displayed the most remarkable effect on the contents of total anthocyanins, glucoraphanin, total aliphatic glucosinolates, and total glucosinolates; here, significant interactions between Se and UVA were observed. This study provides valuable insights into the combinational selenium and UVA for improving the phytochemicals of microgreens grown in an artificial lighting plant factory.


Asunto(s)
Brassica/crecimiento & desarrollo , Producción de Cultivos , Fitoquímicos/biosíntesis , Selenio/farmacología , Ácido Ascórbico/metabolismo , Brassica/efectos de los fármacos , Brassica/efectos de la radiación , Flavonoides/metabolismo , Flavonoides/efectos de la radiación , Hierro/metabolismo , Fenol/metabolismo , Fenol/efectos de la radiación , Fitoquímicos/efectos de la radiación , Azúcares/metabolismo , Azúcares/efectos de la radiación , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA