Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Virol ; 96(15): e0080722, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35852354

RESUMEN

Fowl adenovirus serotype 4 (FAdV-4) infection results in serious hepatitis-hydropericardium syndrome (HHS) in broilers, which has caused great economic losses to the poultry industry; however, the specific host responses to FAdV-4 remain unknown. In this study, we identified 141 high-confidence protein-protein interactions (PPIs) between the main viral proteins (Hexon, Fiber 1, Fiber 2, and Penton bases) and host proteins via a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay. We found that heat shock protein 70 (Hsp70), the protein with the highest score, and its cofactor DnaJ heat shock protein 40 family member C7 (DnaJC7) could negatively regulate the replication of FAdV-4. Furthermore, the nucleotide binding domain (NBD) of Hsp70 and the J domain of DnaJC7 were necessary for inhibiting FAdV-4 replication. We verified that DnaJC7 as a bridge could bind to Hsp70 and Hexon, assisting the indirect interaction between Hsp70 and Hexon. In addition, we found that FAdV-4 infection strongly induced the expression of autophagy proteins and cellular Hsp70 in a dose-dependent manner. Blockage of Hexon by Hsp70 overexpression was significantly reduced when the autophagy pathway was blocked by the specific inhibitor chloroquine (CQ). Our results showed that Hsp70 was co-opted by DnaJC7 to interact with viral Hexon and inhibited Hexon through the autophagy pathway, leading to a considerable restriction of FAdV-4 replication. IMPORTANCE FAdV-4, as the main cause of HHS, has quickly spread all over the world in recent years, seriously threatening the poultry industry. The aim of this study was to identify the important host proteins that have the potential to regulate the life cycle of FAdV-4. We found that Hsp70 and DnaJC7 played crucial roles in regulating the amount of viral Hexon and extracellular viral titers. Moreover, we demonstrated that Hsp70 interacted with viral Hexon with the assistance of DnaJC7, followed by suppressing Hexon protein through the autophagy pathway. These results provide new insight into the role of the molecular chaperone complex Hsp70-DnaJC7 in FAdV-4 infection and suggest a novel strategy for anti-FAdV-4 drug development by targeting the specific interactions among Hsp70, DnaJC7 and Hexon.


Asunto(s)
Infecciones por Adenoviridae , Adenoviridae , Proteínas de la Cápside , Pollos , Proteínas HSP70 de Choque Térmico , Chaperonas Moleculares , Replicación Viral , Adenoviridae/clasificación , Adenoviridae/efectos de los fármacos , Adenoviridae/crecimiento & desarrollo , Adenoviridae/aislamiento & purificación , Infecciones por Adenoviridae/tratamiento farmacológico , Infecciones por Adenoviridae/veterinaria , Infecciones por Adenoviridae/virología , Animales , Autofagia/efectos de los fármacos , Proteínas de la Cápside/antagonistas & inhibidores , Proteínas de la Cápside/metabolismo , Pollos/virología , Cloroquina/farmacología , Cromatografía Liquida , Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Enfermedades de las Aves de Corral/tratamiento farmacológico , Enfermedades de las Aves de Corral/virología , Serogrupo , Espectrometría de Masas en Tándem , Replicación Viral/efectos de los fármacos
2.
Vet Res ; 54(1): 30, 2023 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37009870

RESUMEN

Canine distemper (CD) is a highly contagious and an acutely febrile disease caused by canine distemper virus (CDV), which greatly threatens the dog and fur industry in many countries. Endoplasmic reticulum (ER)-associated degradation (ERAD) is a protein quality control system for the degradation of misfolded proteins in the ER. In this study, a proteomic approach was performed, and results found the E3 ubiquitin ligase 3-hydroxy-3-methylglutaryl reductase degradation protein 1 (Hrd1), which is involved in ERAD, as one of the CDV H-interacting proteins. The interaction of Hrd1 with CDV H protein was further identified by Co-IP assay and confocal microscopy. Hrd1 degraded the CDV H protein via the proteasome pathway dependent on its E3 ubiquitin ligase activity. Hrd1 catalyzed the K63-linked polyubiquitination of CDV H protein at lysine residue 115 (K115). Hrd1 also exhibited a significant inhibitory effect on CDV replication. Together, the data demonstrate that the E3 ligase Hrd1 mediates the ubiquitination of CDV H protein for degradation via the proteasome pathway and inhibits CDV replication. Thus, targeting Hrd1 may represent a novel prevention and control strategy for CDV infection.


Asunto(s)
Virus del Moquillo Canino , Animales , Perros , Virus del Moquillo Canino/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteómica , Proteínas , Ubiquitina-Proteína Ligasas/metabolismo , Replicación Viral
3.
Environ Toxicol ; 37(12): 2910-2923, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36017758

RESUMEN

Since the outbreak of COVID-19, widespread utilization of disinfectants has led to a tremendous increase in the generation of disinfection byproducts worldwide. Bromoacetic acid (BAA), one of the common disinfection byproducts in the environment, has triggered public concern because of its adverse effects on urinary system in mammals. Nevertheless, the BAA-induced nephrotoxicity and potential mechanism in birds still remains obscure. According to the detected content in the Taihu Lake Basin, the model of BAA exposure in chicken was established at doses of 0, 3, 300, 3000 µg/L for 4 weeks. Our results indicated that BAA exposure caused kidney swelling and structural disarrangement. BAA led to disorder in renal function (CRE, BUN, UA) and increased apoptosis (Bax, Bcl-2, caspase3). BAA suppressed the expression of mitochondrial biogenesis genes (PGC-1α, Nrf1, TFAM) and OXPHOS complex I genes (ND1, ND2, ND3, ND4, ND4L, ND5, ND6). Subsequently, BAA destroyed the expression of Nrf2 antioxidant reaction genes (Nrf2, Keap1, HO-1, NQO1, GCLM, GCLC). Furthermore, renal oxidative damage led to disorder in uric acid metabolism genes (Mrp2, Mrp4, Bcrp, OAT1, OAT2, OAT3) and exacerbated destruction in renal function. Overall, our study provided insights into the potential mechanism of BAA-induced nephrotoxicity, which were important for the clinical monitoring and prevention of BAA.


Asunto(s)
COVID-19 , Factor 2 Relacionado con NF-E2 , Animales , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Pollos/metabolismo , Ácido Úrico/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transducción de Señal , Proteínas de Neoplasias , Estrés Oxidativo , Mitocondrias/metabolismo , Riñón , Mamíferos/metabolismo
4.
Arch Virol ; 166(4): 1113-1124, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33576898

RESUMEN

Avian influenza virus (AIV), Newcastle disease virus (NDV), and avian infectious bronchitis virus (IBV) inflict immense damage on the global poultry industry annually. Serological diagnostic methods are fundamental for the effective control and prevention of outbreaks caused by these viruses. In this study, a novel triplex protein microarray assay was developed and validated for the rapid and simultaneous visualized detection of antibodies against AIV, NDV, and IBV in chicken sera. The AIV nuclear protein (NP), NDV phosphoprotein (P), and IBV nonstructural protein 5 (nsp5) were produced in a prokaryotic expression system, purified, and immobilized onto an initiator integrated poly(dimethylsiloxane) (iPDMS) film as probes to detect antibodies against these viruses in chicken sera. After optimization of the reaction conditions, no cross-reactivity was detected with infectious bursal disease virus, avian leukosis virus subgroup J and chicken anemia virus antisera. The lowest detectable antibody titers in this assay corresponded to hemagglutination inhibition (HI) titers of 24 and 21 for AIV and NDV, respectively, and to an IDEXX antibody titer of 103 for IBV, using the HI assay and IDEXX commercial ELISA kit as the reference methods. When156 serum samples were tested using the new assay, the HI test and the IBV IDEXX ELISA kit, the assay showed 96.8% (151/156), 97.4% (152/156) and 99.4% (155/156) diagnostic accuracy for detection of AIV, NDV and IBV antibody, respectively. The current study suggests that the newly developed triplex microarray is rapid, sensitive, and specific, providing a viable alternative assay for AIV, NDV, and IBV antibody screening in epidemiological investigations and vaccination evaluations.


Asunto(s)
Anticuerpos Antivirales/sangre , Virus de la Bronquitis Infecciosa/aislamiento & purificación , Virus de la Influenza A/aislamiento & purificación , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Enfermedades de las Aves de Corral/diagnóstico , Análisis por Matrices de Proteínas/veterinaria , Animales , Antígenos Virales/genética , Antígenos Virales/inmunología , Antígenos Virales/metabolismo , Pollos , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/veterinaria , Inmunoensayo/normas , Inmunoensayo/veterinaria , Virus de la Bronquitis Infecciosa/inmunología , Virus de la Influenza A/inmunología , Gripe Aviar/diagnóstico , Enfermedad de Newcastle/diagnóstico , Virus de la Enfermedad de Newcastle/inmunología , Enfermedades de las Aves de Corral/virología , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Sensibilidad y Especificidad , Pruebas Serológicas/normas , Pruebas Serológicas/veterinaria
5.
BMC Vet Res ; 17(1): 64, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33531001

RESUMEN

BACKGROUND: H7 subtype avian influenza has caused great concern in the global poultry industry and public health. The conventional serological subtype-specific diagnostics is implemented by hemagglutination inhibition (HI) assay despite lengthy operation time. In this study, an efficient, rapid and high-throughput competitive enzyme-linked immunosorbent assay (cELISA) was developed for detection of antibodies against H7 avian influenza virus (AIV) based on a novel monoclonal antibody specific to the hemagglutinin (HA) protein of H7 AIV. RESULTS: The reaction parameters including antigen coating concentration, monoclonal antibody concentration and serum dilution ratio were optimized for H7 antibody detection. The specificity of the cELISA was tested using antisera against H1 ~ H9, H11 ~ H14 AIVs and other avian viruses. The selected cut-off values of inhibition rates for chicken, duck and peacock sera were 30.11, 26.85 and 45.66% by receiver-operating characteristic (ROC) curve analysis, respectively. With HI test as the reference method, the minimum detection limits for chicken, duck and peacock positive serum reached 20, 21 and 2- 1 HI titer, respectively. Compared to HI test, the diagnostic accuracy reached 100, 98.6, and 99.3% for chicken, duck and peacock by testing a total of 400 clinical serum samples, respectively. CONCLUSIONS: In summary, the cELISA assay developed in this study provided a reliable, specific, sensitive and species-independent serological technique for rapid detection of H7 antibody, which was applicable for large-scale serological surveillance and vaccination efficacy evaluation programs.


Asunto(s)
Anticuerpos Antivirales/análisis , Glicoproteínas Hemaglutininas del Virus de la Influenza/análisis , Virus de la Influenza A/inmunología , Gripe Aviar/diagnóstico , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Aves , Pollos , Patos , Ensayo de Inmunoadsorción Enzimática/métodos , Ensayo de Inmunoadsorción Enzimática/veterinaria , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Gripe Aviar/virología , Ratones Endogámicos BALB C
6.
Ecotoxicol Environ Saf ; 206: 111398, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33010594

RESUMEN

Bisphenol A (BPA) is an endocrine-disrupting chemical. Its influence on lipid homeostasis remains to be proven. In this study, the obese model of laying hens were induced using high-fat diet (HFD) to determine the lipid metabolism interference of BPA, especially its influence on estrogen receptors (ERs) and oxidative damage, at the dose of tolerable daily intake (TDI, 50 µg/kg body weight [BW]/day) and no observable adverse effect level (NOAEL, 5000 µg/kg BW/day). The results demonstrated that the TDI dose of BPA interacted with ERα more effectively than the NOAEL dose of BPA. The TDI dose of BPA increased the expression of ERα (esr1), which further changed the expression of lipid metabolism-related genes, such as cpt-1, lpl, creb1, and apov1. Furthermore, the abdominal fat rate, hematoxylin-eosin staining of adipocytes, and the average area of the hens were reduced. Therefore, the TDI dose of BPA played an estrogen-compensating role and weakened the effect of HFD on obesity in aged hens. By contrast, BPA at NOAEL dose exhibited great oxidative stress, which remarkably inhibited the activities of antioxidant-related enzymes (total superoxide dismutase and glutathione peroxidase) and promoted the excessive accumulation of lipid peroxidation products (malondialdehyde). Moreover, the increase in oxidative stress corresponded well with the increase in the expression of fat-forming genes (srebp-1, fas, acc, and ppar γ). That is, BPA at NOAEL may accelerate the process of fat formation.


Asunto(s)
Grasa Abdominal/efectos de los fármacos , Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Metabolismo de los Lípidos/efectos de los fármacos , Obesidad/inducido químicamente , Fenoles/toxicidad , Grasa Abdominal/metabolismo , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Antioxidantes/metabolismo , Peso Corporal/efectos de los fármacos , Pollos/metabolismo , Dieta Alta en Grasa , Receptor alfa de Estrógeno/genética , Femenino , Metabolismo de los Lípidos/genética , Masculino , Obesidad/genética , Obesidad/metabolismo
7.
Biochem Biophys Res Commun ; 511(2): 468-475, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30797557

RESUMEN

Increasing evidence indicates that the NOD-like receptors (NLRs) family may act as critical back-up defenses and provide synergistic responses when confronted with persistent danger. However, the precise regulatory mechanism of NLRs and the contribution of NLRs to cancer are still unknown. In our previous study, we found that estrogen receptors (ERs) have a close connection with NLRs in the inflammatory response. Here, ERs are first identified as NLRs transcription regulation factors, both regulate NLRs expression and promote inflammasome co-localization. Furthermore, we identified that NLRP3 was differentially expressed in colon normal and cancer cells, selective ERα antagonist could significantly decrease pro-inflammatory cytokines expression, suppress proliferation and promote apoptosis by inhibited NLRP3 expression and inflammasome activity. In short, the research demonstrates that ERs participate in the NLR-associated signaling pathway in cancer by directly regulating NLRs. Our results provide novel insight into ERs as therapeutic targets in NLR-related inflammation and cancer.


Asunto(s)
Carcinogénesis/inmunología , Inflamasomas/inmunología , Proteínas NLR/inmunología , Receptores de Estrógenos/inmunología , Carcinogénesis/patología , Línea Celular Tumoral , Humanos , Inflamasomas/análisis , Inflamación/inmunología , Inflamación/patología , Modelos Moleculares , Proteína con Dominio Pirina 3 de la Familia NLR/análisis , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Proteínas NLR/análisis , Receptores de Estrógenos/análisis , Transducción de Señal
8.
BMC Vet Res ; 15(1): 103, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30935399

RESUMEN

BACKGROUND: Major viruses, including duck-origin avian influenza virus, duck-origin Newcastle disease virus, novel duck parvovirus, duck hepatitis A virus, duck Tembusu virus, fowl adenovirus, and duck enteritis virus, pose great harm to ducks and cause enormous economic losses to duck industry. This study aims to establish a multiplex polymerase chain reaction (m-PCR) method for simultaneous detection of these seven viruses. RESULTS: Specific primers were designed and synthesized according to the conserved region of seven viral gene sequences. Then, seven recombinant plasmids, as the positive controls, were reconstructed in this study. Within the study, D-optimal design was adopted to optimize PCR parameters. The optimum parameters for m-PCR were annealing temperature at 57 °C, Mg2+ concentration at 4 mM, Taq DNA polymerase concentration at 0.05 U/µL, and dNTP concentration at 0.32 mM. With these optimal parameters, the m-PCR method produced neither cross-reactions among these seven viruses nor nonspecific reactions with other common waterfowl pathogens. The detection limit of m-PCR for each virus was 1 × 104 viral DNA copies/µL. In addition, the m-PCR method could detect a combination of several random viruses in co-infection analysis. Finally, the m-PCR method was successfully applied to clinical samples, and the detection results were consistent with uniplex PCR. CONCLUSION: Given its rapidity, specificity, sensitivity, and convenience, the established m-PCR method is feasible for simultaneous detection of seven duck-infecting viruses and can be applied to clinical diagnosis of viral infection in ducks.


Asunto(s)
Patos/virología , Reacción en Cadena de la Polimerasa Multiplex/veterinaria , Enfermedades de las Aves de Corral/virología , Animales , Coinfección/diagnóstico , Coinfección/veterinaria , Coinfección/virología , Flavivirus , Adenovirus A Aviar , Virus de la Hepatitis del Pato , Reacción en Cadena de la Polimerasa Multiplex/métodos , Virus de la Enfermedad de Newcastle , Orthomyxoviridae , Parvovirinae , Enfermedades de las Aves de Corral/diagnóstico , Sensibilidad y Especificidad
9.
J Biochem Mol Toxicol ; : e22236, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30270565

RESUMEN

In this study, we investigated the influence of zearalenone (ZEA) on the dextran sulfate sodium (DSS)-induced colitis model both in vitro and in vivo. Our results show that the mRNA levels of IL-1ß, IL-18, NLRP3, ASC, and caspase-1 in the DSS+ZEA-treated group are lower than those in either the DSS or ZEA group, and the protein expression trends are similar. Furthermore, colitis, which is characterized by body weight loss, stool consistency, and the presence of bloody feces, was significantly alleviated in the DSS+ZEA group when compared with that in the DSS group. In addition, histological analysis showed that inflammatory cell infiltration and tissue damage of the colon in the DSS+ZEA group were recovered compared with that in the DSS-treated group. These results suggest that, instead of aggravating DSS-induced colitis, ZEA relieves the inflammatory reaction in colon tissue, which may be related to its estrogenic activity.

10.
BMC Vet Res ; 14(1): 284, 2018 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-30223836

RESUMEN

BACKGROUND: Infectious bronchitis (IB) caused by the IB virus (IBV) can cause acute damage to chickens around the world. Therefore, rapid diagnosis and immune status determination are critical for controlling IBV outbreaks. Enzyme-linked immunosorbent assays (ELISAs) have been widely used in the detection of IBV antibodies in the early infection and continuous infection of IB because they are more sensitive and quicker than other diagnostic methods. RESULTS: We have developed two indirect microarray methods to detect antibodies against IBV: a chemiluminescent immunoassay test (CIT) and a rapid diagnostic test (RDT). IBV nonstructural protein 5 (nsp5) was expressed, purified from Escherichia coli, and used to spot the initiator integrated poly(dimethylsiloxane), which can provide a near "zero" background for serological assays. Compared with the IDEXX IBV Ab Test kit, CIT and RDT have a sensitivity and specificity of at least 98.88% and 91.67%, respectively. No cross-reaction was detected with antibodies against avian influenza virus subtypes (H5, H7, and H9), Newcastle disease virus, Marek's disease virus, infectious bursal disease virus, and chicken anemia virus. The coefficients of variation of the reproducibility of the intra- and inter-assays for CIT ranged from 0.8 to 18.63%. The reproducibility of RDT was consistent with the original results. The application of the IBV nsp5 protein microarray showed that the positive rate of the CIT was 96.77%, that of the nsp5 ELISA was 91.40%, and that of the RDT was 90.32%. Furthermore, the RDT, which was visible to the naked eye, could be completed within 15 min. Our results indicated that compared with nsp5 ELISA, the CIT was more sensitive, and the RDT had similar positive rates but was faster. Furthermore, the two proposed methods were specific and stable. CONCLUSIONS: Two microarray assays, which were rapid, specific, sensitive, and relatively simple, were developed for the detection of an antibody against IBV. These methods can be of great value for the surveillance of pathogens and monitoring the efficiency of vaccination.


Asunto(s)
Anticuerpos Antivirales/aislamiento & purificación , Pollos , Infecciones por Coronavirus/veterinaria , Virus de la Bronquitis Infecciosa/inmunología , Enfermedades de las Aves de Corral/diagnóstico , Análisis por Matrices de Proteínas/veterinaria , Animales , Infecciones por Coronavirus/diagnóstico , Ensayo de Inmunoadsorción Enzimática/veterinaria , Análisis por Matrices de Proteínas/métodos , Reproducibilidad de los Resultados
11.
J Biochem Mol Toxicol ; 31(10)2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28608607

RESUMEN

In this study, the mitochondrial damage effect and mechanism of zearalenone (ZEA) in swine small intestine IPEC-J2 cells in vitro were comprehensively characterized. The analyses revealed that ZEA at high doses (8 and 7 µg/mL) can significantly increase P < 0.05 the malondialdehyde levels and decrease antioxidant enzymes activities after 48 h of exposure. Meanwhile, the reactive oxygen species (ROS) accumulation increased in high dose ZEA-treated groups after 2 h treatment, but decreased due to the ROS-induced mitochondrial damage and the caused cell apoptosis after 48 h of high does ZEA treatment. Moreover, the decreasing of mitochondrial membrane potential (MMP; ΔΨ) in high dose ZEA exposure was observed in line with the increasing ROS production in mitochondria. Results suggest that ZEA exposure can induce mitochondrial damage by reducing antioxidant enzyme activities, accumulation of ROS, and decreasing MMP. The mitochondrial damage had a dramatic concentration-effects relationship with ZEA.


Asunto(s)
Apoptosis/efectos de los fármacos , Intestino Delgado/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Zearalenona/toxicidad , Animales , Línea Celular , Intestino Delgado/patología , Mitocondrias/patología , Porcinos
12.
Anal Bioanal Chem ; 407(24): 7359-68, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26198112

RESUMEN

Mycotoxins have the potential to enter the human food chain through carry-over of contaminants from feed into animal-derived products. The objective of the study was to develop a reliable and sensitive method for the analysis of 30 mycotoxins in animal feed and animal-derived food (meat, edible animal tissues, and milk) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). In the study, three extraction procedures, as well as various cleanup procedures, were evaluated to select the most suitable sample preparation procedure for different sample matrices. In addition, timed and highly selective reaction monitoring on LC-MS/MS was used to filter out isobaric matrix interferences. The performance characteristics (linearity, sensitivity, recovery, precision, and specificity) of the method were determined according to Commission Decision 2002/657/EC and 401/2006/EC. The established method was successfully applied to screening of mycotoxins in animal feed and animal-derived food. The results indicated that mycotoxin contamination in feed directly influenced the presence of mycotoxin in animal-derived food. Graphical abstract Multi-mycotoxin analysis of animal feed and animal-derived food using LC-MS/MS.


Asunto(s)
Alimentación Animal/análisis , Cromatografía Liquida/métodos , Productos Lácteos/análisis , Productos de la Carne/análisis , Micotoxinas/análisis , Espectrometría de Masas en Tándem/métodos , Animales , Aves de Corral , Porcinos
13.
Anal Chem ; 86(10): 4995-5001, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24745689

RESUMEN

A new lateral flow immunoassay (LFA) is proposed for qualitative and/or semiquantitative determination of aflatoxin B1 (AFB1), zearalenone (ZEA), deoxynivalenol (DON), and their analogues (AFs, ZEAs, DONs) in cereal samples. Each of the mycotoxin specific antibody was class specific and there was no cross reactivity to other groups of compounds. The visual limits of detection (vLOD) of the strip were 0.03, 1.6, and 10 µg/kg for AFB1, ZEA and DON, respectively. The calculated limits of detection (cLOD) were 0.05, 1, and 3 µg/kg, respectively. Meanwhile the cutoff values were achieved at 1, 50, and 60 µg/kg for AFB1, ZEA and DON, respectively. Recoveries ranged from 80% to 122% and RSD from 5% to 20%. Both the vLOD and cLOD for the three mycotoxins were lower than the EU maximum levels. Analysis of naturally contaminated maize samples resulted in a good agreement between the multiplex LFA and LC-MS/MS (100% for DONs and AFs, and 81% for ZEAs). Careful analysis of the results further explained the general overestimation of LFA compared to chromatographic methods for quantification of mycotoxins.


Asunto(s)
Inmunoensayo/métodos , Micotoxinas/análisis , Aflatoxina B1/análisis , Especificidad de Anticuerpos , Límite de Detección , Espectrometría de Masas en Tándem , Tricotecenos/análisis , Triticum/química , Zea mays/química , Zearalenona/análisis
14.
Probiotics Antimicrob Proteins ; 16(2): 623-635, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37043165

RESUMEN

Antibiotic-resistant bacteria are prevalent in husbandry around the world due to the abuse of antibiotic growth promoters (AGPs); therefore, it is necessary to find alternatives to AGPs in animal feed. Among all the candidates, probiotics are promising alternatives to AGPs against Salmonella infection. The anti-Salmonella effects of three probiotic strains, namely, Lactobacillus crispatus 7-4, Lactobacillus johnsonii 3-1, and Pediococcus acidilactici 20-1, have been demonstrated in our previous study. In this study, we further obtained the alginate beads containing compound probiotics, namely, microencapsulate probiotics (MP), and evaluated its regulatory effect on the health of broilers. We incubated free and microencapsulate probiotics in simulated gastric and intestinal juice for 2 h, and the results showed that compared to free probiotics, encapsulation increased tolerance of compound probiotics in the simulated gastrointestinal condition. We observed that the application of probiotics, especially MP, conferred protective effects against Salmonella typhimurium (S.Tm) infection in broilers. Compared to the S.Tm group, the MP could promote the growth performance (p < 0.05) and reduce the S.Tm load in intestine and liver (p < 0.05). In detail, MP pretreatment could modulate the cecal microflora and upregulate the relative abundance of Lactobacillus and Enterobacteriaceae. Besides, MP could reduce the inflammation injury of the intestine and liver, reduce the pro-inflammatory cytokines (IL-6, TNF-α, IL-1ß) expression, and induce of anti-inflammatory cytokine (IL-10) expression. Furthermore, MP could inhibit NLRP3 pathway in ileum, thereby attenuating S.Tm-induced inflammation. In conclusion, MP could be a new feeding supplementation strategy to substitute AGPs in poultry feeding.


Asunto(s)
Probióticos , Salmonelosis Animal , Animales , Salmonella typhimurium/fisiología , Pollos , Salmonelosis Animal/prevención & control , Salmonelosis Animal/microbiología , Probióticos/farmacología , Citocinas , Inflamación , Antibacterianos
15.
Environ Pollut ; 349: 123939, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38593938

RESUMEN

Bisphenol S (BPS) is an emerging environmental endocrine disruptor capable of crossing the placental barrier, resulting in widespread exposure to pregnant women due to its extensive usage. However, the impact of perinatal maternal exposure to BPS on reproductive health in offspring and the underlying molecular mechanism remain underexplored. In this study, gestational ICR mice were provided with drinking water containing 3.33 mg/L BPS to mimic possible human exposure in some countries. Results demonstrated that BPS accelerated the breakdown of germ-cell cysts and the assembly of primordial follicles in neonates, leading to oocyte over-loss. Furthermore, the expression levels of folliculogenesis-related genes (Kit, Nobox, Gdf9, Sohlh2, Kitl, Bmp15, Lhx8, Figla, and Tgfb1) decreased, thus compromising oocyte quality and disrupting early folliculogenesis dynamics. BPS also disrupted other aspects of offspring reproduction, including advancing puberty onset, disrupting the estrus cycle, and impairing fertility. Further investigation found that BPS exposure inhibited the activities and expression levels of antioxidant-related enzymes in neonatal ovaries, leading to the substantial accumulation of MDA and ROS. The increased oxidative burden exacerbated the intracellular apoptotic signaling, manifested by increased expression levels of pro-apoptotic markers (Bax, Caspase 3, and Caspase 9) and decreased expression levels of anti-apoptotic marker (Bcl2). Concurrently, BPS inhibited autophagy by increasing p-mTOR/mTOR and decreasing p-ULK1/ULK1, subsequently down-regulating autophagy flux-related biomarkers (LC3b/LC3a and Beclin-1) and impeding the degradation of autophagy substrate p62. However, the imbalanced crosstalk between autophagy, apoptosis and oxidative stress homeostasis was restored after rapamycin treatment. Collectively, the findings demonstrated that BPS exposure induced reproductive disorders in offspring by perturbing the mTOR/autophagy axis, and such autophagic dysfunction exacerbated redox imbalance and promoted excessive apoptosis. These results provide novel mechanistic insights into the role of autophagy in mitigating BPS-induced intergenerational reproductive dysfunction.


Asunto(s)
Apoptosis , Autofagia , Ratones Endogámicos ICR , Ovario , Estrés Oxidativo , Fenoles , Sulfonas , Serina-Treonina Quinasas TOR , Animales , Femenino , Fenoles/toxicidad , Autofagia/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ratones , Ovario/efectos de los fármacos , Ovario/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Embarazo , Estrés Oxidativo/efectos de los fármacos , Sulfonas/toxicidad , Disruptores Endocrinos/toxicidad , Efectos Tardíos de la Exposición Prenatal , Exposición Materna , Animales Recién Nacidos
16.
Vaccines (Basel) ; 12(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38543897

RESUMEN

Hepatitis-hydropericardium syndrome (HHS), caused by fowl adenovirus serotype 4 (FAdV-4), has been widely spread across China, resulting in great financial losses in the poultry industry. Therefore, efficient vaccines against this disease urgently need to be developed. In our study, the fiber-2 and penton base proteins derived from the FAdV-4 JS strain were expressed in a prokaryotic system (E. coli) in a soluble form. Then, the efficacy of the two recombinant proteins formulated with cheap and widely used adjuvants (Marcol™ 52 white oil) were respectively tested, and the minimum immune doses and safety of the above proteins were also determined. It was indicated that the fiber-2 (20 µg/bird, 200 µg/bird) and penton base (200 µg/bird) could provide complete protection against the highly pathogenic FAdV-4 and suppress its replication and shedding. Unfortunately, only the fiber-2 protein could induce complete protection (10/10) at a low dose (10 µg/bird). In addition, we confirmed that the fiber-2 subunit vaccine formulated with oil adjuvants was safe for vaccinated chickens. Conclusively, all of our results suggest that we successfully prepared an efficient and cheap fiber-2 subunit vaccine with few side effects.

17.
Artículo en Inglés | MEDLINE | ID: mdl-38829566

RESUMEN

Salmonella typhimurium (S. typhimurium) constitutes a major public health concern. We have previously proven that Lactobacillus crispatus 7-4 (L. crispatus 7-4) can inhibit the growth of S. typhimurium and thus can be used as a biocontrol strategy to suppress foodborne S. typhimurium infections. However, the inhibitory effect and in-depth mechanism of L. crispatus 7-4 remain to be elucidated. In this study, we found that L. crispatus 7-4 can protect against S. typhimurium-induced ileum injury by promoting intestinal barrier integrity, maintaining intestinal mucosal barrier homeostasis, and reducing intestinal inflammatory response. Furthermore, we demonstrated that this probiotic strain can increase the abundance of Lactobacillus spp. to maintain microbial homeostasis and simultaneously increase the amount of γ­glutamylcysteine (γ-GC) by activating the glutathione metabolic pathway. The increased γ-GC promoted the transcription of Nrf2 target genes, thereby improving the host antioxidant level, reducing reactive oxygen species (ROS) accumulation, and removing pro-inflammatory cytokines. In other words, L. crispatus 7-4 could activate the enterocyte Nrf2 pathway by improving γ-GC to protect against S. typhimurium-induced intestinal inflammation and oxidative damage.

18.
ACS Appl Mater Interfaces ; 16(15): 18591-18607, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38564431

RESUMEN

Coronavirus disease 2019 (COVID-19) has caused a global pandemic since its onset in 2019, and the development of effective vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to induce potent and long-lasting immunity remains a priority. Herein, we prepared two Lactobacillus exopolysaccharide (EPS) nanoparticle adjuvants (NPs 7-4 and NPs 8-2) that were constructed by using sulfation-modified EPS and quaternization-modified chitosan. These two NPs displayed a spherical morphology with sizes of 39 and 47 nm. Furthermore, the zeta potentials of NPs 7-4 and NPs 8-2 were 50.40 and 44.40 mV, respectively. In vitro assays demonstrated that NPs could effectively adsorb antigenic proteins and exhibited a sustained release effect. Mouse immunization tests showed that the NPs induced the expression of cytokines and chemokines at the injection site and promoted the uptake of antigenic proteins by macrophages. Mechanically, the NPs upregulated the expression of pattern recognition receptors (toll-like receptors and nod-like receptors) and activated the immune response of T cells and the production of neutralizing antibodies. In addition, the NP adjuvants had favorable immune-enhancing effects in cats, which are of great significance for controlling the trans-host transmission and re-endemicity of SARS-CoV-2. Overall, we demonstrated that NP-adjuvanted SARS-CoV-2 receptor binding domain proteins could induce robust specific humoral and cellular immunity.


Asunto(s)
COVID-19 , Nanopartículas , Animales , Ratones , Gatos , Vacunas contra la COVID-19 , SARS-CoV-2 , Sulfatos/farmacología , Adyuvantes Inmunológicos/química , Nanopartículas/química , Adyuvantes Farmacéuticos/farmacología , Inmunidad Celular , Vacunas de Subunidad/farmacología
19.
Sci Total Environ ; 929: 172388, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38614356

RESUMEN

The present study systematically assessed the presence and ecological risks of 79 pesticides in various aquaculture systems, namely pond aquaculture (PA), greenhouse aquaculture (GA), and raceway aquaculture (RA) at different aquaculture stages, along with evaluating the pesticide removal of four tailwater treatment systems. Sixteen herbicides and two fungicides were identified, with the total concentrations ranging from 8.33 ng/L to 3248.45 ng/L. The PA system demonstrated significantly higher concentrations (p < 0.05) and a wider range of pesticide residues compared to the GA and RA systems. Prometryn, simetryn, atrazine, and thifluzamide were found to be the predominant pesticides across all three aquaculture modes, suggesting their significance as pollutants that warrant monitoring. Additionally, the findings indicated that the early aquaculture stage exhibits the highest levels of pesticide concentration, underscoring the importance of heightened monitoring and regulatory interventions during this phase. Furthermore, among the four tailwater treatment systems analyzed, the recirculating tailwater treatment system exhibited the highest efficacy in pesticide removal. A comprehensive risk assessment revealed minimal ecological risks in both the aquaculture and tailwater environments. However, the pesticide mixtures present high risks to algae and low to medium risks to aquatic invertebrates and fish, particularly during the early stages of aquaculture. Simetryn and prometryn were identified as high-risk pesticides. Based on the prioritization index, simetryn, prometryn, diuron, and ametryn are recommended for prioritization in risk assessment. This study offers valuable data for pesticide control and serves as a reference for the establishment of a standardized pesticide monitoring and management system at various stages of aquaculture.


Asunto(s)
Acuicultura , Monitoreo del Ambiente , Residuos de Plaguicidas , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Residuos de Plaguicidas/análisis , Medición de Riesgo , Animales , Herbicidas/análisis
20.
Front Vet Sci ; 10: 1214318, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483299

RESUMEN

Canine distemper (CD) caused by canine distemper virus (CDV) is considered a highly contagious and acutely febrile disease in various animals around the world. Endoplasmic reticulum-associated protein degradation (ERAD) is an important biological effect induced by endoplasmic reticulum (ER) stress (ERS) for the degradation of unfolded/misfolded proteins in the ER of cells. CDV H glycoprotein is translocated into the ER for post-translational modifications. The effects of CDV H and ER on each other are unclear. In this study, we found that CDV H protein induced ERS through the PERK-mediated signaling pathway. The inhibition of ERS by 4-Phenylbutyric acid (4-PBA) increased the H protein amounts of an attenuated CDV, which was reduced by dithiothreitol (DTT)-induced ERS. Further, the H protein levels were increased when ERAD was inhibited by using Eeyarestatin I or interfering E3 ligase Hrd1 in ERAD, suggesting that the attenuated CDV H protein is degraded via ERAD. ERAD involved ubiquitin-dependent proteasome degradation (UPD) and/or autophagic-lysosome degradation (ALD). The attenuated CDV H protein was ubiquitinated and significantly increased after treatment with UPD inhibitor MG132 but not ALD inhibitor chloroquine (CQ), suggesting that ERAD degrading the attenuated CDV H protein selectively depends on UPD. Moreover, the inhibition of the degradation of CDV H protein with 4-PBA or MG132 treatment increased viral replication, whereas treatment with DTT promoting degradation of H protein was found to reduce viral replication. These findings suggest that the degradation of CDV H protein via ERAD negatively affects viral replication and provide a new idea for developing CDV prevention and control strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA