Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 342
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(5): 1255-1277.e27, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38359819

RESUMEN

Despite the successes of immunotherapy in cancer treatment over recent decades, less than <10%-20% cancer cases have demonstrated durable responses from immune checkpoint blockade. To enhance the efficacy of immunotherapies, combination therapies suppressing multiple immune evasion mechanisms are increasingly contemplated. To better understand immune cell surveillance and diverse immune evasion responses in tumor tissues, we comprehensively characterized the immune landscape of more than 1,000 tumors across ten different cancers using CPTAC pan-cancer proteogenomic data. We identified seven distinct immune subtypes based on integrative learning of cell type compositions and pathway activities. We then thoroughly categorized unique genomic, epigenetic, transcriptomic, and proteomic changes associated with each subtype. Further leveraging the deep phosphoproteomic data, we studied kinase activities in different immune subtypes, which revealed potential subtype-specific therapeutic targets. Insights from this work will facilitate the development of future immunotherapy strategies and enhance precision targeting with existing agents.


Asunto(s)
Neoplasias , Proteogenómica , Humanos , Terapia Combinada , Genómica , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/terapia , Proteómica , Escape del Tumor
2.
Cell ; 186(16): 3476-3498.e35, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37541199

RESUMEN

To improve the understanding of chemo-refractory high-grade serous ovarian cancers (HGSOCs), we characterized the proteogenomic landscape of 242 (refractory and sensitive) HGSOCs, representing one discovery and two validation cohorts across two biospecimen types (formalin-fixed paraffin-embedded and frozen). We identified a 64-protein signature that predicts with high specificity a subset of HGSOCs refractory to initial platinum-based therapy and is validated in two independent patient cohorts. We detected significant association between lack of Ch17 loss of heterozygosity (LOH) and chemo-refractoriness. Based on pathway protein expression, we identified 5 clusters of HGSOC, which validated across two independent patient cohorts and patient-derived xenograft (PDX) models. These clusters may represent different mechanisms of refractoriness and implicate putative therapeutic vulnerabilities.


Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias Ováricas , Proteogenómica , Femenino , Humanos , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética
3.
Cell ; 184(16): 4348-4371.e40, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34358469

RESUMEN

Lung squamous cell carcinoma (LSCC) remains a leading cause of cancer death with few therapeutic options. We characterized the proteogenomic landscape of LSCC, providing a deeper exposition of LSCC biology with potential therapeutic implications. We identify NSD3 as an alternative driver in FGFR1-amplified tumors and low-p63 tumors overexpressing the therapeutic target survivin. SOX2 is considered undruggable, but our analyses provide rationale for exploring chromatin modifiers such as LSD1 and EZH2 to target SOX2-overexpressing tumors. Our data support complex regulation of metabolic pathways by crosstalk between post-translational modifications including ubiquitylation. Numerous immune-related proteogenomic observations suggest directions for further investigation. Proteogenomic dissection of CDKN2A mutations argue for more nuanced assessment of RB1 protein expression and phosphorylation before declaring CDK4/6 inhibition unsuccessful. Finally, triangulation between LSCC, LUAD, and HNSCC identified both unique and common therapeutic vulnerabilities. These observations and proteogenomics data resources may guide research into the biology and treatment of LSCC.


Asunto(s)
Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/genética , Proteogenómica , Acetilación , Adulto , Anciano , Anciano de 80 o más Años , Análisis por Conglomerados , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Proteínas de Neoplasias/metabolismo , Fosforilación , Unión Proteica , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal , Ubiquitinación
4.
Cell ; 183(7): 1962-1985.e31, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33242424

RESUMEN

We report a comprehensive proteogenomics analysis, including whole-genome sequencing, RNA sequencing, and proteomics and phosphoproteomics profiling, of 218 tumors across 7 histological types of childhood brain cancer: low-grade glioma (n = 93), ependymoma (32), high-grade glioma (25), medulloblastoma (22), ganglioglioma (18), craniopharyngioma (16), and atypical teratoid rhabdoid tumor (12). Proteomics data identify common biological themes that span histological boundaries, suggesting that treatments used for one histological type may be applied effectively to other tumors sharing similar proteomics features. Immune landscape characterization reveals diverse tumor microenvironments across and within diagnoses. Proteomics data further reveal functional effects of somatic mutations and copy number variations (CNVs) not evident in transcriptomics data. Kinase-substrate association and co-expression network analysis identify important biological mechanisms of tumorigenesis. This is the first large-scale proteogenomics analysis across traditional histological boundaries to uncover foundational pediatric brain tumor biology and inform rational treatment selection.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Proteogenómica , Neoplasias Encefálicas/inmunología , Niño , Variaciones en el Número de Copia de ADN/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Genoma Humano , Glioma/genética , Glioma/patología , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Mutación/genética , Clasificación del Tumor , Recurrencia Local de Neoplasia/patología , Fosfoproteínas/metabolismo , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma/genética
5.
Cell ; 182(1): 200-225.e35, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32649874

RESUMEN

To explore the biology of lung adenocarcinoma (LUAD) and identify new therapeutic opportunities, we performed comprehensive proteogenomic characterization of 110 tumors and 101 matched normal adjacent tissues (NATs) incorporating genomics, epigenomics, deep-scale proteomics, phosphoproteomics, and acetylproteomics. Multi-omics clustering revealed four subgroups defined by key driver mutations, country, and gender. Proteomic and phosphoproteomic data illuminated biology downstream of copy number aberrations, somatic mutations, and fusions and identified therapeutic vulnerabilities associated with driver events involving KRAS, EGFR, and ALK. Immune subtyping revealed a complex landscape, reinforced the association of STK11 with immune-cold behavior, and underscored a potential immunosuppressive role of neutrophil degranulation. Smoking-associated LUADs showed correlation with other environmental exposure signatures and a field effect in NATs. Matched NATs allowed identification of differentially expressed proteins with potential diagnostic and therapeutic utility. This proteogenomics dataset represents a unique public resource for researchers and clinicians seeking to better understand and treat lung adenocarcinomas.


Asunto(s)
Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Proteogenómica , Adenocarcinoma del Pulmón/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/metabolismo , Carcinogénesis/genética , Carcinogénesis/patología , Variaciones en el Número de Copia de ADN/genética , Metilación de ADN/genética , Femenino , Humanos , Neoplasias Pulmonares/inmunología , Masculino , Persona de Mediana Edad , Mutación/genética , Proteínas de Fusión Oncogénica , Fenotipo , Fosfoproteínas/metabolismo , Proteoma/metabolismo
6.
Cell ; 179(4): 964-983.e31, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31675502

RESUMEN

To elucidate the deregulated functional modules that drive clear cell renal cell carcinoma (ccRCC), we performed comprehensive genomic, epigenomic, transcriptomic, proteomic, and phosphoproteomic characterization of treatment-naive ccRCC and paired normal adjacent tissue samples. Genomic analyses identified a distinct molecular subgroup associated with genomic instability. Integration of proteogenomic measurements uniquely identified protein dysregulation of cellular mechanisms impacted by genomic alterations, including oxidative phosphorylation-related metabolism, protein translation processes, and phospho-signaling modules. To assess the degree of immune infiltration in individual tumors, we identified microenvironment cell signatures that delineated four immune-based ccRCC subtypes characterized by distinct cellular pathways. This study reports a large-scale proteogenomic analysis of ccRCC to discern the functional impact of genomic alterations and provides evidence for rational treatment selection stemming from ccRCC pathobiology.


Asunto(s)
Carcinoma de Células Renales/genética , Proteínas de Neoplasias/genética , Proteogenómica , Transcriptoma/genética , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/inmunología , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/patología , Supervivencia sin Enfermedad , Exoma/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Genoma Humano/genética , Humanos , Masculino , Persona de Mediana Edad , Proteínas de Neoplasias/inmunología , Fosforilación Oxidativa , Fosforilación/genética , Transducción de Señal/genética , Transcriptoma/inmunología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Secuenciación del Exoma
9.
EMBO J ; 40(11): e107333, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33950524

RESUMEN

To examine global changes in breast heterogeneity across different states, we determined the single-cell transcriptomes of > 340,000 cells encompassing normal breast, preneoplastic BRCA1+/- tissue, the major breast cancer subtypes, and pairs of tumors and involved lymph nodes. Elucidation of the normal breast microenvironment revealed striking changes in the stroma of post-menopausal women. Single-cell profiling of 34 treatment-naive primary tumors, including estrogen receptor (ER)+ , HER2+ , and triple-negative breast cancers, revealed comparable diversity among cancer cells and a discrete subset of cycling cells. The transcriptomes of preneoplastic BRCA1+/- tissue versus tumors highlighted global changes in the immune microenvironment. Within the tumor immune landscape, proliferative CD8+ T cells characterized triple-negative and HER2+ cancers but not ER+ tumors, while all subtypes comprised cycling tumor-associated macrophages, thus invoking potentially different immunotherapy targets. Copy number analysis of paired ER+ tumors and lymph nodes indicated seeding by genetically distinct clones or mass migration of primary tumor cells into axillary lymph nodes. This large-scale integration of patient samples provides a high-resolution map of cell diversity in normal and cancerous human breast.


Asunto(s)
Neoplasias de la Mama/metabolismo , Regulación Neoplásica de la Expresión Génica , Heterogeneidad Genética , Glándulas Mamarias Humanas/metabolismo , Análisis de la Célula Individual , Neoplasias de la Mama/clasificación , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Linfocitos T CD8-positivos/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Femenino , Perfilación de la Expresión Génica , Humanos , Glándulas Mamarias Humanas/citología , Glándulas Mamarias Humanas/patología , RNA-Seq , Microambiente Tumoral
10.
Exp Cell Res ; 441(1): 114168, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39004201

RESUMEN

Intramuscular fat (IMF) content significantly impacts meat quality. influenced by complex interactions between skeletal muscle cells and adipocytes. Adipogenesis plays a pivotal role in IMF formation. Exosomes, extracellular membranous nanovesicles, facilitate intercellular communication by transporting proteins, nucleic acids (DNA and RNA), and other biomolecules into target cells, thereby modulating cellular behaviors. Recent studies have linked exosome-derived microRNAs (miRNAs) and other cargo to adipogenic processes. Various cell types, including skeletal muscle cells, interact with adipocytes via exosome secretion and uptake. Exosomes entering adipocytes regulate adipogenesis by modulating key signaling pathways, thereby influencing the extent and distribution of IMF deposition. This review comprehensively explores the origin, formation, and mechanisms of exosome action, along with current research and their applications in adipogenesis. Emphasis is placed on exosome-mediated regulation of miRNAs, non-coding RNAs (ncRNAs), proteins, lipids, and other biomolecules during adipogenesis. Leveraging exosomal contents for genetic breeding and treating obesity-related disorders is discussed. Insights gathered contribute to advancing understanding and potential therapeutic applications of exosome-regulated adipogenesis mechanisms.


Asunto(s)
Adipogénesis , Exosomas , MicroARNs , Adipogénesis/genética , Exosomas/metabolismo , Exosomas/genética , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Animales , Adipocitos/metabolismo
11.
Nano Lett ; 24(37): 11683-11689, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39225553

RESUMEN

Beyond noble metals and semiconductors, quasi-metals have recently been shown to be noteworthy substrates for surface enhanced Raman spectroscopy, and their excellent quasi-metal surface-enhanced Raman spectroscopy (SERS) sensing has demonstrated a wider range of application scenarios. However, the underlying mechanism behind the enhanced Raman activity is still unclear. Here, we demonstrate that surface hydroxyls play a crucial role in the enhancement of the SERS activity of quasi-metal nanostructures. As a demonstration material, quasi-metallic MoO2 single-crystal frameworks rich in surface hydroxyls have been shown to have 100 times higher SERS activity than MoO2 single-crystal frameworks without hydroxyl functionalization, with a Raman enhancement factor of up to 7.6 × 107. Experimental and first-principles density-functional theory calculation results show that the enhanced Raman activity can be attributed to an effective interfacial charge transfer within the MoO2/OH/molecule system.

12.
J Am Chem Soc ; 146(35): 24670-24680, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39164896

RESUMEN

Two-dimensional organic-inorganic hybrid layered perovskites have emerged as a new generation of optoelectronic materials. However, the thermochromism in organic-inorganic hybrid layered perovskites has been rarely explored in depth. A further understanding of the mechanism is necessary and favorable for the application. Here, transparent centimeter-sized single crystals of the organic-inorganic hybrid layered perovskite (C6H5C2H4NH3)2PbBr4 (PEA2PbBr4) were synthesized using an improved evaporation method. As a typical organic-inorganic hybrid layered perovskite, the PEA2PbBr4 single crystal shows high-contrast and progressive thermochromism exhibiting a change from colorlessness and transparency to lemon yellow in a wide temperature range of 200-450 K. Based on the calculation through the Varshni equation, the temperature-induced bandgap change rate directly associated with the high-contrast thermochromism of PEA2PbBr4 reaching 0.8 meV/K. This value is higher than that of many three-dimensional perovskites and traditional IV-III semiconductors. Furthermore, the temperature-dependent 193 nm photoluminescence spectra suggest that this high temperature-induced bandgap change rate of PEA2PbBr4 is a result of the competitive interaction between lattice thermal expansion and electron-phonon coupling (Fröhlich coupling coefficient ΓLO = 2.215). Based on the characteristics introduced above, PEA2PbBr4 as an organic-inorganic hybrid layered perovskite has a better performance in achieving the balance between high-contrast and high room-temperature transmittance. Therefore, PEA2PbBr4 is a material with great potential in applications like temperature-indicating labels. This work provides valuable insights into the thermochromism of layered perovskites, offering a new material system and approach for developing thermochromic materials with higher sensitivity and efficiency.

13.
Neurobiol Dis ; 192: 106432, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38331352

RESUMEN

The aim of this study was to explore the role and mechanism of the olfactory bulb (OB) microglial P2X7 receptor (P2X7R) in allergic rhinitis (AR)-related depression, with the objective of identifying a potential clinical target. An AR mouse model was induced using ovalbumin (OVA), while chronic stress was employed to induce depression. The study used P2X7R-specific antagonists and OB microglia-specific P2X7R knockdown mice as crucial tools. The results showed that mice in the OVA + stress group exhibited more pronounced depressive-like phenotypes. Furthermore, there was an observed increase in microglial activation in the OB, followed by a rise in the level of inflammation. The pharmacological inhibition of P2X7R significantly mitigated the depression-like phenotype and the OB inflammatory response in OVA + stress mice. Notably, the specific knockdown of microglial P2X7R in the OB resulted in a similar effect, possibly linked to the regulation of IL-1ß via the "ATP-P2X7R-Caspase 1" axis. These findings collectively demonstrate that microglial P2X7R in the OB acts as a direct effector molecule in AR-related depression, and its inhibition may offer a novel strategy for clinical prevention and treatment.


Asunto(s)
Microglía , Rinitis Alérgica , Animales , Ratones , Depresión , Bulbo Olfatorio , Receptores Purinérgicos P2X7/genética
14.
EMBO J ; 39(10): e103111, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32187724

RESUMEN

The homeostatic link between oxidative stress and autophagy plays an important role in cellular responses to a wide variety of physiological and pathological conditions. However, the regulatory pathway and outcomes remain incompletely understood. Here, we show that reactive oxygen species (ROS) function as signaling molecules that regulate autophagy through ataxia-telangiectasia mutated (ATM) and cell cycle checkpoint kinase 2 (CHK2), a DNA damage response (DDR) pathway activated during metabolic and hypoxic stress. We report that CHK2 binds to and phosphorylates Beclin 1 at Ser90/Ser93, thereby impairing Beclin 1-Bcl-2 autophagy-regulatory complex formation in a ROS-dependent fashion. We further demonstrate that CHK2-mediated autophagy has an unexpected role in reducing ROS levels via the removal of damaged mitochondria, which is required for cell survival under stress conditions. Finally, CHK2-/- mice display aggravated infarct phenotypes and reduced Beclin 1 p-Ser90/Ser93 in a cerebral stroke model, suggesting an in vivo role of CHK2-induced autophagy in cell survival. Taken together, these results indicate that the ROS-ATM-CHK2-Beclin 1-autophagy axis serves as a physiological adaptation pathway that protects cells exposed to pathological conditions from stress-induced tissue damage.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Beclina-1/metabolismo , Quinasa de Punto de Control 2/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Autofagia , Línea Celular , Modelos Animales de Enfermedad , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Ratones , Estrés Oxidativo , Fosforilación
15.
Biol Reprod ; 110(4): 648-659, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38224305

RESUMEN

Histone post-translational modifications, such as phosphorylation, methylation, acetylation, and ubiquitination, play vital roles in various chromatin-based cellular processes. Meiosis is crucial for organisms that depend on sexual reproduction to produce haploid gametes, during which chromatin undergoes intricate conformational changes. An increasing body of evidence is clarifying the essential roles of histone post-translational modifications during meiotic divisions. In this review, we concentrate on the post-translational modifications of H2A, H2B, H3, and H4, as well as the linker histone H1, that are required for meiosis, and summarize recent progress in understanding how these modifications influence diverse meiotic events. Finally, challenges and exciting open questions for future research in this field are discussed. Summary Sentence  Diverse histone post-translational modifications exert important effects on the meiotic cell cycle and these "histone codes" in meiosis might lead to the development of novel therapeutic strategies against reproductive diseases.


Asunto(s)
Cromatina , Histonas , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Fosforilación , Meiosis , Acetilación
16.
Blood ; 139(2): 205-216, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-34359073

RESUMEN

Acute myeloid leukemia (AML) is a clonal hematopoietic stem and progenitor cell malignancy characterized by poor clinical outcomes. Major histocompatibility complex class I polypeptide-related sequence A and B (MICA/B) are stress proteins expressed by cancer cells, and antibody-mediated inhibition of MICA/B shedding represents a novel approach to stimulate immunity against cancers. We found that the MICA/B antibody 7C6 potently inhibits the outgrowth of AML in 2 models in immunocompetent mice. Macrophages were essential for therapeutic efficacy, and 7C6 triggered antibody-dependent phagocytosis of AML cells. Furthermore, we found that romidepsin, a selective histone deacetylase inhibitor, increased MICB messenger RNA in AML cells and enabled subsequent stabilization of the translated protein by 7C6. This drug combination substantially increased surface MICA/B expression in a human AML line, pluripotent stem cell-derived AML blasts and leukemia stem cells, as well as primary cells from 3 untreated patients with AML. Human macrophages phagocytosed AML cells following treatment with 7C6 and romidepsin, and the combination therapy lowered leukemia burden in a humanized model of AML. Therefore, inhibition of MICA/B shedding promotes macrophage-driven immunity against AML via Fc receptor signaling and synergizes with an epigenetic regulator. These results provide the rationale for the clinical testing of this innovative immunotherapeutic approach for the treatment of AML.


Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Antígenos de Histocompatibilidad Clase I/inmunología , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/inmunología , Macrófagos/efectos de los fármacos , Animales , Antineoplásicos Inmunológicos/farmacología , Línea Celular Tumoral , Humanos , Leucemia Mieloide Aguda/patología , Macrófagos/inmunología , Macrófagos/patología , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fagocitosis/efectos de los fármacos
17.
BMC Cancer ; 24(1): 1165, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300373

RESUMEN

BACKGROUND: Cancer-associated fibroblasts (CAFs), as key cell populations in the tumor microenvironment (TME), play a crucial role in tumor regulation. Previous studies on a prognostic signature of 8 CAF-related genes in head and neck squamous cell carcinoma (HNSCC) revealed that Secreted frizzled-related protein 1 (SFRP1) is one of the hub genes closely related to CAFs. SFRP1 is deficiently expressed in numerous types of cancer and is classified as a tumor suppressor gene. However, the role of SFRP1 in TME regulation in HNSCC remains unclear. This study aimed to explore the role of SFRP1 in the proliferation and migration of HNSCC cells by mediating CAFs and their regulatory mechanisms. METHODS: The expression differences, prognosis, and immune infiltration of SFRP1 in HNSCC were analyzed using the TIMER and GEPIA2 databases. The expression of SFRP1 in HNSCC tumor tissues, as well as the expression and secretion of SFRP1 in CAFs and tumor cells, were examined. An indirect co-culture system was constructed to detect the proliferation, migration, and apoptosis of HNSCC cells, and to clarify the effect of SFRP1 on tumor cells by mediating CAFs. Furthermore, the expression and secretion of 10 cytokines derived from CAFs that act on immune cells were verified. RESULTS: SFRP1 was differently expressed in HNSCC tumor tissues and highly expressed in CAFs. SFRP1 inhibited the proliferation and migration of tumor cells and promoted apoptosis by mediating CAFs. The detection of CAFs-derived factors suggested that the mechanism of action of SFRP1 was associated with the regulation of immune cells. CONCLUSION: SFRP1 inhibits the proliferation and migration of HNSCC cells by mediating CAFs, and the mechanism of action is related to the regulation of immune cells, which may provide new research directions and therapeutic targets for HNSCC.


Asunto(s)
Fibroblastos Asociados al Cáncer , Movimiento Celular , Proliferación Celular , Neoplasias de Cabeza y Cuello , Péptidos y Proteínas de Señalización Intercelular , Proteínas de la Membrana , Carcinoma de Células Escamosas de Cabeza y Cuello , Microambiente Tumoral , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Movimiento Celular/genética , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Línea Celular Tumoral , Pronóstico , Apoptosis , Regulación Neoplásica de la Expresión Génica
18.
FASEB J ; 37(6): e22955, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37159387

RESUMEN

The pathogenesis of allergic rhinitis (AR)-related olfactory dysfunction (OD) remains unknown. Inhibiting microglial response in olfactory bulb (OB) can ameliorate AR-related OD, but no precise targets have been available. In this study, we established a mouse model of ovalbumin (OVA)-induced AR and combined with the application of P2X7 receptor (P2X7R)-specific antagonists and cell culture in conditioned medium to investigate the role and mechanism of OB microglial P2X7R in AR-related OD. Serum IgE and IL-5 levels determined via ELISA and federated the number of nose-scratching to affirm the success of OVA-induced AR mouse model. Buried food pellet test was used to evaluate the olfactory function of mice. The changes of IBA1, GFAP, P2X7R, IL-1ß, IL-1Ra, and CASPASE 1 were detected by quantitative polymerase chain reaction and western blotting. The levels of adenosine triphosphate (ATP) were determined by the commercialized kit. The morphological changes of microglia were assessed using immunofluorescence staining and Sholl analysis. Findings showed that AR-related OD was associated with OB microglia-mediated imbalance between IL-1ß and IL-1Ra. Treatment with BBG improved the olfactory function in AR mice with restoring the balance between IL-1ß and IL-1Ra. In vitro, the conditioned medium obtained after HNEpC treatment with Der p1 could activate HMC3 to arise inflammatory reaction basing on "ATP-P2X7R-Caspase 1" axis, while inhibition of its P2X7R suppressed the reaction. In brief, microglial P2X7R in OB is a direct effector molecule in AR-related OD and inhibition of it may be a new strategy for the treatment of AR-related OD.


Asunto(s)
Trastornos del Olfato , Receptores Purinérgicos P2X7 , Rinitis Alérgica , Animales , Ratones , Adenosina Trifosfato , Caspasa 1 , Medios de Cultivo Condicionados , Modelos Animales de Enfermedad , Proteína Antagonista del Receptor de Interleucina 1 , Microglía , Bulbo Olfatorio , Ovalbúmina , Receptores Purinérgicos P2X7/genética , Rinitis Alérgica/complicaciones
19.
Psychophysiology ; : e14631, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898649

RESUMEN

Transcranial magnetic stimulation (TMS) is pivotal in the field of major depressive disorder treatment. Due to its unsatisfied response rate, an increasing number of researchers have turned their attention towards optimizing TMS site localization. Since the influence of TMS in reducing heart rate (HR) offers insights into its regulatory impact on the autonomic nervous system, a novel approach, called neurocardiac-guided TMS (NCG-TMS), has been proposed to pinpoint the brain region eliciting the maximal individual reduction in HR as a personalized optimal stimulation target. The present study intends to systematically explore the effects of stimulation frequency, left and right hemispheres, stimulation positions, and individual differences on HR modulation using the NCG-TMS method. In experiment 1, low-frequency TMS was administered to 30 subjects, and it was found that low-frequency NCG-TMS significantly downregulated HR, with more significant effects in the right hemisphere than in the left hemisphere and the prefrontal cortex than in other brain areas. In experiment 2, high-frequency NCG-TMS stimulation was administered to 30 subjects, showing that high-frequency NCG-TMS also downregulated HR and had the greatest modulatory effect in the right prefrontal region. Simultaneously, both experiments revealed sizeable individual variability in the optimal stimulation site, which in turn validated the feasibility of the NCG-TMS method. In conclusion, the present experiments independently replicated the effect of NCG-TMS, provided an effect of high-/low-frequency TMS stimulation to downregulate HR, and identified a right lateralization of the HR modulation effect.

20.
Biochem Genet ; 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38198023

RESUMEN

Kinetochore-localized astrin/SPAG5-binding protein (KNSTRN) promotes the progression of bladder cancer and lung adenocarcinoma. However, its expression and biological function in breast cancer remain largely unknown. Therefore, this study aimed to analyze KNSTRN expression, prognoses, correlation with immune infiltration, expression-associated genes, and regulated signaling pathways to characterize its role in regulating the cell cycle using both bioinformatics and in vitro functional experiments. Analyses of The Cancer Genome Atlas, Gene Expression Omnibus, TIMER, and The Human Protein Atlas databases revealed a significant upregulation of KNSTRN transcript and protein levels in breast cancer. Kaplan-Meier survival analyses demonstrated a significant association between high expression of KNSTRN and poor overall survival, relapse-free survival, post-progression survival, and distant metastases-free survival in patients with breast cancer. Furthermore, multivariate Cox regression analyses confirmed that KNSTRN is an independent prognostic factor for breast cancer. Immune infiltration analysis indicated a positive correlation between KNSTRN expression and T regulatory cell infiltration while showing a negative correlation with Tgd and natural killer cell infiltration. Gene set enrichment analysis along with single-cell transcriptome data analysis suggested that KNSTRN promoted cell cycle progression by regulating the expression of key cell cycle proteins. The overexpression and silencing of KNSTRN in vitro, respectively, promoted and inhibited the proliferation of breast cancer cells. The overexpression of KNSTRN enhanced the expression of key cell cycle regulators, including CDK4, CDK6, and cyclin D3, thereby accelerating the G1/S phase transition and leading to aberrant proliferation of breast cancer cells. In conclusion, our study demonstrates that KNSTRN functions as an oncogene in breast cancer by regulating immune response, promoting G1/S transition, and facilitating breast cancer cell proliferation. Moreover, KNSTRN has potential as a molecular biomarker for diagnostic and prognostic prediction in breast cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA