Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Nat Prod ; 83(10): 2960-2966, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33001642

RESUMEN

Glutathione transferases comprise a large class of multifunctional enzymes, some involved in detoxification pathways. Since these enzymes are able to interact with potentially toxic molecules, they could be used as targets to screen for compounds with biological activity. To test this hypothesis, glutathione transferases (GSTs) from the white-rot fungus Trametes versicolor have been used to screen for antifungal molecules from a library of tropical wood extracts. The interactions between a set of six GSTs from the omega class and 116 extracts from 21 tropical species were quantified using a high-throughput thermal shift assay. A correlation between these interactions and the antifungal properties of the tested extracts was demonstrated. This approach has been extended to the fractionation of an Andira coriacea extract and led to the detection of maackiain and lapachol in this wood. Altogether, the present results supported the hypothesis that such detoxification enzymes could be used to detect biologically active molecules.


Asunto(s)
Glutatión Transferasa , Antifúngicos , Glutatión , Estructura Molecular , Polyporaceae , Trametes , Madera
2.
Environ Microbiol ; 20(10): 3890-3901, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30209877

RESUMEN

Extensive evidence showed that the efficiency of fungal wood degradation is closely dependent on their ability to cope with the myriad of putative toxic compounds called extractives released during this process. By analysing global gene expression of Phanerochaete chrysosporium after short oak extractive treatment (1, 3 and 6 h), we show that the early molecular response of the fungus concerns first mitochondrial stress rescue followed by the oxidation and finally conjugation of the compounds. During these early responses, the lignolytic degradative system is not induced, rather some small secreted proteins could play an important role in cell protection or signaling. By focusing on the functional characterization of an hitherto uncharacterized glutathione transferase, we show that this enzyme interacts with wood molecules suggesting that it could be involved in the detoxification of some of them, or act as a scavenger to prevent their cytosolic toxicity and favour their transport.


Asunto(s)
Phanerochaete/enzimología , Phanerochaete/metabolismo , Extractos Vegetales/farmacología , Quercus/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Oxidación-Reducción , Phanerochaete/efectos de los fármacos , Phanerochaete/genética , Quercus/microbiología , Madera/química , Madera/microbiología
3.
J Exp Bot ; 68(16): 4583-4593, 2017 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-28981771

RESUMEN

Perturbation of cellulose synthesis in plants triggers stress responses, including growth retardation, mediated by the cell wall integrity-sensing receptor-like kinase (RLK) THESEUS1 (THE1). The analysis of two alleles carrying T-DNA insertions at comparable positions has led to conflicting conclusions concerning the impact of THE1 signaling on growth. Here we confirm that, unlike the1-3 and other the1 alleles in which cellular responses to genetic or pharmacological inhibition of cellulose synthesis are attenuated, the1-4 showed enhanced responses, including growth inhibition, ectopic lignification, and stress gene expression. Both the1-3 and the1-4 express a transcript encoding a predicted membrane-associated truncated protein lacking the kinase domain. However, the1-3, in contrast to the1-4, strongly expresses antisense transcripts, which are expected to prevent the expression of the truncated protein as suggested by the genetic interactions between the two alleles. Seedlings overexpressing such a truncated protein react to isoxaben treatment similarly to the1-4 and the full-length THE overexpressor. We conclude that the1-4 is a hypermorphic allele; that THE1 signaling upon cell wall damage has a negative impact on cell expansion; and that caution is required when interpreting the phenotypic effects of T-DNA insertions in RLK genes.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/citología , Pared Celular/metabolismo , Proteínas Quinasas/genética , Receptores de Superficie Celular/genética , Alelos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Benzamidas/farmacología , Pared Celular/genética , Celulosa/biosíntesis , ADN Bacteriano , Regulación de la Expresión Génica de las Plantas , Genes Dominantes , Lignina/metabolismo , Plantas Modificadas Genéticamente , Proteínas Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Plantones/efectos de los fármacos , Plantones/genética , Plantones/metabolismo , Transducción de Señal
4.
Plant Cell ; 26(1): 280-95, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24424095

RESUMEN

Cell expansion is an increase in cell size and thus plays an essential role in plant growth and development. Phytohormones and the primary plant cell wall play major roles in the complex process of cell expansion. In shoot tissues, cell expansion requires the auxin receptor AUXIN BINDING PROTEIN1 (ABP1), but the mechanism by which ABP1 affects expansion remains unknown. We analyzed the effect of functional inactivation of ABP1 on transcriptomic changes in dark-grown hypocotyls and investigated the consequences of gene expression on cell wall composition and cell expansion. Molecular and genetic evidence indicates that ABP1 affects the expression of a broad range of cell wall-related genes, especially cell wall remodeling genes, mainly via an SCF(TIR/AFB)-dependent pathway. ABP1 also functions in the modulation of hemicellulose xyloglucan structure. Furthermore, fucosidase-mediated defucosylation of xyloglucan, but not biosynthesis of nonfucosylated xyloglucan, rescued dark-grown hypocotyl lengthening of ABP1 knockdown seedlings. In muro remodeling of xyloglucan side chains via an ABP1-dependent pathway appears to be of critical importance for temporal and spatial control of cell expansion.


Asunto(s)
Arabidopsis/metabolismo , Pared Celular/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/fisiología , Receptores de Superficie Celular/fisiología , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Aumento de la Célula , Pared Celular/ultraestructura , Oscuridad , Regulación de la Expresión Génica de las Plantas , Glucanos/química , Hipocótilo/citología , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Xilanos/química
5.
Biochem J ; 441(1): 161-71, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21864294

RESUMEN

PTEN (phosphatase and tensin homologue deleted on chromosome ten) proteins are dual phosphatases with both protein and phosphoinositide phosphatase activity. They modulate signalling pathways controlling growth, metabolism and apoptosis in animals and are implied in several human diseases. In the present paper we describe a novel class of PTEN pro-teins in plants, termed PTEN2, which comprises the AtPTEN (Arabidopsis PTEN) 2a and AtPTEN2b proteins in Arabidopsis. Both display low in vitro tyrosine phosphatase activity. In addition, AtPTEN2a actively dephosphorylates in vitro the 3' phosphate group of PI3P (phosphatidylinositol 3-phosphate), PI(3,4)P2 (phosphatidylinositol 3,4-bisphosphate) and PI(3,5)P2 (phosphatidylinositol 3,5-bisphosphate). In contrast with animal PTENs, PI(3,4,5)P3 (phosphatidylinositol 3,4,5-trisphosphate) is a poor substrate. Site-directed mutagenesis of AtPTEN2a and molecular modelling of protein-phosphoinositide interactions indicated that substitutions at the PTEN2 core catalytic site of the Lys267 and Gly268 residues found in animals, which are critical for animal PTEN activity, by Met267 and Ala268 found in the eudicot PTEN2 are responsible for changes in substrate specificity. Remarkably, the AtPTEN2a protein also displays strong binding activity for PA (phosphatidic acid), a major lipid second messenger in plants. Promoter::GUS (ß-glucuronidase) fusion, transcript and protein analyses further showed the transcriptional regulation of the ubiquitously expressed AtPTEN2a and AtPTEN2b by salt and osmotic stress. The results of the present study suggest a function for this novel class of plant PTEN proteins as an effector of lipid signalling in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Fosfohidrolasa PTEN/metabolismo , Ácidos Fosfatidicos/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Escherichia coli/metabolismo , Modelos Moleculares , Fosfohidrolasa PTEN/genética , Monoéster Fosfórico Hidrolasas/genética , Filogenia , Unión Proteica , Conformación Proteica , Transducción de Señal , Especificidad por Sustrato
6.
Microb Biotechnol ; 16(7): 1438-1455, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37191200

RESUMEN

Fungi and antifungal compounds are relevant to the United Nation's Sustainable Development Goals. However, the modes-of-action of antifungals-whether they are naturally occurring substances or anthropogenic fungicides-are often unknown or are misallocated in terms of their mechanistic category. Here, we consider the most effective approaches to identifying whether antifungal substances are cellular stressors, toxins/toxicants (that are target-site-specific), or have a hybrid mode-of-action as toxin-stressors (that induce cellular stress yet are target-site-specific). This newly described 'toxin-stressor' category includes some photosensitisers that target the cell membrane and, once activated by light or ultraviolet radiation, cause oxidative damage. We provide a glossary of terms and a diagrammatic representation of diverse types of stressors, toxic substances, and toxin-stressors, a classification that is pertinent to inhibitory substances not only for fungi but for all types of cellular life. A decision-tree approach can also be used to help differentiate toxic substances from cellular stressors (Curr Opin Biotechnol 2015 33: 228-259). For compounds that target specific sites in the cell, we evaluate the relative merits of using metabolite analyses, chemical genetics, chemoproteomics, transcriptomics, and the target-based drug-discovery approach (based on that used in pharmaceutical research), focusing on both ascomycete models and the less-studied basidiomycete fungi. Chemical genetic methods to elucidate modes-of-action currently have limited application for fungi where molecular tools are not yet available; we discuss ways to circumvent this bottleneck. We also discuss ecologically commonplace scenarios in which multiple substances act to limit the functionality of the fungal cell and a number of as-yet-unresolved questions about the modes-of-action of antifungal compounds pertaining to the Sustainable Development Goals.


Asunto(s)
Antifúngicos , Rayos Ultravioleta , Antifúngicos/toxicidad , Antifúngicos/metabolismo , Estrés Oxidativo , Hongos/metabolismo
7.
Biochem Soc Trans ; 39(2): 477-81, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21428923

RESUMEN

The TOR (target of rapamycin) kinase is present in nearly all eukaryotic organisms and regulates a wealth of biological processes collectively contributing to cell growth. The genome of the model plant Arabidopsis contains a single TOR gene and two RAPTOR (regulatory associated protein of TOR)/KOG1 (Kontroller of growth 1) and GßL/LST8 (G-protein ß-subunit-like/lethal with Sec thirteen 8) genes but, in contrast with other organisms, plants appear to be resistant to rapamycin. Disruption of the RAPTOR1 and TOR genes in Arabidopsis results in an early arrest of embryo development. Plants that overexpress the TOR mRNA accumulate more leaf and root biomass, produce more seeds and are more resistant to stress. Conversely, the down-regulation of TOR by constitutive or inducible RNAi (RNA interference) leads to a reduced organ growth, to an early senescence and to severe transcriptomic and metabolic perturbations, including accumulation of sugars and amino acids. It thus seems that plant growth is correlated to the level of TOR expression. We have also investigated the effect of reduced TOR expression on tissue organization and cell division. We suggest that, like in other eukaryotes, the plant TOR kinase could be one of the main contributors to the link between environmental cues and growth processes.


Asunto(s)
Desarrollo de la Planta , Plantas/metabolismo , Serina-Treonina Quinasas TOR/fisiología , Animales , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Humanos , Modelos Biológicos , Filogenia , Plantas/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo
8.
J Exp Bot ; 62(4): 1375-90, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20959627

RESUMEN

Glutamine synthetase (EC 6.3.1.2) is a key enzyme of ammonium assimilation and recycling in plants where it catalyses the synthesis of glutamine from ammonium and glutamate. In Arabidopsis, five GLN1 genes encode GS1 isoforms. GLN1;2 is the most highly expressed in leaves and is over-expressed in roots by ammonium supply and in rosettes by ample nitrate supply compared with limiting nitrate supply. It is shown here that the GLN1;2 promoter is mainly active in the minor veins of leaves and flowers and, to a lower extent, in the parenchyma of mature leaves. Cytoimmunochemistry reveals that the GLN1;2 protein is present in the companion cells. The role of GLN1;2 was determined by examining the physiology of gln1;2 knockout mutants. Mutants displayed lower glutamine synthetase activity, higher ammonium concentration, and reduced rosette biomass compared with the wild type (WT) under ample nitrate supply only. No difference between mutant and WT can be detected under limiting nitrate conditions. Despite total amino acid concentration was increased in the old leaves of mutants at high nitrate, no significant difference in nitrogen remobilization can be detected using (15)N tracing. Growing plants in vitro with ammonium or nitrate as the sole nitrogen source allowed us to confirm that GLN1;2 is induced by ammonium in roots and to observe that gln1;2 mutants displayed, under such conditions, longer root hair and smaller rosette phenotypes in ammonium. Altogether the results suggest that GLN1;2 is essential for nitrogen assimilation under ample nitrate supply and for ammonium detoxification.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/enzimología , Glutamato-Amoníaco Ligasa/fisiología , Nitratos/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Técnicas de Inactivación de Genes , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Homeostasis/genética , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Regiones Promotoras Genéticas
9.
FEBS J ; 288(9): 2956-2969, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33124131

RESUMEN

The eukaryotic translation elongation factor 1Bγ (eEF1Bγ) is an atypical member of the glutathione transferase (GST) superfamily. Contrary to more classical GSTs having a role in toxic compound detoxification, eEF1Bγ is suggested to act as a scaffold protein, anchoring the elongation factor complex EF1B to the endoplasmic reticulum. In this study, we show that eEF1Bγ from the basidiomycete Phanerochaete chrysosporium is fully active as a glutathione transferase in vitro and undergoes conformational changes upon binding of oxidized glutathione. Using real-time analyses of biomolecular interactions, we show that GSSG allows eEF1Bγ to physically interact with other GSTs from the Ure2p class, opening new perspectives for a better understanding of the role of eEF1Bγ in cellular oxidative stress response.


Asunto(s)
Glutatión Peroxidasa/genética , Estrés Oxidativo/genética , Factor 1 de Elongación Peptídica/ultraestructura , Phanerochaete/genética , Priones/genética , Proteínas de Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos/genética , Animales , Cristalografía por Rayos X , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/ultraestructura , Glutatión/genética , Disulfuro de Glutatión/genética , Glutatión Peroxidasa/ultraestructura , Glutatión Transferasa/genética , Humanos , Ratones , Factor 1 de Elongación Peptídica/genética , Phanerochaete/ultraestructura , Priones/ultraestructura , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura , Factores de Transcripción de Dominio TEA , Factores de Transcripción/genética , Factores de Transcripción/ultraestructura
10.
Plant Mol Biol ; 73(4-5): 533-46, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20437080

RESUMEN

Many eukaryotic genomes have experienced ancient whole-genome duplication (WGD) followed by massive gene loss. These eliminations were not random since some gene families were preferentially retained as duplicates. The gene balance hypothesis suggests that those genes with dosage reduction can imbalance their interacting partners or complex, resulting in decreased fitness. In Arabidopsis, the cytoplasmic ribosomal proteins (RP) are encoded by gene families with at least two members. We have focused our study on the two RPS6 genes in an attempt to understand why they have been retained as duplicates. We demonstrate that RPS6 function is vital for the plant. We also show that reducing the level of RPS6 accumulation (in the knock-out rps6a or rps6b single mutants, or in the double heterozygous RPS6A/rps6a,RPS6B/rps6b), confers a slow growth phenotype (haplodeficiency). Importantly, we demonstrate that the functions of two RPS6 genes are redundant and interchangeable. Finally, like in most other described Arabidopsis rp mutants, we observed that a reduced RPS6 level slightly alters the dorsoventral leaf patterning. Our results support the idea that the Arabidopsis RPS6 gene duplicates were evolutionarily retained in order to maintain an expression level necessary to sustain the translational demand of the cell, in agreement with the gene balance hypothesis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Citoplasma/metabolismo , Proteína S6 Ribosómica/metabolismo , Proteínas Ribosómicas/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Gametogénesis , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Meristema/genética , Mutación/genética , Fenotipo , Hojas de la Planta/genética , Polen/crecimiento & desarrollo , Polirribosomas/metabolismo , Proteínas Ribosómicas/metabolismo
11.
Microb Biotechnol ; 13(5): 1673-1677, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32212309

RESUMEN

The natural durability of wood species, defined as their inherent resistance to wood-destroying agents, is a complex phenomenon depending on many biotic and abiotic factors. Besides the presence of recalcitrant polymers, the presence of compounds with antimicrobial properties is known to be important to explain wood durability. Based on the advancement in our understanding of fungal detoxification systems, a reverse chemical ecology approach was proposed to explore wood natural durability using fungal glutathione transferases. A set of six glutathione transferases from the white-rot Trametes versicolor were used as targets to test wood extracts from seventeen French Guiana neotropical species. Fluorescent thermal shift assays quantified interactions between fungal glutathione transferases and these extracts. From these data, a model combining this approach and wood density significantly predicts the wood natural durability of the species tested previously using long-term soil bed tests. Overall, our findings confirm that detoxification systems could be used to explore the chemical environment encountered by wood-decaying fungi and also wood natural durability.


Asunto(s)
Trametes , Madera , Polyporaceae
12.
PLoS One ; 15(2): e0224776, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32078630

RESUMEN

The Target Of Rapamycin (TOR) signaling pathway is known to regulate growth in response to nutrient availability and stress in eukaryotic cells. In the present study, we have investigated the TOR pathway in the white-rot fungus Phanerochaete chrysosporium. Inhibition of TOR activity by rapamycin affects conidia germination and hyphal growth highlighting the conserved mechanism of susceptibility to rapamycin. Interestingly, the secreted protein content is also affected by the rapamycin treatment. Finally, homologs of the components of TOR pathway can be identified in P. chrysosporium. Altogether, those results indicate that the TOR pathway of P. chrysosporium plays a central role in this fungus.


Asunto(s)
Proteínas Fúngicas/metabolismo , Phanerochaete/crecimiento & desarrollo , Phanerochaete/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Sitios de Unión , Proteínas Fúngicas/antagonistas & inhibidores , Humanos , Enlace de Hidrógeno , Reacción en Cadena de la Polimerasa , Estructura Secundaria de Proteína , Proteoma , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Esporas Fúngicas/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , beta-Glucosidasa/metabolismo
13.
Curr Biol ; 28(15): 2452-2458.e4, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30057301

RESUMEN

The growth of plants, like that of other walled organisms, depends on the ability of the cell wall to yield without losing its integrity. In this context, plant cells can sense the perturbation of their walls and trigger adaptive modifications in cell wall polymer interactions. Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) THESEUS1 (THE1) was previously shown in Arabidopsis to trigger growth inhibition and defense responses upon perturbation of the cell wall, but so far, neither the ligand nor the role of the receptor in normal development was known. Here, we report that THE1 is a receptor for the peptide rapid alkalinization factor (RALF) 34 and that this signaling module has a role in the fine-tuning of lateral root initiation. We also show that RALF34-THE1 signaling depends, at least for some responses, on FERONIA (FER), another RALF receptor involved in a variety of processes, including immune signaling, mechanosensing, and reproduction [1]. Together, the results show that RALF34 and THE1 are part of a signaling network that integrates information on the integrity of the cell wall with the coordination of normal morphogenesis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Hormonas Peptídicas/genética , Raíces de Plantas/crecimiento & desarrollo , Proteínas Quinasas/genética , Receptores de Superficie Celular/genética , Transducción de Señal , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Hormonas Peptídicas/metabolismo , Raíces de Plantas/genética , Proteínas Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo
14.
FEBS Lett ; 581(21): 3921-6, 2007 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-17662723

RESUMEN

Plant chloroplasts probably originate from an endosymbiosis event between a photosynthetic bacteria and a eucaryotic cell. The proper functioning of this association requires a high level of integration between the chloroplastic genome and the plant cell genome. Many chloroplastic genes have been transferred to the nucleus of the host cell and the proteins coded by these genes are imported into the chloroplast. Chloroplastic activity also regulates the expression of these genes at the transcriptional and post-transcriptional levels. The importation of nucleic acids from the host cell into the chloroplast has never been observed. This work show that the mRNA coding for the eucaryotic translation factor 4E, an essential regulator of translation, enters the chloroplast in four different plant species, and is located in the stroma. Furthermore, the localization in the chloroplast of an heterologous GFP mRNA fused to the eIF4E RNA was also observed.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Magnoliopsida/fisiología , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico Activo/fisiología , Cloroplastos/genética , Factor 4E Eucariótico de Iniciación/genética , Genoma de Planta/fisiología , ARN Mensajero/genética , ARN de Planta/genética
15.
BMC Plant Biol ; 7: 26, 2007 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-17543119

RESUMEN

BACKGROUND: The eukaryotic TOR pathway controls translation, growth and the cell cycle in response to environmental signals such as nutrients or growth-stimulating factors. The TOR protein kinase can be inactivated by the antibiotic rapamycin following the formation of a ternary complex between TOR, rapamycin and FKBP12 proteins. The TOR protein is also found in higher plants despite the fact that they are rapamycin insensitive. Previous findings using the yeast two hybrid system suggest that the FKBP12 plant homolog is unable to form a complex with rapamycin and TOR, while the FRB domain of plant TOR is still able to bind to heterologous FKBP12 in the presence of rapamycin. The resistance to rapamycin is therefore limiting the molecular dissection of the TOR pathway in higher plants. RESULTS: Here we show that none of the FKBPs from the model plant Arabidopsis (AtFKBPs) is able to form a ternary complex with the FRB domain of AtTOR in the presence of rapamycin in a two hybrid system. An antibody has been raised against the AtTOR protein and binding of recombinant yeast ScFKBP12 to native Arabidopsis TOR in the presence of rapamycin was demonstrated in pull-down experiments. Transgenic lines expressing ScFKBP12 were produced and were found to display a rapamycin-dependent reduction of the primary root growth and a lowered accumulation of high molecular weight polysomes. CONCLUSION: These results further strengthen the idea that plant resistance to rapamycin evolved as a consequence of mutations in plant FKBP proteins. The production of rapamycin-sensitive plants through the expression of the ScFKBP12 protein illustrates the conservation of the TOR pathway in eukaryotes. Since AtTOR null mutants were found to be embryo lethal 1, transgenic ScFKBP12 plants will provide an useful tool for the post-embryonic study of plant TOR functions. This work also establish for the first time a link between TOR activity and translation in plant cells.


Asunto(s)
Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Sirolimus/síntesis química , Sirolimus/farmacología , Proteína 1A de Unión a Tacrolimus/genética , Proteína 1A de Unión a Tacrolimus/metabolismo , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cartilla de ADN , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Datos de Secuencia Molecular , Fosfatidilinositol 3-Quinasas , Unión Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Front Plant Sci ; 4: 93, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23641244

RESUMEN

In eukaryotes, the ubiquitous TOR (target of rapamycin) kinase complexes have emerged as central regulators of cell growth and metabolism. The plant TOR complex 1 (TORC1), that contains evolutionary conserved protein partners, has been shown to be implicated in various aspects of C metabolism. Indeed Arabidopsis lines affected in the expression of TORC1 components show profound perturbations in the metabolism of several sugars, including sucrose, starch, and raffinose. Metabolite profiling experiments coupled to transcriptomic analyses of lines affected in TORC1 expression also reveal a wider deregulation of primary metabolism. Moreover recent data suggest that the kinase activity of TORC1, which controls biological outputs like mRNA translation or autophagy, is directly regulated by soluble sugars.

17.
PLoS One ; 6(12): e28070, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22164228

RESUMEN

Plants have to coordinate eukaryotic ribosomes (cytoribosomes) and prokaryotic ribosomes (plastoribosomes and mitoribosomes) production to balance cellular protein synthesis in response to environmental variations. We identified 429 genes encoding potential ribosomal proteins (RP) in Arabidopsis thaliana. Because cytoribosome proteins are encoded by small nuclear gene families, plastid RP by nuclear and plastid genes and mitochondrial RP by nuclear and mitochondrial genes, several transcriptional pathways were attempted to control ribosome amounts. Examining two independent genomic expression datasets, we found two groups of RP genes showing very different and specific expression patterns in response to environmental stress. The first group represents the nuclear genes coding for plastid RP whereas the second group is composed of a subset of cytoribosome genes coding for RP isoforms. By contrast, the other cytoribosome genes and mitochondrial RP genes show less constraint in their response to stress conditions. The two subsets of cytoribosome genes code for different RP isoforms. During stress, the response of the intensively regulated subset leads to dramatic variation in ribosome diversity. Most of RP genes have same promoter structure with two motifs at conserved positions. The stress-response of the nuclear genes coding plastid RP is related with the absence of an interstitial telomere motif known as telo box in their promoters. We proposed a model for the "ribosome code" that influences the ribosome biogenesis by three main transcriptional pathways. The first pathway controls the basal program of cytoribosome and mitoribosome biogenesis. The second pathway involves a subset of cytoRP genes that are co-regulated under stress condition. The third independent pathway is devoted to the control of plastoribosome biosynthesis by regulating both nuclear and plastid genes.


Asunto(s)
Arabidopsis/genética , Ribosomas/fisiología , Transcripción Genética , Análisis por Conglomerados , Biología Computacional/métodos , Bases de Datos Factuales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genómica , Modelos Genéticos , Análisis de Secuencia por Matrices de Oligonucleótidos , Plastidios/metabolismo , Regiones Promotoras Genéticas , Isoformas de Proteínas , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Programas Informáticos
18.
C R Biol ; 333(4): 382-91, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20371113

RESUMEN

Senescence and programmed cell death are important features for plant development. By allowing nutrient recycling and reallocation all along plant life, senescence contributes to the plant survival and the developmental program. This review first presents the concept of senescence in the global whole-plant life story, with an emphasis on the control exerted by flowering. It then focuses on leaf-senescence and its control by hormones, nutrients and development. The role of autophagy and of the Target of Rapamycin (TOR) kinase as potential regulators integrating environmental and endogenous signals, which control cell proliferation, reprogramming and nutrient management, is finally considered.


Asunto(s)
Desarrollo de la Planta , Proteínas de Arabidopsis , Autofagia , Muerte Celular/fisiología , Flores/crecimiento & desarrollo , Flores/fisiología , Histona Desacetilasas/fisiología , Histonas/metabolismo , Fenómenos Fisiológicos de la Nutrición , Fosfatidilinositol 3-Quinasas , Reguladores del Crecimiento de las Plantas/fisiología , Fenómenos Fisiológicos de las Plantas , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Plantas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Transducción de Señal/fisiología
19.
Plant Cell ; 21(6): 1762-8, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19531599

RESUMEN

MicroRNAs (miRNAs) regulate gene expression posttranscriptionally through RNA silencing, a mechanism conserved in eukaryotes. Prevailing models entail most animal miRNAs affecting gene expression by blocking mRNA translation and most plant miRNAs, triggering mRNA cleavage. Here, using polysome fractionation in Arabidopsis thaliana, we found that a portion of mature miRNAs and ARGONAUTE1 (AGO1) is associated with polysomes, likely through their mRNA target. We observed enhanced accumulation of several distinct miRNA targets at both the mRNA and protein levels in an ago1 hypomorphic mutant. By contrast, translational repression, but not cleavage, persisted in transgenic plants expressing the slicing-inhibitor 2b protein from Cucumber mosaic virus. In agreement, we found that the polysome association of miR168 was lost in ago1 but maintained in 2b plants, indicating that translational repression is correlated with the presence of miRNAs and AGO1 in polysomes. This work provides direct biochemical evidence for a translational component in the plant miRNA pathway.


Asunto(s)
Arabidopsis/genética , Silenciador del Gen , MicroARNs/fisiología , Biosíntesis de Proteínas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas , MicroARNs/genética , MicroARNs/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Polirribosomas/genética , Polirribosomas/metabolismo , ARN Mensajero/metabolismo
20.
EMBO Rep ; 8(9): 864-70, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17721444

RESUMEN

Plants, unlike animals, have plastic organ growth that is largely dependent on environmental information. However, so far, little is known about how this information is perceived and transduced into coherent growth and developmental decisions. Here, we report that the growth of Arabidopsis is positively correlated with the level of expression of the TARGET OF RAPAMYCIN (TOR) kinase. Diminished or augmented expression of the AtTOR gene results in a dose-dependent decrease or increase, respectively, in organ and cell size, seed production and resistance to osmotic stress. Strong downregulation of AtTOR expression by inducible RNA interference also leads to a post-germinative halt in growth and development, which phenocopies the action of the plant hormone abscisic acid, to an early senescence and to a reduction in the amount of translated messenger RNA. Thus, we propose that the AtTOR kinase is one of the contributors to the link between environmental cues and growth processes in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Biosíntesis de Proteínas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Semillas/enzimología , Animales , Proteínas de Arabidopsis/biosíntesis , Silenciador del Gen , Tamaño de los Órganos , Presión Osmótica , Fosfatidilinositol 3-Quinasas , Epidermis de la Planta/enzimología , Hojas de la Planta/anatomía & histología , Hojas de la Planta/enzimología , Polirribosomas/metabolismo , Proteínas Serina-Treonina Quinasas/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA