Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
JBMR Plus ; 8(8): ziae071, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39006867

RESUMEN

Skeletal anomalies represent a characteristic feature of type 1 Gaucher disease (GD1). Here we evaluated the impact of an integrated therapy comprising enzyme-replacement therapy (ERT), cholecalciferol, and a normocalcemic-normocaloric-hyposodic diet (bone diet) on bone health in GD1 patients. We also performed a systematic review to compare our results with available data. From January 1, 2015 to February 28, 2019, all GD1 patients referred to Federico II University were enrolled and treated with the integrated therapy. Bone turnover markers and bone mineral density (BMD) were evaluated at baseline (T0) and after 24 months (T24). We enrolled 25 GD1 patients, all showing 25-hydroxy vitamin D (25OHD) levels < 50 nmol/l (hypovitaminosis D) at T0. Response to cholecalciferol treatment was effective, showing a direct relationship between 25OHD levels before and after treatment. At T0, 2 GD1 patients showed fragility fractures, 5 the Erlenmeyer flask deformity, 3 osteonecrosis, and 7 a BMD Z-score ≤ -2. Overall, GD1 patients with bone anomalies showed higher C-terminal telopeptide levels compared with those without bone anomalies. No new bone anomalies occurred during 2 years of follow-up. At T24, BMD remained stable across the entire study cohort, including in patients with bone anomalies. The systematic review showed that our study is the first that evaluated all bone health parameters. Hypovitaminosis D is prevalent in GD1 patients. The response to cholecalciferol treatment was effective but different to healthy subjects and in patients with metabolic bone disorders. Integrated therapy including ERT, cholecalciferol, and bone diet guarantees bone health.

2.
NEJM Evid ; 1(7): EVIDoa2200052, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-38319253

RESUMEN

BACKGROUND: Mucopolysaccharidosis type VI (MPS VI) is an inherited multisystem lysosomal disorder due to arylsulfatase B (ARSB) deficiency that leads to widespread accumulation of glycosaminoglycans (GAG), which are excreted in increased amounts in urine. MPS VI is characterized by progressive dysostosis multiplex, connective tissue and cardiac involvement, and hepatosplenomegaly. Enzyme replacement therapy (ERT) is available but requires life-long and costly intravenous infusions; moreover, it has limited efficacy on diseased skeleton and cardiac valves, compromised pulmonary function, and corneal opacities. METHODS: We enrolled nine patients with MPS VI 4 years of age or older in a phase 1/2 open-label gene therapy study. After ERT was interrupted, patients each received a single intravenous infusion of an adeno-associated viral vector serotype 8 expressing ARSB. Participants were sequentially enrolled in one of three dose cohorts: low (three patients), intermediate (two patients), or high (four patients). The primary outcome was safety; biochemical and clinical end points were secondary outcomes. RESULTS: The infusions occurred without severe adverse events attributable to the vector, meeting the prespecified end point. Participants in the low and intermediate dose cohorts displayed stable serum ARSB of approximately 20% of the mean healthy value but returned to ERT by 14 months after gene therapy because of increased urinary GAG. Participants in the high-dose cohort had sustained serum ARSB of 30% to 100% of the mean healthy value and a modest urinary GAG increase that did not reach a concentration at which ERT reintroduction was needed. In the high-dose group, there was no clinical deterioration for up to 2 years after gene therapy. CONCLUSIONS: Liver-directed gene therapy for participants with MPS VI did not have a dose-limiting side-effect and adverse event profile; high-dose treatment resulted in ARSB expression over at least 24 months with preliminary evidence of disease stabilization. (Funded by the Telethon Foundation ETS, the European Commission Seventh Framework Programme, and the Isaac Foundation; ClinicalTrials.gov number, NCT03173521; EudraCT number, 2016-002328-10.)


Asunto(s)
Dependovirus , Terapia Genética , Mucopolisacaridosis VI , N-Acetilgalactosamina-4-Sulfatasa , Humanos , Terapia Genética/métodos , Mucopolisacaridosis VI/terapia , Mucopolisacaridosis VI/genética , Mucopolisacaridosis VI/orina , Masculino , Femenino , Dependovirus/genética , Niño , Adolescente , Preescolar , N-Acetilgalactosamina-4-Sulfatasa/genética , Adulto , Adulto Joven , Vectores Genéticos/administración & dosificación , Hígado/metabolismo , Hígado/patología , Terapia de Reemplazo Enzimático/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA