Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 82(11): 2132-2147.e6, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35447083

RESUMEN

Mouse pericentromeric DNA is composed of tandem major satellite repeats, which are heterochromatinized and cluster together to form chromocenters. These clusters are refractory to DNA repair through homologous recombination (HR). The mechanisms by which pericentromeric heterochromatin imposes a barrier on HR and the implications of repeat clustering are unknown. Here, we compare the spatial recruitment of HR factors upon double-stranded DNA breaks (DSBs) induced in human and mouse pericentromeric heterochromatin, which differ in their capacity to form clusters. We show that while DSBs increase the accessibility of human pericentromeric heterochromatin by disrupting HP1α dimerization, mouse pericentromeric heterochromatin repeat clustering imposes a physical barrier that requires many layers of de-compaction to be accessed. Our results support a model in which the 3D organization of heterochromatin dictates the spatial activation of DNA repair pathways and is key to preventing the activation of HR within clustered repeats and the onset of chromosomal translocations.


Asunto(s)
Heterocromatina , Translocación Genética , Animales , Análisis por Conglomerados , Roturas del ADN de Doble Cadena , Heterocromatina/genética , Recombinación Homóloga/genética , Ratones
2.
Mol Cell ; 81(12): 2596-2610.e7, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33961796

RESUMEN

p53-binding protein 1 (53BP1) regulates both the DNA damage response and p53 signaling. Although 53BP1's function is well established in DNA double-strand break repair, how its role in p53 signaling is modulated remains poorly understood. Here, we identify the scaffolding protein AHNAK as a G1 phase-enriched interactor of 53BP1. We demonstrate that AHNAK binds to the 53BP1 oligomerization domain and controls its multimerization potential. Loss of AHNAK results in hyper-accumulation of 53BP1 on chromatin and enhanced phase separation, culminating in an elevated p53 response, compromising cell survival in cancer cells but leading to senescence in non-transformed cells. Cancer transcriptome analyses indicate that AHNAK-53BP1 cooperation contributes to the suppression of p53 target gene networks in tumors and that loss of AHNAK sensitizes cells to combinatorial cancer treatments. These findings highlight AHNAK as a rheostat of 53BP1 function, which surveys cell proliferation by preventing an excessive p53 response.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , ADN/genética , Roturas del ADN de Doble Cadena , Reparación del ADN , Fase G1/fisiología , Histonas/metabolismo , Humanos , Células MCF-7 , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiología , Transducción de Señal/fisiología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/fisiología
3.
Nature ; 600(7890): 748-753, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34853474

RESUMEN

Centromeric integrity is key for proper chromosome segregation during cell division1. Centromeres have unique chromatin features that are essential for centromere maintenance2. Although they are intrinsically fragile and represent hotspots for chromosomal rearrangements3, little is known about how centromere integrity in response to DNA damage is preserved. DNA repair by homologous recombination requires the presence of the sister chromatid and is suppressed in the G1 phase of the cell cycle4. Here we demonstrate that DNA breaks that occur at centromeres in G1 recruit the homologous recombination machinery, despite the absence of a sister chromatid. Mechanistically, we show that the centromere-specific histone H3 variant CENP-A and its chaperone HJURP, together with dimethylation of lysine 4 in histone 3 (H3K4me2), enable a succession of events leading to the licensing of homologous recombination in G1. H3K4me2 promotes DNA-end resection by allowing DNA damage-induced centromeric transcription and increased formation of DNA-RNA hybrids. CENP-A and HJURP interact with the deubiquitinase USP11, enabling formation of the RAD51-BRCA1-BRCA2 complex5 and rendering the centromeres accessible to RAD51 recruitment and homologous recombination in G1. Finally, we show that inhibition of homologous recombination in G1 leads to centromeric instability and chromosomal translocations. Our results support a model in which licensing of homologous recombination at centromeric breaks occurs throughout the cell cycle to prevent the activation of mutagenic DNA repair pathways and preserve centromeric integrity.


Asunto(s)
Proteínas Cromosómicas no Histona , Reparación del ADN , Proteínas de Unión al ADN , Centrómero/genética , Centrómero/metabolismo , Proteína A Centromérica , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , ADN , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Recombinación Homóloga
4.
Nature ; 600(7888): 329-333, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34819671

RESUMEN

Efficient humoral responses rely on DNA damage, mutagenesis and error-prone DNA repair. Diversification of B cell receptors through somatic hypermutation and class-switch recombination are initiated by cytidine deamination in DNA mediated by activation-induced cytidine deaminase (AID)1 and by the subsequent excision of the resulting uracils by uracil DNA glycosylase (UNG) and by mismatch repair proteins1-3. Although uracils arising in DNA are accurately repaired1-4, how these pathways are co-opted to generate mutations and double-strand DNA breaks in the context of somatic hypermutation and class-switch recombination is unknown1-3. Here we performed a genome-wide CRISPR-Cas9 knockout screen for genes involved in class-switch recombination and identified FAM72A, a protein that interacts with the nuclear isoform of UNG (UNG2)5 and is overexpressed in several cancers5. We show that the FAM72A-UNG2 interaction controls the levels of UNG2 and that class-switch recombination is defective in Fam72a-/- B cells due to the upregulation of UNG2. Moreover, we show that somatic hypermutation is reduced in Fam72a-/- B cells and that its pattern is skewed upon upregulation of UNG2. Our results are consistent with a model in which FAM72A interacts with UNG2 to control its physiological level by triggering its degradation, regulating the level of uracil excision and thus the balance between error-prone and error-free DNA repair. Our findings have potential implications for tumorigenesis, as reduced levels of UNG2 mediated by overexpression of Fam72a would shift the balance towards mutagenic DNA repair, rendering cells more prone to acquire mutations.


Asunto(s)
Linfocitos B , Reparación de la Incompatibilidad de ADN , Cambio de Clase de Inmunoglobulina , Región de Cambio de la Inmunoglobulina , Mutación , Hipermutación Somática de Inmunoglobulina , Animales , Femenino , Masculino , Ratones , Linfocitos B/metabolismo , Sistemas CRISPR-Cas/genética , Genoma/genética , Cambio de Clase de Inmunoglobulina/genética , Región de Cambio de la Inmunoglobulina/genética , Hipermutación Somática de Inmunoglobulina/genética , Regulación hacia Arriba , Uracilo/metabolismo
5.
Genes Dev ; 33(11-12): 684-704, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31048545

RESUMEN

DNA double-strand breaks (DSBs) at RNA polymerase II (RNAPII) transcribed genes lead to inhibition of transcription. The DNA-dependent protein kinase (DNA-PK) complex plays a pivotal role in transcription inhibition at DSBs by stimulating proteasome-dependent eviction of RNAPII at these lesions. How DNA-PK triggers RNAPII eviction to inhibit transcription at DSBs remains unclear. Here we show that the HECT E3 ubiquitin ligase WWP2 associates with components of the DNA-PK and RNAPII complexes and is recruited to DSBs at RNAPII transcribed genes. In response to DSBs, WWP2 targets the RNAPII subunit RPB1 for K48-linked ubiquitylation, thereby driving DNA-PK- and proteasome-dependent eviction of RNAPII. The lack of WWP2 or expression of nonubiquitylatable RPB1 abrogates the binding of nonhomologous end joining (NHEJ) factors, including DNA-PK and XRCC4/DNA ligase IV, and impairs DSB repair. These findings suggest that WWP2 operates in a DNA-PK-dependent shutoff circuitry for RNAPII clearance that promotes DSB repair by protecting the NHEJ machinery from collision with the transcription machinery.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Proteína Quinasa Activada por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas Nucleares/metabolismo , ARN Polimerasa II/metabolismo , Transcripción Genética , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular Transformada , Línea Celular Tumoral , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitinación
6.
Mol Cell ; 63(5): 726-8, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27588600

RESUMEN

Identifying DNA fragile sites is crucial to reveal hotspots of genomic rearrangements, yet their precise mapping has been a challenge. A new study in this issue of Molecular Cell (Canela et al., 2016) introduces a highly sensitive and accurate method to detect DNA breaks in vivo that can be adapted to various experimental and clinical settings.


Asunto(s)
Cromatina , Sitios Frágiles del Cromosoma , ADN , Genoma , Genómica , Humanos
7.
Mol Cell ; 63(2): 293-305, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27397684

RESUMEN

Repetitive DNA is packaged into heterochromatin to maintain its integrity. We use CRISPR/Cas9 to induce DSBs in different mammalian heterochromatin structures. We demonstrate that in pericentric heterochromatin, DSBs are positionally stable in G1 and recruit NHEJ factors. In S/G2, DSBs are resected and relocate to the periphery of heterochromatin, where they are retained by RAD51. This is independent of chromatin relaxation but requires end resection and RAD51 exclusion from the core. DSBs that fail to relocate are engaged by NHEJ or SSA proteins. We propose that the spatial disconnection between end resection and RAD51 binding prevents the activation of mutagenic pathways and illegitimate recombination. Interestingly, in centromeric heterochromatin, DSBs recruit both NHEJ and HR proteins throughout the cell cycle. Our results highlight striking differences in the recruitment of DNA repair factors between pericentric and centromeric heterochromatin and suggest a model in which the commitment to specific DNA repair pathways regulates DSB position.


Asunto(s)
Centrómero/metabolismo , Ensamble y Desensamble de Cromatina , Roturas del ADN de Doble Cadena , Reparación del ADN , Heterocromatina/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Sistemas CRISPR-Cas , Centrómero/química , Centrómero/genética , Reparación del ADN por Unión de Extremidades , Fase G2 , Heterocromatina/química , Heterocromatina/genética , Histonas/genética , Histonas/metabolismo , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Ratones , Células 3T3 NIH , Interferencia de ARN , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Reparación del ADN por Recombinación , Fase S , Factores de Tiempo , Transfección
8.
Nature ; 543(7644): 211-216, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28241136

RESUMEN

P53-binding protein 1 (53BP1) is a multi-functional double-strand break repair protein that is essential for class switch recombination in B lymphocytes and for sensitizing BRCA1-deficient tumours to poly-ADP-ribose polymerase-1 (PARP) inhibitors. Central to all 53BP1 activities is its recruitment to double-strand breaks via the interaction of the tandem Tudor domain with dimethylated lysine 20 of histone H4 (H4K20me2). Here we identify an uncharacterized protein, Tudor interacting repair regulator (TIRR), that directly binds the tandem Tudor domain and masks its H4K20me2 binding motif. Upon DNA damage, the protein kinase ataxia-telangiectasia mutated (ATM) phosphorylates 53BP1 and recruits RAP1-interacting factor 1 (RIF1) to dissociate the 53BP1-TIRR complex. However, overexpression of TIRR impedes 53BP1 function by blocking its localization to double-strand breaks. Depletion of TIRR destabilizes 53BP1 in the nuclear-soluble fraction and alters the double-strand break-induced protein complex centring 53BP1. These findings identify TIRR as a new factor that influences double-strand break repair using a unique mechanism of masking the histone methyl-lysine binding function of 53BP1.


Asunto(s)
Proteínas Portadoras/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/antagonistas & inhibidores , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Sitios de Unión , Roturas del ADN de Doble Cadena , Reparación del ADN , Femenino , Humanos , Metilación , Ratones , Ratones Endogámicos C57BL , Fosforilación , Unión Proteica , Dominios Proteicos , Proteínas de Unión al ARN , Proteínas de Unión a Telómeros/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/química
9.
Genes Dev ; 28(22): 2450-63, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25366693

RESUMEN

Faithful DNA repair is essential to avoid chromosomal rearrangements and promote genome integrity. Nuclear organization has emerged as a key parameter in the formation of chromosomal translocations, yet little is known as to whether DNA repair can efficiently occur throughout the nucleus and whether it is affected by the location of the lesion. Here, we induce DNA double-strand breaks (DSBs) at different nuclear compartments and follow their fate. We demonstrate that DSBs induced at the nuclear membrane (but not at nuclear pores or nuclear interior) fail to rapidly activate the DNA damage response (DDR) and repair by homologous recombination (HR). Real-time and superresolution imaging reveal that DNA DSBs within lamina-associated domains do not migrate to more permissive environments for HR, like the nuclear pores or the nuclear interior, but instead are repaired in situ by alternative end-joining. Our results are consistent with a model in which nuclear position dictates the choice of DNA repair pathway, thus revealing a new level of regulation in DSB repair controlled by spatial organization of DNA within the nucleus.


Asunto(s)
Núcleo Celular/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Línea Celular Tumoral , Cromatina/genética , Células HeLa , Recombinación Homóloga/genética , Humanos , Membrana Nuclear/metabolismo , Lámina Nuclear/metabolismo
10.
Nat Rev Mol Cell Biol ; 10(4): 243-54, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19277046

RESUMEN

DNA repair and maintenance of genome stability are crucial to cellular and organismal function, and defects in these processes have been implicated in cancer and ageing. Detailed molecular, biochemical and genetic analyses have outlined the molecular framework involved in cellular DNA-repair pathways, but recent cell-biological approaches have revealed important roles for the spatial and temporal organization of the DNA-repair machinery during the recognition of DNA lesions and the assembly of repair complexes. It has also become clear that local higher-order chromatin structure, chromatin dynamics and non-random global genome organization are key factors in genome maintenance. These cell-biological features of DNA repair illustrate an emerging role for nuclear architecture in multiple aspects of genome maintenance.


Asunto(s)
Núcleo Celular/genética , Reparación del ADN , Genoma , Animales , Cromatina/metabolismo , Daño del ADN , Humanos , Modelos Biológicos
11.
Chromosoma ; 133(1): 1-3, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38355990
12.
PLoS Genet ; 12(2): e1005791, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26845027

RESUMEN

DNA lesions are sensed by a network of proteins that trigger the DNA damage response (DDR), a signaling cascade that acts to delay cell cycle progression and initiate DNA repair. The Mediator of DNA damage Checkpoint protein 1 (MDC1) is essential for spreading of the DDR signaling on chromatin surrounding Double Strand Breaks (DSBs) by acting as a scaffold for PI3K kinases and for ubiquitin ligases. MDC1 also plays a role both in Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR) repair pathways. Here we identify two novel binding partners of MDC1, the poly (ADP-ribose) Polymerases (PARPs) TNKS1 and 2. We find that TNKSs are recruited to DNA lesions by MDC1 and regulate DNA end resection and BRCA1A complex stabilization at lesions leading to efficient DSB repair by HR and proper checkpoint activation.


Asunto(s)
Roturas del ADN de Doble Cadena , Recombinación Homóloga , Tanquirasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Tanquirasas/genética , Transactivadores/genética , Transactivadores/metabolismo , Ubiquitina-Proteína Ligasas
14.
Nucleic Acids Res ; 42(9): 5689-701, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24682826

RESUMEN

DNA double-strand breaks (DSBs) are the most severe type of DNA damage. DSBs are repaired by non-homologous end-joining or homology directed repair (HDR). Identifying novel small molecules that affect HDR is of great importance both for research use and therapy. Molecules that elevate HDR may improve gene targeting whereas inhibiting molecules can be used for chemotherapy, since some of the cancers are more sensitive to repair impairment. Here, we performed a high-throughput chemical screen for FDA approved drugs, which affect HDR in cancer cells. We found that HDR frequencies are increased by retinoic acid and Idoxuridine and reduced by the antihypertensive drug Spironolactone. We further revealed that Spironolactone impairs Rad51 foci formation, sensitizes cancer cells to DNA damaging agents, to Poly (ADP-ribose) polymerase (PARP) inhibitors and cross-linking agents and inhibits tumor growth in xenografts, in mice. This study suggests Spironolactone as a new candidate for chemotherapy.


Asunto(s)
Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Reparación del ADN por Recombinación/efectos de los fármacos , Espironolactona/farmacología , Animales , Antihipertensivos/farmacología , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Método Doble Ciego , Aprobación de Drogas , Ensayos Analíticos de Alto Rendimiento , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Recombinasa Rad51/metabolismo , Estados Unidos , United States Food and Drug Administration , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Nat Cell Biol ; 9(6): 675-82, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17486118

RESUMEN

Formation of cancerous translocations requires the illegitimate joining of chromosomes containing double-strand breaks (DSBs). It is unknown how broken chromosome ends find their translocation partners within the cell nucleus. Here, we have visualized and quantitatively analysed the dynamics of single DSBs in living mammalian cells. We demonstrate that broken ends are positionally stable and unable to roam the cell nucleus. Immobilization of broken chromosome ends requires the DNA-end binding protein Ku80, but is independent of DNA repair factors, H2AX, the MRN complex and the cohesion complex. DSBs preferentially undergo translocations with neighbouring chromosomes and loss of local positional constraint correlates with elevated genomic instability. These results support a contact-first model in which chromosome translocations predominantly form among spatially proximal DSBs.


Asunto(s)
Núcleo Celular/genética , Roturas del ADN de Doble Cadena , Daño del ADN/genética , ADN/genética , Translocación Genética/genética , Animales , Antígenos Nucleares/genética , Proteínas de Ciclo Celular/genética , Transformación Celular Neoplásica/genética , Proteínas Cromosómicas no Histona/genética , Cromosomas/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Inestabilidad Genómica/genética , Histonas/genética , Autoantígeno Ku , Sustancias Macromoleculares/metabolismo , Ratones , Células 3T3 NIH , Proteínas Nucleares/genética , Cohesinas
16.
Nucleic Acids Res ; 40(22): 11363-79, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23034801

RESUMEN

Survival time-associated plant homeodomain (PHD) finger protein in Ovarian Cancer 1 (SPOC1, also known as PHF13) is known to modulate chromatin structure and is essential for testicular stem-cell differentiation. Here we show that SPOC1 is recruited to DNA double-strand breaks (DSBs) in an ATM-dependent manner. Moreover, SPOC1 localizes at endogenous repair foci, including OPT domains and accumulates at large DSB repair foci characteristic for delayed repair at heterochromatic sites. SPOC1 depletion enhances the kinetics of ionizing radiation-induced foci (IRIF) formation after γ-irradiation (γ-IR), non-homologous end-joining (NHEJ) repair activity, and cellular radioresistance, but impairs homologous recombination (HR) repair. Conversely, SPOC1 overexpression delays IRIF formation and γH2AX expansion, reduces NHEJ repair activity and enhances cellular radiosensitivity. SPOC1 mediates dose-dependent changes in chromatin association of DNA compaction factors KAP-1, HP1-α and H3K9 methyltransferases (KMT) GLP, G9A and SETDB1. In addition, SPOC1 interacts with KAP-1 and H3K9 KMTs, inhibits KAP-1 phosphorylation and enhances H3K9 trimethylation. These findings provide the first evidence for a function of SPOC1 in DNA damage response (DDR) and repair. SPOC1 acts as a modulator of repair kinetics and choice of pathways. This involves its dose-dependent effects on DNA damage sensors, repair mediators and key regulators of chromatin structure.


Asunto(s)
Cromatina/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo , Línea Celular , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Rayos gamma , Heterocromatina , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Tolerancia a Radiación , Reparación del ADN por Recombinación , Proteínas Represoras/metabolismo , Proteína 28 que Contiene Motivos Tripartito
17.
Nat Commun ; 15(1): 5727, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977669

RESUMEN

DNA replication and transcription generate DNA supercoiling, which can cause topological stress and intertwining of daughter chromatin fibers, posing challenges to the completion of DNA replication and chromosome segregation. Type II topoisomerases (Top2s) are enzymes that relieve DNA supercoiling and decatenate braided sister chromatids. How Top2 complexes deal with the topological challenges in different chromatin contexts, and whether all chromosomal contexts are subjected equally to torsional stress and require Top2 activity is unknown. Here we show that catalytic inhibition of the Top2 complex in interphase has a profound effect on the stability of heterochromatin and repetitive DNA elements. Mechanistically, we find that catalytically inactive Top2 is trapped around heterochromatin leading to DNA breaks and unresolved catenates, which necessitate the recruitment of the structure specific endonuclease, Ercc1-XPF, in an SLX4- and SUMO-dependent manner. Our data are consistent with a model in which Top2 complex resolves not only catenates between sister chromatids but also inter-chromosomal catenates between clustered repetitive elements.


Asunto(s)
ADN-Topoisomerasas de Tipo II , Heterocromatina , ADN-Topoisomerasas de Tipo II/metabolismo , ADN-Topoisomerasas de Tipo II/genética , Heterocromatina/metabolismo , Animales , Inhibidores de Topoisomerasa II/farmacología , Secuencias Repetitivas de Ácidos Nucleicos/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Replicación del ADN , ADN Superhelicoidal/metabolismo , ADN Superhelicoidal/química , Humanos , Ratones , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , ADN/metabolismo , ADN/química , Interfase
18.
Res Sq ; 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37645793

RESUMEN

The spatiotemporal configuration of genes with distal regulatory elements, and the impact of chromatin mobility on transcription, remain unclear. Loop extrusion is an attractive model for bringing genetic elements together, but how this functionally interacts with transcription is also largely unknown. We combine live tracking of genomic loci and nascent transcripts with molecular dynamics simulations to assess the spatiotemporal arrangement of the Sox2 gene and its enhancer, in response to a battery of perturbations. We find a close link between chromatin mobility and transcriptional status: active elements display more constrained mobility, consistent with confinement within specialized nuclear sites, and alterations in enhancer mobility distinguish poised from transcribing alleles. Strikingly, we find that whereas loop extrusion and transcription factor-mediated clustering contribute to promoter-enhancer proximity, they have antagonistic effects on chromatin dynamics. This provides an experimental framework for the underappreciated role of chromatin dynamics in genome regulation.

19.
bioRxiv ; 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37162887

RESUMEN

The spatiotemporal configuration of genes with distal regulatory elements, and the impact of chromatin mobility on transcription, remain unclear. Loop extrusion is an attractive model for bringing genetic elements together, but how this functionally interacts with transcription is also largely unknown. We combine live tracking of genomic loci and nascent transcripts with molecular dynamics simulations to assess the 4D arrangement of the Sox2 gene and its enhancer, in response to a battery of perturbations. We find that alterations in chromatin mobility, not promoter-enhancer distance, is more informative about transcriptional status. Active elements display more constrained mobility, consistent with confinement within specialized nuclear sites, and alterations in enhancer mobility distinguish poised from transcribing alleles. Strikingly, we find that whereas loop extrusion and transcription factor-mediated clustering contribute to promoter-enhancer proximity, they have antagonistic effects on chromatin dynamics. This provides an experimental framework for the underappreciated role of chromatin dynamics in genome regulation.

20.
Proc Natl Acad Sci U S A ; 106(37): 15762-7, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19717431

RESUMEN

The histone H3 variant CENP-A is required for epigenetic specification of centromere identity through a loading mechanism independent of DNA sequence. Using multiphoton absorption and DNA cleavage at unique sites by I-SceI endonuclease, we demonstrate that CENP-A is rapidly recruited to double-strand breaks in DNA, along with three components (CENP-N, CENP-T, and CENP-U) associated with CENP-A at centromeres. The centromere-targeting domain of CENP-A is both necessary and sufficient for recruitment to double-strand breaks. CENP-A accumulation at DNA breaks is enhanced by active non-homologous end-joining but does not require DNA-PKcs or Ligase IV, and is independent of H2AX. Thus, induction of a double-strand break is sufficient to recruit CENP-A in human and mouse cells. Finally, since cell survival after radiation-induced DNA damage correlates with CENP-A expression level, we propose that CENP-A may have a function in DNA repair.


Asunto(s)
Autoantígenos/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena , Animales , Autoantígenos/química , Autoantígenos/genética , Transporte Biológico Activo , Línea Celular , Centrómero/metabolismo , Proteína A Centromérica , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Daño del ADN/fisiología , Reparación del ADN/fisiología , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Histonas/metabolismo , Humanos , Cinética , Ratones , Modelos Biológicos , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA