Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mycorrhiza ; 33(4): 221-228, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37330423

RESUMEN

Tuber brumale is a European edible truffle species that is often viewed as a contaminant in truffle orchards, as it visually resembles more valuable black truffles such as T. melanosporum, but differs in aroma and flavor and sells for a much lower price. Although T. brumale is not native to or intentionally cultivated in North America, it was reported to have been accidently introduced into British Columbia in 2014 and North Carolina in 2020. However, in winter of 2021, various truffle orchards in eastern North America produced truffles that differed from the anticipated harvest of T. melanosporum. Molecular analysis of these specimens confirmed T. brumale truffle fruiting bodies from ten orchards distributed across six eastern USA states. Phylogenetic analysis of nuclear ribosomal ITS and 28S DNA sequences indicated that all samples belong to the T. brumale A1 haplogroup, the genetic subgroup of T. brumale that is more common in western Europe. This pattern of widespread fruiting of T. brumale in North American truffle orchards is likely the result of T. brumale being introduced in the initial inoculation of trees used as hosts in T. melanosporum truffle cultivation. We review other examples of introduced non-target truffle species and strategies for limiting their impact on truffle cultivation.


Asunto(s)
Micorrizas , Secuencia de Bases , Europa (Continente) , Especies Introducidas , Filogenia
2.
Microbiol Spectr ; : e0133223, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37772854

RESUMEN

Terpenes are among the oldest and largest class of plant-specialized bioproducts that are known to affect plant development, adaptation, and biological interactions. While their biosynthesis, evolution, and function in aboveground interactions with insects and individual microbial species are well studied, how different terpenes impact plant microbiomes belowground is much less understood. Here we designed an experiment to assess how belowground exogenous applications of monoterpenes (1,8-cineole and linalool) and a sesquiterpene (nerolidol) delivered through an artificial root system impacted its belowground bacterial and fungal microbiome. We found that the terpene applications had significant and variable impacts on bacterial and fungal communities, depending on terpene class and concentration; however, these impacts were localized to the artificial root system and the fungal rhizosphere. We complemented this experiment with pure culture bioassays on responsive bacteria and fungi isolated from the sorghum rhizobiome. Overall, higher concentrations (200 µM) of nerolidol were inhibitory to Ferrovibrium and tested Firmicutes. While fungal isolates of Penicillium and Periconia were also more inhibited by higher concentrations (200 µM) of nerolidol, Clonostachys was enhanced at this higher level and together with Humicola was inhibited by the lower concentration tested (100 µM). On the other hand, 1,8-cineole had an inhibitory effect on Orbilia at both tested concentrations but had a promotive effect at 100 µM on Penicillium and Periconia. Similarly, linalool at 100 µM had significant growth promotion in Mortierella, but an inhibitory effect for Orbilia. Together, these results highlight the variable direct effects of terpenes on single microbial isolates and demonstrate the complexity of microbe-terpene interactions in the rhizobiome. IMPORTANCE Terpenes represent one of the largest and oldest classes of plant-specialized metabolism, but their role in the belowground microbiome is poorly understood. Here, we used a "rhizobox" mesocosm experimental set-up to supply different concentrations and classes of terpenes into the soil compartment with growing sorghum for 1 month to assess how these terpenes affect sorghum bacterial and fungal rhizobiome communities. Changes in bacterial and fungal communities between treatments belowground were characterized, followed by bioassays screening on bacterial and fungal isolates from the sorghum rhizosphere against terpenes to validate direct microbial responses. We found that microbial growth stimulatory and inhibitory effects were localized, terpene specific, dose dependent, and transient in time. This work paves the way for engineering terpene metabolisms in plant microbiomes for improved sustainable agriculture and bioenergy crop production.

3.
J Travel Med ; 17(6): 427-9, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21050327

RESUMEN

Flights departing from malarious areas are sprayed with pyrethroids. They are presumed to be safe since reports of adverse responses among passengers or crew were only anecdotal. However, asthmatic reactions after domestic and occupational exposure have been published. We present the first case description of pyrethroid allergy in an airplane.


Asunto(s)
Contaminación del Aire Interior/efectos adversos , Anafilaxia/inducido químicamente , Insecticidas/efectos adversos , Piretrinas/efectos adversos , Corticoesteroides/uso terapéutico , Adulto , África , Contaminantes Atmosféricos/efectos adversos , Aeronaves , Anafilaxia/tratamiento farmacológico , Asma/inducido químicamente , Femenino , Humanos , Control de Mosquitos/métodos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA