Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nat Immunol ; 23(6): 927-939, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35624205

RESUMEN

Hypoxemia is a defining feature of acute respiratory distress syndrome (ARDS), an often-fatal complication of pulmonary or systemic inflammation, yet the resulting tissue hypoxia, and its impact on immune responses, is often neglected. In the present study, we have shown that ARDS patients were hypoxemic and monocytopenic within the first 48 h of ventilation. Monocytopenia was also observed in mouse models of hypoxic acute lung injury, in which hypoxemia drove the suppression of type I interferon signaling in the bone marrow. This impaired monopoiesis resulted in reduced accumulation of monocyte-derived macrophages and enhanced neutrophil-mediated inflammation in the lung. Administration of colony-stimulating factor 1 in mice with hypoxic lung injury rescued the monocytopenia, altered the phenotype of circulating monocytes, increased monocyte-derived macrophages in the lung and limited injury. Thus, tissue hypoxia altered the dynamics of the immune response to the detriment of the host and interventions to address the aberrant response offer new therapeutic strategies for ARDS.


Asunto(s)
Lesión Pulmonar , Síndrome de Dificultad Respiratoria , Animales , Humanos , Hipoxia/etiología , Inflamación/complicaciones , Pulmón , Lesión Pulmonar/complicaciones , Ratones
2.
Mol Cell ; 83(7): 1075-1092.e9, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36868228

RESUMEN

A multitude of histone chaperones are required to support histones from their biosynthesis until DNA deposition. They cooperate through the formation of histone co-chaperone complexes, but the crosstalk between nucleosome assembly pathways remains enigmatic. Using exploratory interactomics, we define the interplay between human histone H3-H4 chaperones in the histone chaperone network. We identify previously uncharacterized histone-dependent complexes and predict the structure of the ASF1 and SPT2 co-chaperone complex, expanding the role of ASF1 in histone dynamics. We show that DAXX provides a unique functionality to the histone chaperone network, recruiting histone methyltransferases to promote H3K9me3 catalysis on new histone H3.3-H4 prior to deposition onto DNA. Hereby, DAXX provides a molecular mechanism for de novo H3K9me3 deposition and heterochromatin assembly. Collectively, our findings provide a framework for understanding how cells orchestrate histone supply and employ targeted deposition of modified histones to underpin specialized chromatin states.


Asunto(s)
Chaperonas de Histonas , Histonas , Humanos , Histonas/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Nucleosomas/genética , Proteínas de Ciclo Celular/metabolismo , ADN , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo
3.
Mol Cell ; 82(3): 696-708.e4, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35090599

RESUMEN

We have used a combination of chemical genetics, chromatin proteomics, and imaging to map the earliest chromatin transactions during vertebrate cell entry into mitosis. Chicken DT40 CDK1as cells undergo synchronous mitotic entry within 15 min following release from a 1NM-PP1-induced arrest in late G2. In addition to changes in chromatin association with nuclear pores and the nuclear envelope, earliest prophase is dominated by changes in the association of ribonucleoproteins with chromatin, particularly in the nucleolus, where pre-rRNA processing factors leave chromatin significantly before RNA polymerase I. Nuclear envelope barrier function is lost early in prophase, and cytoplasmic proteins begin to accumulate on the chromatin. As a result, outer kinetochore assembly appears complete by nuclear envelope breakdown (NEBD). Most interphase chromatin proteins remain associated with chromatin until NEBD, after which their levels drop sharply. An interactive proteomic map of chromatin transactions during mitotic entry is available as a resource at https://mitoChEP.bio.ed.ac.uk.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Cromosomas , ADN/metabolismo , Linfoma de Células B/metabolismo , Proteínas Nucleares/metabolismo , Profase , Proteoma , Proteómica , Animales , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Línea Celular Tumoral , Pollos , Cromatina/genética , ADN/genética , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Linfoma de Células B/genética , Linfoma de Células B/patología , Proteínas Nucleares/genética , Unión Proteica , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Factores de Tiempo
5.
Mol Cell ; 81(12): 2533-2548.e9, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33857403

RESUMEN

From biosynthesis to assembly into nucleosomes, histones are handed through a cascade of histone chaperones, which shield histones from non-specific interactions. Whether mechanisms exist to safeguard the histone fold during histone chaperone handover events or to release trapped intermediates is unclear. Using structure-guided and functional proteomics, we identify and characterize a histone chaperone function of DNAJC9, a heat shock co-chaperone that promotes HSP70-mediated catalysis. We elucidate the structure of DNAJC9, in a histone H3-H4 co-chaperone complex with MCM2, revealing how this dual histone and heat shock co-chaperone binds histone substrates. We show that DNAJC9 recruits HSP70-type enzymes via its J domain to fold histone H3-H4 substrates: upstream in the histone supply chain, during replication- and transcription-coupled nucleosome assembly, and to clean up spurious interactions. With its dual functionality, DNAJC9 integrates ATP-resourced protein folding into the histone supply pathway to resolve aberrant intermediates throughout the dynamic lives of histones.


Asunto(s)
Proteínas del Choque Térmico HSP40/metabolismo , Chaperonas de Histonas/metabolismo , Línea Celular Tumoral , Cromatina , Ensamble y Desensamble de Cromatina , Replicación del ADN , Proteínas del Choque Térmico HSP40/fisiología , Proteínas HSP70 de Choque Térmico/metabolismo , Células HeLa , Chaperonas de Histonas/fisiología , Histonas/metabolismo , Humanos , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Nucleosomas , Unión Proteica , Proteómica/métodos
6.
EMBO J ; 43(7): 1351-1383, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38413836

RESUMEN

The cell cycle is ordered by a controlled network of kinases and phosphatases. To generate gametes via meiosis, two distinct and sequential chromosome segregation events occur without an intervening S phase. How canonical cell cycle controls are modified for meiosis is not well understood. Here, using highly synchronous budding yeast populations, we reveal how the global proteome and phosphoproteome change during the meiotic divisions. While protein abundance changes are limited to key cell cycle regulators, dynamic phosphorylation changes are pervasive. Our data indicate that two waves of cyclin-dependent kinase (Cdc28Cdk1) and Polo (Cdc5Polo) kinase activity drive successive meiotic divisions. These two distinct phases of phosphorylation are ensured by the meiosis-specific Spo13 protein, which rewires the phosphoproteome. Spo13 binds to Cdc5Polo to promote phosphorylation in meiosis I, particularly of substrates containing a variant of the canonical Cdc5Polo motif. Overall, our findings reveal that a master regulator of meiosis directs the activity of a kinase to change the phosphorylation landscape and elicit a developmental cascade.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Proteoma , Meiosis
7.
Mol Cell ; 80(3): 470-484.e8, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33053322

RESUMEN

Cellular responses to environmental stress are frequently mediated by RNA-binding proteins (RBPs). Here, we examined global RBP dynamics in Saccharomyces cerevisiae in response to glucose starvation and heat shock. Each stress induced rapid remodeling of the RNA-protein interactome without corresponding changes in RBP abundance. Consistent with general translation shutdown, ribosomal proteins contacting the mRNA showed decreased RNA association. Among translation components, RNA association was most reduced for initiation factors involved in 40S scanning (eukaryotic initiation factor 4A [eIF4A], eIF4B, and Ded1), indicating a common mechanism of translational repression. In unstressed cells, eIF4A, eIF4B, and Ded1 primarily targeted the 5' ends of mRNAs. Following glucose withdrawal, 5' binding was abolished within 30 s, explaining the rapid translation shutdown, but mRNAs remained stable. Heat shock induced progressive loss of 5' RNA binding by initiation factors over ∼16 min and provoked mRNA degradation, particularly for translation-related factors, mediated by Xrn1. Taken together, these results reveal mechanisms underlying translational control of gene expression during stress.


Asunto(s)
Factores de Iniciación de Péptidos/metabolismo , Biosíntesis de Proteínas/fisiología , Estrés Fisiológico/fisiología , Regiones no Traducidas 5' , ARN Helicasas DEAD-box/metabolismo , Factor 4A Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Glucosa/metabolismo , Respuesta al Choque Térmico/fisiología , Factores de Iniciación de Péptidos/fisiología , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Genes Dev ; 34(3-4): 226-238, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31919190

RESUMEN

Centromeres are maintained epigenetically by the presence of CENP-A, an evolutionarily conserved histone H3 variant, which directs kinetochore assembly and hence centromere function. To identify factors that promote assembly of CENP-A chromatin, we affinity-selected solubilized fission yeast CENP-ACnp1 chromatin. All subunits of the Ino80 complex were enriched, including the auxiliary subunit Hap2. Chromatin association of Hap2 is Ies4-dependent. In addition to a role in maintenance of CENP-ACnp1 chromatin integrity at endogenous centromeres, Hap2 is required for de novo assembly of CENP-ACnp1 chromatin on naïve centromere DNA and promotes H3 turnover on centromere regions and other loci prone to CENP-ACnp1 deposition. Prior to CENP-ACnp1 chromatin assembly, Hap2 facilitates transcription from centromere DNA. These analyses suggest that Hap2-Ino80 destabilizes H3 nucleosomes on centromere DNA through transcription-coupled histone H3 turnover, driving the replacement of resident H3 nucleosomes with CENP-ACnp1 nucleosomes. These inherent properties define centromere DNA by directing a program that mediates CENP-ACnp1 assembly on appropriate sequences.


Asunto(s)
Cromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Transcripción Genética/fisiología , Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , ADN de Hongos/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Factores de Transcripción/metabolismo
9.
PLoS Genet ; 20(6): e1011302, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38829899

RESUMEN

Cryptococcus neoformans is an opportunistic, human fungal pathogen which undergoes fascinating switches in cell cycle control and ploidy when it encounters stressful environments such as the human lung. Here we carry out a mechanistic analysis of the spindle checkpoint which regulates the metaphase to anaphase transition, focusing on Mps1 kinase and the downstream checkpoint components Mad1 and Mad2. We demonstrate that Cryptococcus mad1Δ or mad2Δ strains are unable to respond to microtubule perturbations, continuing to re-bud and divide, and die as a consequence. Fluorescent tagging of Chromosome 3, using a lacO array and mNeonGreen-lacI fusion protein, demonstrates that mad mutants are unable to maintain sister-chromatid cohesion in the absence of microtubule polymers. Thus, the classic checkpoint functions of the SAC are conserved in Cryptococcus. In interphase, GFP-Mad1 is enriched at the nuclear periphery, and it is recruited to unattached kinetochores in mitosis. Purification of GFP-Mad1 followed by mass spectrometric analysis of associated proteins show that it forms a complex with Mad2 and that it interacts with other checkpoint signalling components (Bub1) and effectors (Cdc20 and APC/C sub-units) in mitosis. We also demonstrate that overexpression of Mps1 kinase is sufficient to arrest Cryptococcus cells in mitosis, and show that this arrest is dependent on both Mad1 and Mad2. We find that a C-terminal fragment of Mad1 is an effective in vitro substrate for Mps1 kinase and map several Mad1 phosphorylation sites. Some sites are highly conserved within the C-terminal Mad1 structure and we demonstrate that mutation of threonine 667 (T667A) leads to loss of checkpoint signalling and abrogation of the GAL-MPS1 arrest. Thus Mps1-dependent phosphorylation of C-terminal Mad1 residues is a critical step in Cryptococcus spindle checkpoint signalling. We conclude that CnMps1 protein kinase, Mad1 and Mad2 proteins have all conserved their important, spindle checkpoint signalling roles helping ensure high fidelity chromosome segregation.


Asunto(s)
Proteínas de Ciclo Celular , Cryptococcus neoformans , Proteínas Mad2 , Huso Acromático , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Mad2/metabolismo , Proteínas Mad2/genética , Huso Acromático/metabolismo , Huso Acromático/genética , Transducción de Señal , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Puntos de Control de la Fase M del Ciclo Celular/genética , Mitosis/genética , Cinetocoros/metabolismo , Segregación Cromosómica/genética , Microtúbulos/metabolismo , Microtúbulos/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
10.
EMBO J ; 41(6): e108599, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35037284

RESUMEN

CDK4/6 inhibitors arrest the cell cycle in G1-phase. They are approved to treat breast cancer and are also undergoing clinical trials against a range of other tumour types. To facilitate these efforts, it is important to understand why a cytostatic arrest in G1 causes long-lasting effects on tumour growth. Here, we demonstrate that a prolonged G1 arrest following CDK4/6 inhibition downregulates replisome components and impairs origin licencing. Upon release from that arrest, many cells fail to complete DNA replication and exit the cell cycle in a p53-dependent manner. If cells fail to withdraw from the cell cycle following DNA replication problems, they enter mitosis and missegregate chromosomes causing excessive DNA damage, which further limits their proliferative potential. These effects are observed in a range of tumour types, including breast cancer, implying that genotoxic stress is a common outcome of CDK4/6 inhibition. This unanticipated ability of CDK4/6 inhibitors to induce DNA damage now provides a rationale to better predict responsive tumour types and effective combination therapies, as demonstrated by the fact that CDK4/6 inhibition induces sensitivity to chemotherapeutics that also cause replication stress.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Ciclo Celular , División Celular , Línea Celular Tumoral , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/genética , Femenino , Fase G1 , Humanos
11.
Nucleic Acids Res ; 52(4): e21, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38197237

RESUMEN

The RNA-interacting proteome is commonly characterized by UV-crosslinking followed by RNA purification, with protein recovery quantified using SILAC labeling followed by data-dependent acquisition (DDA) of proteomic data. However, the low efficiency of UV-crosslinking, combined with limited sensitivity of the DDA approach often restricts detection to relatively abundant proteins, necessitating multiple mass spec injections of fractionated peptides for each biological sample. Here we report an application of data-independent acquisition (DIA) with SILAC in a total RNA-associated protein purification (TRAPP) UV-crosslinking experiment. This gave 15% greater protein detection and lower inter-replicate variation relative to the same biological materials analyzed using DDA, while allowing single-shot analysis of the sample. As proof of concept, we determined the effects of arsenite treatment on the RNA-bound proteome of HEK293T cells. The DIA dataset yielded similar GO term enrichment for RNA-binding proteins involved in cellular stress responses to the DDA dataset while detecting extra proteins unseen by DDA. Overall, the DIA SILAC approach improved detection of proteins over conventional DDA SILAC for generating RNA-interactome datasets, at a lower cost due to reduced machine time. Analyses are described for TRAPP data, but the approach is suitable for proteomic analyses following essentially any RNA-binding protein enrichment technique.


Asunto(s)
Proteómica , Proteínas de Unión al ARN , Humanos , Células HEK293 , Espectrometría de Masas/métodos , Péptidos/análisis , Proteoma/metabolismo , Proteómica/métodos , Proteínas de Unión al ARN/análisis
12.
J Cell Sci ; 136(23)2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37970674

RESUMEN

Regulation by the small modifier SUMO is heavily dependent on spatial control of enzymes that mediate the attachment and removal of SUMO on substrate proteins. Here, we show that in the fission yeast Schizosaccharomyces pombe, delocalisation of the SUMO protease Ulp1 from the nuclear envelope results in centromeric defects that can be attributed to hyper-SUMOylation at the nuclear periphery. Unexpectedly, we find that although this localised hyper-SUMOylation impairs centromeric silencing, it can also enhance centromere clustering. Moreover, both effects are at least partially dependent on SUMOylation of the inner nuclear membrane protein Lem2. Lem2 has previously been implicated in diverse biological processes, including the promotion of both centromere clustering and silencing, but how these distinct activities are coordinated was unclear; our observations suggest a model whereby SUMOylation serves as a regulatory switch, modulating Lem2 interactions with competing partner proteins to balance its roles in alternative pathways. Our findings also reveal a previously unappreciated role for SUMOylation in promoting centromere clustering.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Sumoilación , Proteínas Nucleares/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Centrómero/genética , Centrómero/metabolismo , Proteínas de la Membrana/metabolismo , Análisis por Conglomerados
13.
PLoS Genet ; 18(6): e1009995, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35666772

RESUMEN

Global regulation of spindle-associated proteins is crucial in oocytes due to the absence of centrosomes and their very large cytoplasmic volume, but little is known about how this is achieved beyond involvement of the Ran-importin pathway. We previously uncovered a novel regulatory mechanism in Drosophila oocytes, in which the phospho-docking protein 14-3-3 suppresses microtubule binding of Kinesin-14/Ncd away from chromosomes. Here we report systematic identification of microtubule-associated proteins regulated by 14-3-3 from Drosophila oocytes. Proteins from ovary extract were co-sedimented with microtubules in the presence or absence of a 14-3-3 inhibitor. Through quantitative mass-spectrometry, we identified proteins or complexes whose ability to bind microtubules is suppressed by 14-3-3, including the chromosomal passenger complex (CPC), the centralspindlin complex and Kinesin-14/Ncd. We showed that 14-3-3 binds to the disordered region of Borealin, and this binding is regulated differentially by two phosphorylations on Borealin. Mutations at these two phospho-sites compromised normal Borealin localisation and centromere bi-orientation in oocytes, showing that phospho-regulation of 14-3-3 binding is important for Borealin localisation and function.


Asunto(s)
Cinesinas , Proteínas Asociadas a Microtúbulos , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Centrómero/metabolismo , Drosophila/genética , Femenino , Cinesinas/genética , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Oocitos/metabolismo , Huso Acromático/genética , Huso Acromático/metabolismo
14.
Nucleic Acids Res ; 49(11): 6456-6473, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34107032

RESUMEN

RNA-protein interactions are central to all gene expression processes and contribute to a variety of human diseases. Therapeutic approaches targeting RNA-protein interactions have shown promising effects on some diseases that are previously regarded as 'incurable'. Here, we developed a fluorescent on-bead screening platform, RNA Pull-Down COnfocal NAnoscanning (RP-CONA), to identify RNA-protein interaction modulators in eukaryotic cell extracts. Using RP-CONA, we identified small molecules that disrupt the interaction between HuR, an inhibitor of brain-enriched miR-7 biogenesis, and the conserved terminal loop of pri-miR-7-1. Importantly, miR-7's primary target is an mRNA of α-synuclein, which contributes to the aetiology of Parkinson's disease. Our method identified a natural product quercetin as a molecule able to upregulate cellular miR-7 levels and downregulate the expression of α-synuclein. This opens up new therapeutic avenues towards treatment of Parkinson's disease as well as provides a novel methodology to search for modulators of RNA-protein interaction.


Asunto(s)
Proteína 1 Similar a ELAV/antagonistas & inhibidores , MicroARNs/antagonistas & inhibidores , Quercetina/farmacología , alfa-Sinucleína/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Proteína 1 Similar a ELAV/metabolismo , Células HEK293 , Células HeLa , Humanos , MicroARNs/metabolismo , Microscopía Confocal , ARN Mensajero/metabolismo , alfa-Sinucleína/genética
15.
Proc Natl Acad Sci U S A ; 117(28): 16660-16666, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32601198

RESUMEN

Molecular mechanisms enabling the switching and maintenance of epigenetic states are not fully understood. Distinct histone modifications are often associated with ON/OFF epigenetic states, but how these states are stably maintained through DNA replication, yet in certain situations switch from one to another remains unclear. Here, we address this problem through identification of Arabidopsis INCURVATA11 (ICU11) as a Polycomb Repressive Complex 2 accessory protein. ICU11 robustly immunoprecipitated in vivo with PRC2 core components and the accessory proteins, EMBRYONIC FLOWER 1 (EMF1), LIKE HETEROCHROMATIN PROTEIN1 (LHP1), and TELOMERE_REPEAT_BINDING FACTORS (TRBs). ICU11 encodes a 2-oxoglutarate-dependent dioxygenase, an activity associated with histone demethylation in other organisms, and mutant plants show defects in multiple aspects of the Arabidopsis epigenome. To investigate its primary molecular function we identified the Arabidopsis FLOWERING LOCUS C (FLC) as a direct target and found icu11 disrupted the cold-induced, Polycomb-mediated silencing underlying vernalization. icu11 prevented reduction in H3K36me3 levels normally seen during the early cold phase, supporting a role for ICU11 in H3K36me3 demethylation. This was coincident with an attenuation of H3K27me3 at the internal nucleation site in FLC, and reduction in H3K27me3 levels across the body of the gene after plants were returned to the warm. Thus, ICU11 is required for the cold-induced epigenetic switching between the mutually exclusive chromatin states at FLC, from the active H3K36me3 state to the silenced H3K27me3 state. These data support the importance of physical coupling of histone modification activities to promote epigenetic switching between opposing chromatin states.


Asunto(s)
Arabidopsis/metabolismo , Epigénesis Genética , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/genética , Histonas/metabolismo , Metilación , Unión Proteica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
PLoS Genet ; 16(5): e1008681, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32463832

RESUMEN

A large fraction of plant genomes is composed of transposable elements (TE), which provide a potential source of novel genes through "domestication"-the process whereby the proteins encoded by TE diverge in sequence, lose their ability to catalyse transposition and instead acquire novel functions for their hosts. In Arabidopsis, ANTAGONIST OF LIKE HETEROCHROMATIN PROTEIN 1 (ALP1) arose by domestication of the nuclease component of Harbinger class TE and acquired a new function as a component of POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), a histone H3K27me3 methyltransferase involved in regulation of host genes and in some cases TE. It was not clear how ALP1 associated with PRC2, nor what the functional consequence was. Here, we identify ALP2 genetically as a suppressor of Polycomb-group (PcG) mutant phenotypes and show that it arose from the second, DNA binding component of Harbinger transposases. Molecular analysis of PcG compromised backgrounds reveals that ALP genes oppose silencing and H3K27me3 deposition at key PcG target genes. Proteomic analysis reveals that ALP1 and ALP2 are components of a variant PRC2 complex that contains the four core components but lacks plant-specific accessory components such as the H3K27me3 reader LIKE HETEROCHROMATION PROTEIN 1 (LHP1). We show that the N-terminus of ALP2 interacts directly with ALP1, whereas the C-terminus of ALP2 interacts with MULTICOPY SUPPRESSOR OF IRA1 (MSI1), a core component of PRC2. Proteomic analysis reveals that in alp2 mutant backgrounds ALP1 protein no longer associates with PRC2, consistent with a role for ALP2 in recruitment of ALP1. We suggest that the propensity of Harbinger TE to insert in gene-rich regions of the genome, together with the modular two component nature of their transposases, has predisposed them for domestication and incorporation into chromatin modifying complexes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Proteínas del Grupo Polycomb/metabolismo , Proteínas Represoras/metabolismo , Transposasas/fisiología , Animales , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Dominio Catalítico/genética , Células Cultivadas , Domesticación , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Complejo Represivo Polycomb 2 , Proteínas del Grupo Polycomb/genética , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Células Sf9 , Spodoptera , Transposasas/genética
17.
J Cell Sci ; 133(16)2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32665320

RESUMEN

During cell division, misaligned chromosomes are captured and aligned by motors before their segregation. The CENP-E motor is recruited to polar unattached kinetochores to facilitate chromosome alignment. The spindle checkpoint protein BubR1 (also known as BUB1B) has been reported as a CENP-E interacting partner, but the extent to which BubR1 contributes to CENP-E localization at kinetochores has remained controversial. Here we define the molecular determinants that specify the interaction between BubR1 and CENP-E. The basic C-terminal helix of BubR1 is necessary but not sufficient for CENP-E interaction, and a minimal key acidic patch on the kinetochore-targeting domain of CENP-E is also essential. We then demonstrate that BubR1 is required for the recruitment of CENP-E to kinetochores to facilitate chromosome alignment. This BubR1-CENP-E axis is critical for alignment of chromosomes that have failed to congress through other pathways and recapitulates the major known function of CENP-E. Overall, our studies define the molecular basis and the function for CENP-E recruitment to BubR1 at kinetochores during mammalian mitosis.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas Cromosómicas no Histona , Cinetocoros , Animales , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica , Células HeLa , Humanos , Microtúbulos , Mitosis/genética , Proteínas Serina-Treonina Quinasas/genética , Huso Acromático
18.
Chromosoma ; 128(3): 331-354, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31037469

RESUMEN

The monopolin complex is a multifunctional molecular crosslinker, which in S. pombe binds and organises mitotic kinetochores to prevent aberrant kinetochore-microtubule interactions. In the budding yeast S. cerevisiae, whose kinetochores bind a single microtubule, the monopolin complex crosslinks and mono-orients sister kinetochores in meiosis I, enabling the biorientation and segregation of homologs. Here, we show that both the monopolin complex subunit Csm1 and its binding site on the kinetochore protein Dsn1 are broadly distributed throughout eukaryotes, suggesting a conserved role in kinetochore organisation and function. We find that budding yeast Csm1 binds two conserved motifs in Dsn1, one (termed Box 1) representing the ancestral, widely conserved monopolin binding motif and a second (termed Box 2-3) with a likely role in enforcing specificity of sister kinetochore crosslinking. We find that Box 1 and Box 2-3 bind the same conserved hydrophobic cavity on Csm1, suggesting competition or handoff between these motifs. Using structure-based mutants, we also find that both Box 1 and Box 2-3 are critical for monopolin function in meiosis. We identify two conserved serine residues in Box 2-3 that are phosphorylated in meiosis and whose mutation to aspartate stabilises Csm1-Dsn1 binding, suggesting that regulated phosphorylation of these residues may play a role in sister kinetochore crosslinking specificity. Overall, our results reveal the monopolin complex as a broadly conserved kinetochore organiser in eukaryotes, which budding yeast have co-opted to mediate sister kinetochore crosslinking through the addition of a second, regulatable monopolin binding interface.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cinetocoros/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Eucariontes/genética , Eucariontes/metabolismo , Evolución Molecular , Microtúbulos/metabolismo , Proteínas Nucleares/genética , Unión Proteica , Conformación Proteica , Dominios Proteicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
19.
Mol Syst Biol ; 15(4): e8689, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30962360

RESUMEN

The RNA binding proteome (RBPome) was previously investigated using UV crosslinking and purification of poly(A)-associated proteins. However, most cellular transcripts are not polyadenylated. We therefore developed total RNA-associated protein purification (TRAPP) based on 254 nm UV crosslinking and purification of all RNA-protein complexes using silica beads. In a variant approach (PAR-TRAPP), RNAs were labelled with 4-thiouracil prior to 350 nm crosslinking. PAR-TRAPP in yeast identified hundreds of RNA binding proteins, strongly enriched for canonical RBPs. In comparison, TRAPP identified many more proteins not expected to bind RNA, and this correlated strongly with protein abundance. Comparing TRAPP in yeast and E. coli showed apparent conservation of RNA binding by metabolic enzymes. Illustrating the value of total RBP purification, we discovered that the glycolytic enzyme enolase interacts with tRNAs. Exploiting PAR-TRAPP to determine the effects of brief exposure to weak acid stress revealed specific changes in late 60S ribosome biogenesis. Furthermore, we identified the precise sites of crosslinking for hundreds of RNA-peptide conjugates, using iTRAPP, providing insights into potential regulation. We conclude that TRAPP is a widely applicable tool for RBPome characterization.


Asunto(s)
Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Ribonucleoproteínas/aislamiento & purificación , Tiouracilo/análogos & derivados , Reactivos de Enlaces Cruzados/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , ARN/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tiouracilo/química
20.
Langmuir ; 36(16): 4261-4271, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32243167

RESUMEN

The self-assembly and the dynamics of an H-shaped copolymer composed of a polyethylene midblock and four poly(ethylene oxide) arms (PE-b-4PEO) are investigated in the bulk and under severe confinement into nanometer-spaced LAPONITE clay particles by means of small- and wide-angle X-ray diffraction (SAXS, WAXS), differential scanning calorimetry (DSC), polarizing optical microscopy (POM), rheology, and dielectric spectroscopy (DS). Because of the H-shaped architecture, the PE midblock is topologically frustrated and thus unable to crystallize. The superstructure formation in the bulk is dictated solely by the PEO arms as inferred by the crystallization/melting temperature relative to the PEO homopolymer. Confinement produced remarkable changes in the interlayer distance and PEO crystallinity but left the local segmental dynamics unaltered. To reconcile all structural, thermodynamic, and dynamic effects, a novel morphological picture is proposed with interest in emulsions. Key parameters that stabilize the final morphology are the severe chain confinement with the associated entropy loss and the presence of interactions (hydrophobic/hydrophilic) between the LAPONITE and the PEO/PE blocks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA