Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Breast Cancer Res ; 23(1): 78, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344445

RESUMEN

BACKGROUND: The ovarian hormones estrogen and progesterone (EP) are implicated in breast cancer causation. A specific consequence of progesterone exposure is the expansion of the mammary stem cell (MSC) and luminal progenitor (LP) compartments. We hypothesized that this effect, and its molecular facilitators, could be abrogated by progesterone receptor (PR) antagonists administered in a mouse model. METHODS: Ovariectomized FVB mice were randomized to 14 days of treatment: sham, EP, EP + telapristone (EP + TPA), EP + mifepristone (EP + MFP). Mice were then sacrificed, mammary glands harvested, and mammary epithelial cell lineages separated by flow cytometry using cell surface markers. RNA from each lineage was sequenced and differential gene expression was analyzed using DESeq. Quantitative PCR was performed to confirm the candidate genes discovered in RNA seq. ANOVA with Tukey post hoc analysis was performed to compare relative expression. Alternative splicing events were examined using the rMATs multivariate analysis tool. RESULTS: Significant increases in the MSC and luminal mature (LM) cell fractions were observed following EP treatment compared to control (p < 0.01 and p < 0.05, respectively), whereas the LP fraction was significantly reduced (p < 0.05). These hormone-induced effects were reversed upon exposure to TPA and MFP (p < 0.01 for both). Gene Ontology analysis of RNA-sequencing data showed EP-induced enrichment of several pathways, with the largest effect on Wnt signaling in MSC, significantly repressed by PR inhibitors. In LP cells, significant induction of Wnt4 and Rankl, and Wnt pathway intermediates Lrp2 and Axin2 (confirmed by qRTPCR) were reversed by TPA and MFP (p < 0.0001). Downstream signaling intermediates of these pathways (Lrp5, Mmp7) showed similar effects. Expression of markers of epithelial-mesenchymal transition (Cdh1, Cdh3) and the induction of EMT regulators (Zeb1, Zeb2, Gli3, Snai1, and Ptch2) were significantly responsive to progesterone. EP treatment was associated with large-scale alternative splicing events, with an enrichment of motifs associated with Srsf, Esrp, and Rbfox families. Exon skipping was observed in Cdh1, Enah, and Brd4. CONCLUSIONS: PR inhibition reverses known tumorigenic pathways in the mammary gland and suppresses a previously unknown effect of progesterone on RNA splicing events. In total, our results strengthen the case for reconsideration of PR inhibitors for breast cancer prevention.


Asunto(s)
Glándulas Mamarias Animales/metabolismo , Progesterona/metabolismo , Receptores de Progesterona/antagonistas & inhibidores , Células Madre/citología , Empalme Alternativo/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Estrógenos/metabolismo , Estrógenos/farmacología , Femenino , Antagonistas de Hormonas/farmacología , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/efectos de los fármacos , Ratones , Progesterona/farmacología , Factores de Empalme de ARN/genética , Proteínas de Unión al ARN/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Células Madre/efectos de los fármacos , Células Madre/metabolismo
2.
Int J Mol Sci ; 22(18)2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34576327

RESUMEN

There exists a set of factors termed oncofetal proteins that play key roles in ontogeny before they decline or disappear as the organism's tissues achieve homeostasis, only to then re-emerge in cancer. Although the unique therapeutic potential presented by such factors has been recognized for more than a century, their clinical utility has yet to be fully realized1. This review highlights the small signaling protein CRIPTO encoded by the tumor derived growth factor 1 (TDGF1/Tdgf1) gene, an oft cited oncofetal protein whose presence in the cancer literature as a tumor promoter, diagnostic marker and viable therapeutic target continues to grow. We touch lightly on features well established and well-reviewed since its discovery more than 30 years ago, including CRIPTO's early developmental roles and modulation of SMAD2/3 activation by a selected set of transforming growth factor ß (TGF-ß) family ligands. We predominantly focus instead on more recent and less well understood additions to the CRIPTO signaling repertoire, on its potential upstream regulators and on new conceptual ground for understanding its mode of action in the multicellular and often stressful contexts of neoplastic transformation and progression. We ask whence it re-emerges in cancer and where it 'hides' between the time of its fetal activity and its oncogenic reemergence. In this regard, we examine CRIPTO's restriction to rare cells in the adult, its potential for paracrine crosstalk, and its emerging role in inflammation and tissue regeneration-roles it may reprise in tumorigenesis, acting on subsets of tumor cells to foster cancer initiation and progression. We also consider critical gaps in knowledge and resources that stand between the recent, exciting momentum in the CRIPTO field and highly actionable CRIPTO manipulation for cancer therapy and beyond.


Asunto(s)
Células Madre/fisiología , Animales , Humanos , Transducción de Señal/genética , Transducción de Señal/fisiología , Células Madre/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
3.
Breast Cancer Res ; 22(1): 125, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33187540

RESUMEN

BACKGROUND: CRIPTO is a multi-functional signaling protein that promotes stemness and oncogenesis. We previously developed a CRIPTO antagonist, ALK4L75A-Fc, and showed that it causes loss of the stem cell phenotype in normal mammary epithelia suggesting it may similarly inhibit CRIPTO-dependent plasticity in breast cancer cells. METHODS: We focused on two triple negative breast cancer cell lines (MDA-MB-231 and MDA-MB-468) to measure the effects of ALK4L75A-Fc on cancer cell behavior under nutrient deprivation and endoplasmic reticulum stress. We characterized the proliferation and migration of these cells in vitro using time-lapse microscopy and characterized stress-dependent changes in the levels and distribution of CRIPTO signaling mediators and cancer stem cell markers. We also assessed the effects of ALK4L75A-Fc on proliferation, EMT, and stem cell markers in vivo as well as on tumor growth and metastasis using inducible lentiviral delivery or systemic administration of purified ALK4L75A-Fc, which represents a candidate therapeutic approach. RESULTS: ALK4L75A-Fc inhibited adaptive responses of breast cancer cells under conditions of nutrient and ER stress and reduced their proliferation, migration, clonogenicity, and expression of EMT and cancer stem cell markers. ALK4L75A-Fc also inhibited proliferation of human breast cancer cells in stressed tumor microenvironments in xenografts and reduced both primary tumor size and metastatic burden. CONCLUSIONS: Cancer cell adaptation to stresses such as nutrient deprivation, hypoxia, and chemotherapy can critically contribute to dormancy, metastasis, therapy resistance, and recurrence. Identifying mechanisms that govern cellular adaptation, plasticity, and the emergence of stem-like cancer cells may be key to effective anticancer therapies. Results presented here indicate that targeting CRIPTO with ALK4L75A-Fc may have potential as such a therapy since it inhibits breast cancer cell adaptation to microenvironmental challenges and associated stem-like and EMT phenotypes.


Asunto(s)
Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas de Neoplasias/antagonistas & inhibidores , Células Madre Neoplásicas/efectos de los fármacos , Proteínas Recombinantes de Fusión/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Receptores de Activinas Tipo I/genética , Animales , Línea Celular Tumoral , Plasticidad de la Célula/efectos de los fármacos , Estrés del Retículo Endoplásmico , Femenino , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Péptidos y Proteínas de Señalización Intercelular , Ratones , Recurrencia Local de Neoplasia , Células Madre Neoplásicas/patología , Mutación Puntual , Unión Proteica/genética , Dominios Proteicos/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/uso terapéutico , Neoplasias de la Mama Triple Negativas/patología , Hipoxia Tumoral , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Semin Cancer Biol ; 29: 51-8, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25153355

RESUMEN

Cripto-1 (CR-1)/Teratocarcinoma-derived growth factor1 (TDGF-1) is a cell surface glycosylphosphatidylinositol (GPI)-linked glycoprotein that can function either in cis (autocrine) or in trans (paracrine). The cell membrane cis form is found in lipid rafts and endosomes while the trans acting form lacking the GPI anchor is soluble. As a member of the epidermal growth factor (EGF)/Cripto-1-FRL-1-Cryptic (CFC) family, CR-1 functions as an obligatory co-receptor for the transforming growth factor-ß (TGF-ß) family members, Nodal and growth and differentiation factors 1 and 3 (GDF1/3) by activating Alk4/Alk7 signaling pathways that involve Smads 2, 3 and 4. In addition, CR-1 can activate non-Smad-dependent signaling elements such as PI3K, Akt and MAPK. Both of these pathways depend upon the 78kDa glucose regulated protein (GRP78). Finally, CR-1 can facilitate signaling through the canonical Wnt/ß-catenin and Notch/Cbf-1 pathways by functioning as a chaperone protein for LRP5/6 and Notch, respectively. CR-1 is essential for early embryonic development and maintains embryonic stem cell pluripotentiality. CR-1 performs an essential role in the etiology and progression of several types of human tumors where it is expressed in a population of cancer stem cells (CSCs) and facilitates epithelial-mesenchymal transition (EMT). In this context, CR-1 can significantly enhance tumor cell migration, invasion and angiogenesis. Collectively, these facts suggest that CR-1 may be an attractive target in the diagnosis, prognosis and therapy of several types of human cancer.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Proteínas Ligadas a GPI/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Invasividad Neoplásica/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Neovascularización Patológica/genética , Receptores de Activinas Tipo I/metabolismo , Membrana Celular/metabolismo , Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas de la Membrana/genética , Neoplasias/patología , Células Madre Neoplásicas/citología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Notch/metabolismo , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Proteína Smad4/metabolismo , Proteínas de la Superfamilia TGF-beta/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/metabolismo
5.
Breast Cancer Res Treat ; 149(2): 425-37, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25575446

RESUMEN

Mammary gland morphology and physiology are supported by an underlying cellular differentiation hierarchy. Molecular features associated with particular cell types along this hierarchy may contribute to the biological and clinical heterogeneity observed in human breast carcinomas. Investigating the normal cellular developmental phenotypes in breast tumors may provide new prognostic paradigms, identify new targetable pathways, and explain breast cancer subtype etiology. We used transcriptomic profiles coming from fluorescence-activated cell sorted (FACS) normal mammary epithelial cell types from several independent human and murine studies. Using a meta-analysis approach, we derived consensus gene signatures for both species and used these to relate tumors to normal mammary epithelial cell phenotypes. We then compiled a dataset of breast cancer patients treated with neoadjuvant anthracycline and taxane chemotherapy regimens to determine if normal cellular traits predict the likelihood of a pathological complete response (pCR) in a multivariate logistic regression analysis with clinical markers and genomic features such as cell proliferation. Most human and murine tumor subtypes shared some, but not all, features with a specific FACS-purified normal cell type; thus for most tumors a potential distinct cell type of 'origin' could be assigned. We found that both human luminal progenitor and mouse fetal mammary stem cell features predicted pCR sensitivity across all breast cancer patients even after controlling for intrinsic subtype, proliferation, and clinical variables. This work identifies new clinically relevant gene signatures and highlights the value of a developmental biology perspective for uncovering relationships between tumor subtypes and their potential normal cellular counterparts.


Asunto(s)
Neoplasias de la Mama/genética , Células Madre/metabolismo , Transcriptoma , Adulto , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores , Biopsia , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Análisis por Conglomerados , Conjuntos de Datos como Asunto , Femenino , Perfilación de la Expresión Génica , Humanos , Ratones , Terapia Neoadyuvante , Pronóstico , Resultado del Tratamiento
6.
J Mammary Gland Biol Neoplasia ; 18(2): 209-19, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23624881

RESUMEN

The mammary gland undergoes dynamic changes throughout life. In the mouse, these begin with initial morphogenesis of the gland in the mid-gestation embryo followed by hormonally regulated changes during puberty and later in adulthood. The adult mammary gland contains a hierarchy of cell types with varying potentials for self-maintenance and differentiation. These include cells able to produce complete, functional mammary glands in vivo and that contain daughter cells with the same remarkable regenerative potential, as well as cells with more limited clonogenic activity in vitro. Here we review how applying in vitro and in vivo methods for quantifying these cells in adult mammary tissue to fetal mammary cells has enabled the first cells fulfilling the functional criteria of transplantable, isolated mammary stem cells to be identified a few days before birth. Thereafter, the number of these cells increases rapidly. Populations containing these fetal stem cells display growth and gene expression programs that differ from their adult counterparts but share signatures characteristic of certain types of breast cancer. Such observations reinforce growing evidence of important differences between tissue-specific fetal and adult cells with stem cell properties and emphasize the merits of investigating their molecular basis.


Asunto(s)
Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Humanas/citología , Glándulas Mamarias Humanas/crecimiento & desarrollo , Células Madre/citología , Animales , Femenino , Humanos
7.
bioRxiv ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38496478

RESUMEN

Expression of CRIPTO, a factor involved in embryonic stem cells, fetal development, and wound healing, is tied to poor prognosis in multiple cancers. Prior studies in triple negative breast cancer (TNBC) models showed CRIPTO blockade inhibits tumor growth and dissemination. Here, we uncover a previously unidentified role for CRIPTO in orchestrating tumor-derived extracellular vesicle (TEV) uptake and fibroblast activation through discrete mechanisms. We found a novel mechanism by which CRIPTO drives aggressive TNBC phenotypes, involving CRIPTO-laden TEVs that program stromal fibroblasts, toward cancer associated fibroblast cell states, which in turn prompt tumor cell invasion. CRIPTO-bearing TEVs exhibited markedly elevated uptake in target fibroblasts and activated SMAD2/3 through NODAL-independent and - dependent mechanisms, respectively. Engineered expression of CRIPTO on EVs enhanced the delivery of bioactive molecules. In vivo , CRIPTO levels dictated TEV uptake in mouse lungs, a site of EV-regulated premetastatic niches important for breast cancer dissemination. These discoveries reveal a novel role for CRIPTO in coordinating heterotypic cellular crosstalk which offers novel insights into breast cancer progression, delivery of therapeutic molecules, and new, potentially targetable mechanisms of heterotypic cellular communication between tumor cells and the TME.

8.
bioRxiv ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38562809

RESUMEN

Breast cancers are categorized into subtypes with distinctive therapeutic vulnerabilities and prognoses based on their expression of clinically targetable receptors and gene expression patterns mimicking different cell types of the normal gland. Here, we tested the role of Mcam in breast cancer cell state control and tumorigenicity in a luminal progenitor-like murine tumor cell line (Py230) that exhibits lineage and tumor subtype plasticity. Mcam knockdown Py230 cells show augmented Stat3 and Pi3K/Akt activation associated with a lineage state switch away from a hormone-sensing/luminal progenitor state toward alveolar and basal cell related phenotypes that were refractory to growth inhibition by the anti-estrogen therapeutic, tamoxifen. Inhibition of Stat3, or the upstream activator Ck2, reversed these cell state changes. Mcam binds Ck2 and acts as a regulator of Ck2 substrate utilization across multiple mammary tumor cell lines. In Py230 cells this activity manifests as increased mesenchymal morphology, migration, and Src/Fak/Mapk/Paxillin adhesion complex signaling in vitro, in contrast to Mcam's reported roles in promoting mesenchymal phenotypes. In vivo, Mcam knockdown reduced tumor growth and take rate and inhibited cell state transition to Sox10+/neural crest like cells previously been associated with tumor aggressiveness. This contrasts with human luminal breast cancers where MCAM copy number loss is highly coupled to Cyclin D amplification, increased proliferation, and the more aggressive Luminal B subtype. Together these data indicate a critical role for Mcam and its regulation of Ck2 in control of breast cancer cell state plasticity with implications for progression, evasion of targeted therapies and combination therapy design.

9.
Proc Natl Acad Sci U S A ; 107(52): 22745-50, 2010 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-21149740

RESUMEN

Breast cancer comprises a heterogeneous set of diseases distinguishable from one another by pathologic presentation and molecular signatures. However, each breast cancer subtype is also heterogeneous. Some of the heterogeneity may be attributable to genetic instability, but recent data emphasize that developmental plasticity may also contribute. The p53 tumor suppressor could constitute a nodal control point underlying both sources of heterogeneity because it is frequently inactivated during malignant progression and has recently been shown to function as a potent barrier preventing fully differentiated cells from reverting to pluripotent stem cells after expression of appropriate oncogenes. Using archival microarray datasets, we tested the hypothesis that a p53 mutation could allow cells within a tumor to acquire a stem cell-like state by looking for coordinate expression of stem cell identity genes. We show that breast and lung cancers with p53 mutations do exhibit stem cell-like transcriptional patterns. Such tumors were also depleted for differentiation genes regulated by the polycomb repressor complex 2. These data are consistent with a model in which loss of p53 function enables acquisition of stem cell properties, which are positively selected during tumor progression.


Asunto(s)
Neoplasias de la Mama/genética , Perfilación de la Expresión Génica , Mutación , Células Madre/metabolismo , Proteína p53 Supresora de Tumor/genética , Diferenciación Celular/genética , Células Madre Embrionarias/metabolismo , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Neoplasias Pulmonares/genética , Células Madre Neoplásicas/metabolismo , Proteínas del Grupo Polycomb , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
10.
bioRxiv ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38076925

RESUMEN

Stem-like T cell populations can selectively promote autoimmunity, but the activities that sustain these populations are incompletely understood. Here, we show that T cell-intrinsic loss of the transcription cofactor OCA-B protects mice from experimental autoimmune encephalomyelitis (EAE) while preserving responses to infection. In EAE models driven by antigen re-encounter, OCA-B deletion eliminates CNS infiltration, proinflammatory cytokine production and clinical disease. OCA-B-expressing CD4 + T cells within the CNS of mice with EAE display a memory phenotype and preferentially confer disease. In a relapsing-remitting EAE model, OCA-B T cell-deficiency specifically protects mice from relapse. During remission, OCA-B promotes the expression of Tcf7 , Slamf6 , and Sell in proliferating T cell populations. At relapse, OCA-B loss results in both the accumulation of an immunomodulatory CD4 + T cell population expressing Ccr9 and Bach2 , and the loss of effector gene expression from Th17 cells. These results identify OCA-B as a driver of pathogenic stem-like T cells.

11.
Dev Cell ; 57(15): 1866-1882.e10, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35835117

RESUMEN

Changes in cellular identity (also known as histologic transformation or lineage plasticity) can drive malignant progression and resistance to therapy in many cancers, including lung adenocarcinoma (LUAD). The lineage-specifying transcription factors FoxA1 and FoxA2 (FoxA1/2) control identity in NKX2-1/TTF1-negative LUAD. However, their role in NKX2-1-positive LUAD has not been systematically investigated. We find that Foxa1/2 knockout severely impairs tumorigenesis in KRAS-driven genetically engineered mouse models and human cell lines. Loss of FoxA1/2 leads to the collapse of a dual-identity state, marked by co-expression of pulmonary and gastrointestinal transcriptional programs, which has been implicated in LUAD progression. Mechanistically, FoxA1/2 loss leads to aberrant NKX2-1 activity and genomic localization, which in turn actively inhibits tumorigenesis and drives alternative cellular identity programs that are associated with non-proliferative states. This work demonstrates that FoxA1/2 expression is a lineage-specific vulnerability in NKX2-1-positive LUAD and identifies mechanisms of response and resistance to targeting FoxA1/2 in this disease.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma del Pulmón/genética , Animales , Transformación Celular Neoplásica , Factor Nuclear 3-alfa del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/genética , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , Factor Nuclear Tiroideo 1
12.
Commun Biol ; 5(1): 794, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941353

RESUMEN

Quantitative phase imaging (QPI) measures the growth rate of individual cells by quantifying changes in mass versus time. Here, we use the breast cancer cell lines MCF-7, BT-474, and MDA-MB-231 to validate QPI as a multiparametric approach for determining response to single-agent therapies. Our method allows for rapid determination of drug sensitivity, cytotoxicity, heterogeneity, and time of response for up to 100,000 individual cells or small clusters in a single experiment. We find that QPI EC50 values are concordant with CellTiter-Glo (CTG), a gold standard metabolic endpoint assay. In addition, we apply multiparametric QPI to characterize cytostatic/cytotoxic and rapid/slow responses and track the emergence of resistant subpopulations. Thus, QPI reveals dynamic changes in response heterogeneity in addition to average population responses, a key advantage over endpoint viability or metabolic assays. Overall, multiparametric QPI reveals a rich picture of cell growth by capturing the dynamics of single-cell responses to candidate therapies.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Proliferación Celular , Evaluación Preclínica de Medicamentos , Detección Precoz del Cáncer , Femenino , Humanos
13.
Elife ; 102021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33821796

RESUMEN

Cancer cells undergo lineage switching during natural progression and in response to therapy. NKX2-1 loss in human and murine lung adenocarcinoma leads to invasive mucinous adenocarcinoma (IMA), a lung cancer subtype that exhibits gastric differentiation and harbors a distinct spectrum of driver oncogenes. In murine BRAFV600E-driven lung adenocarcinoma, NKX2-1 is required for early tumorigenesis, but dispensable for established tumor growth. NKX2-1-deficient, BRAFV600E-driven tumors resemble human IMA and exhibit a distinct response to BRAF/MEK inhibitors. Whereas BRAF/MEK inhibitors drive NKX2-1-positive tumor cells into quiescence, NKX2-1-negative cells fail to exit the cell cycle after the same therapy. BRAF/MEK inhibitors induce cell identity switching in NKX2-1-negative lung tumors within the gastric lineage, which is driven in part by WNT signaling and FoxA1/2. These data elucidate a complex, reciprocal relationship between lineage specifiers and oncogenic signaling pathways in the regulation of lung adenocarcinoma identity that is likely to impact lineage-specific therapeutic strategies.


When cells become cancerous they grow uncontrollably and spread into surrounding healthy tissue. As the cancer progresses different genes are switched on and off which can cause tumor cells to change their identity and transition into other types of cell. How closely tumor cells resemble the healthy tissue they came from can influence how well the cancer responds to treatment. Many lung cancers have an identity similar to normal lung cells. However, some turn off a gene that codes for a protein called NKX2-1, which leads to a type of cancer called invasive mucinous adenocarcinoma (or IMA for short). Cells from this type of cancer develop an identity similar to mucous cells that line the surface of the stomach. But it was unclear how IMA tumor cells that developed from a mutation in the BRAF gene are affected by this loss in NKX2-1, and how transitioning to a different cell type impacts their response to treatment. To investigate this, Zewdu et al. studied lung cells from patients with IMA tumors driven by a mutation in BRAF and cells from mice that have been genetically engineered to have a similar form of cancer. This revealed that the NKX2-1 protein is needed to initiate the formation of cancer cells but is not required for the growth of already established BRAF-driven tumors. Further experiments showed that removing the gene for NKX2-1 made these cancer cells less responsive to drugs known as BRAF/MEK inhibitors that are commonly used to treat cancer. These drugs caused the IMA cancer cells to change their identity and become another type of stomach cell. This identity change was found to depend on two signaling pathways which cells use to communicate. This study provides some explanation of how IMA lung cancers that lack the gene for NKX2-1 resist treatment with BRAF/MEK inhibitors. It also shows new relationships between key genes in these cancers and systems for cell communication. These findings could lead to better therapies for lung cancer, particularly for patients whose tumor cells are deficient in NKX2-1 and therefore require specialized treatment.


Asunto(s)
Adenocarcinoma del Pulmón/tratamiento farmacológico , Antineoplásicos/farmacología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Factor Nuclear Tiroideo 1/metabolismo , Proteínas Wnt/metabolismo , Adenocarcinoma del Pulmón/enzimología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Animales , Animales Modificados Genéticamente , Línea Celular Tumoral , Linaje de la Célula , Retroalimentación Fisiológica , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Terapia Molecular Dirigida , Mutación , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Factor Nuclear Tiroideo 1/genética , Células Tumorales Cultivadas , Vía de Señalización Wnt
14.
Mol Cell Biol ; 27(17): 6229-42, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17576813

RESUMEN

Hypoxia and nutrient deprivation are environmental stresses governing the survival and adaptation of tumor cells in vivo. We have identified a novel role for the Rb tumor suppressor in protecting against nonapoptotic cell death in the developing mouse fetal liver, in primary mouse embryonic fibroblasts, and in tumor cell lines. Loss of pRb resulted in derepression of BNip3, a hypoxia-inducible member of the Bcl-2 superfamily of cell death regulators. We identified BNIP3 as a direct target of pRB/E2F-mediated transcriptional repression and showed that pRB attenuates the induction of BNIP3 by hypoxia-inducible factor to prevent autophagic cell death. BNIP3 was essential for hypoxia-induced autophagy, and its ability to promote autophagosome formation was enhanced under conditions of nutrient deprivation. Knockdown of BNIP3 reduced cell death, and remaining deaths were necrotic in nature. These studies identify BNIP3 as a key regulator of hypoxia-induced autophagy and suggest a novel role for the RB tumor suppressor in preventing nonapoptotic cell death by limiting the extent of BNIP3 induction in cells.


Asunto(s)
Autofagia/fisiología , Factores de Transcripción E2F/metabolismo , Hipoxia , Proteínas de la Membrana , Proteínas Mitocondriales , Proteínas Proto-Oncogénicas , Proteína de Retinoblastoma/metabolismo , Animales , Secuencia de Bases , Muerte Celular/fisiología , Células Cultivadas/metabolismo , Células Cultivadas/ultraestructura , Deferoxamina/metabolismo , Factores de Transcripción E2F/genética , Regulación de la Expresión Génica , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteína de Retinoblastoma/genética , Alineación de Secuencia , Sideróforos/metabolismo
15.
Cancer Cell ; 38(1): 60-78.e12, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32473656

RESUMEN

Small cell lung cancer (SCLC) is a neuroendocrine tumor treated clinically as a single disease with poor outcomes. Distinct SCLC molecular subtypes have been defined based on expression of ASCL1, NEUROD1, POU2F3, or YAP1. Here, we use mouse and human models with a time-series single-cell transcriptome analysis to reveal that MYC drives dynamic evolution of SCLC subtypes. In neuroendocrine cells, MYC activates Notch to dedifferentiate tumor cells, promoting a temporal shift in SCLC from ASCL1+ to NEUROD1+ to YAP1+ states. MYC alternatively promotes POU2F3+ tumors from a distinct cell type. Human SCLC exhibits intratumoral subtype heterogeneity, suggesting that this dynamic evolution occurs in patient tumors. These findings suggest that genetics, cell of origin, and tumor cell plasticity determine SCLC subtype.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Tumores Neuroendocrinos/genética , Proteínas Proto-Oncogénicas c-myc/genética , Carcinoma Pulmonar de Células Pequeñas/genética , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica/métodos , Heterogeneidad Genética , Humanos , Neoplasias Pulmonares/metabolismo , Ratones Noqueados , Tumores Neuroendocrinos/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/genética , Análisis de la Célula Individual , Carcinoma Pulmonar de Células Pequeñas/metabolismo
16.
Clin Cancer Res ; 26(18): 4970-4982, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32586940

RESUMEN

PURPOSE: Clear cell renal cell carcinoma (ccRCC) is frequently associated with inactivation of the von Hippel-Lindau tumor suppressor, resulting in activation of HIF-1α and HIF-2α. The current paradigm, established using mechanistic cell-based studies, supports a tumor promoting role for HIF-2α, and a tumor suppressor role for HIF-1α. However, few studies have comprehensively examined the clinical relevance of this paradigm. Furthermore, the hypoxia-associated factor (HAF), which regulates the HIFs, has not been comprehensively evaluated in ccRCC. EXPERIMENTAL DESIGN: To assess the involvement of HAF/HIFs in ccRCC, we analyzed their relationship to tumor grade/stage/outcome using tissue from 380 patients, and validated these associations using tissue from 72 additional patients and a further 57 patients treated with antiangiogenic therapy for associations with response. Further characterization was performed using single-cell mRNA sequencing (scRNA-seq), RNA-in situ hybridization (RNA-ISH), and IHC. RESULTS: HIF-1α was primarily expressed in tumor-associated macrophages (TAMs), whereas HIF-2α and HAF were expressed primarily in tumor cells. TAM-associated HIF-1α was significantly associated with high tumor grade and increased metastasis and was independently associated with decreased overall survival. Furthermore, elevated TAM HIF-1α was significantly associated with resistance to antiangiogenic therapy. In contrast, high HAF or HIF-2α were associated with low grade, decreased metastasis, and increased overall survival. scRNA-seq, RNA-ISH, and Western blotting confirmed the expression of HIF-1α in M2-polarized CD163-expressing TAMs. CONCLUSIONS: These findings highlight a potential role of TAM HIF-1α in ccRCC progression and support the reevaluation of HIF-1α as a therapeutic target and marker of disease progression.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Células Renales/mortalidad , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Renales/mortalidad , Macrófagos Asociados a Tumores/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/análisis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Biomarcadores de Tumor/análisis , Carcinoma de Células Renales/diagnóstico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/terapia , Línea Celular Tumoral , Quimioterapia Adyuvante , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/análisis , Neoplasias Renales/diagnóstico , Neoplasias Renales/genética , Neoplasias Renales/terapia , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Nefrectomía , Pronóstico , RNA-Seq , Estudios Retrospectivos , Análisis de la Célula Individual , Análisis de Supervivencia , Macrófagos Asociados a Tumores/inmunología
18.
Stem Cell Reports ; 12(1): 135-151, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30554919

RESUMEN

DACH1 abundance is reduced in human malignancies, including breast cancer. Herein DACH1 was detected among multipotent fetal mammary stem cells in the embryo, among mixed lineage precursors, and in adult basal cells and (ERα+) luminal progenitors. Dach1 gene deletion at 6 weeks in transgenic mice reduced ductal branching, reduced the proportion of mammary basal cells (Lin- CD24med CD29high) and reduced abundance of basal cytokeratin 5, whereas DACH1 overexpression induced ductal branching, increased Gata3 and Notch1, and expanded mammosphere formation in LA-7 breast cells. Mammary gland-transforming growth factor ß (TGF-ß) activity, known to reduce ductal branching and to reduce the basal cell population, increased upon Dach1 deletion, associated with increased SMAD phosphorylation. Association of the scaffold protein Smad anchor for receptor activation with Smad2/3, which facilitates TGF-ß activation, was reduced by endogenous DACH1. DACH1 increases basal cells, enhances ductal formation and restrains TGF-ß activity in vivo.


Asunto(s)
Proteínas del Ojo/genética , Glándulas Mamarias Animales/crecimiento & desarrollo , Células Madre Embrionarias de Ratones/metabolismo , Células 3T3 , Animales , Células Cultivadas , Proteínas del Ojo/metabolismo , Femenino , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Queratina-5/genética , Queratina-5/metabolismo , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Ratas , Receptor Notch1/genética , Receptor Notch1/metabolismo , Proteínas Smad/genética , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
19.
Cell Rep ; 24(6): 1653-1666.e7, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30089273

RESUMEN

The mammary gland consists of cells with gene expression patterns reflecting their cellular origins, function, and spatiotemporal context. However, knowledge of developmental kinetics and mechanisms of lineage specification is lacking. We address this significant knowledge gap by generating a single-cell transcriptome atlas encompassing embryonic, postnatal, and adult mouse mammary development. From these data, we map the chronology of transcriptionally and epigenetically distinct cell states and distinguish fetal mammary stem cells (fMaSCs) from their precursors and progeny. fMaSCs show balanced co-expression of factors associated with discrete adult lineages and a metabolic gene signature that subsides during maturation but reemerges in some human breast cancers and metastases. These data provide a useful resource for illuminating mammary cell heterogeneity, the kinetics of differentiation, and developmental correlates of tumorigenesis.


Asunto(s)
Glándulas Mamarias Animales/crecimiento & desarrollo , Animales , Diferenciación Celular/fisiología , Femenino , Humanos , Glándulas Mamarias Animales/citología , Ratones , Células Madre/metabolismo , Transcriptoma
20.
NPJ Breast Cancer ; 3: 14, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28649654

RESUMEN

Cellular heterogeneity in cancer represents a significant challenge. In order to develop effective and lasting therapies, it is essential to understand the source of this heterogeneity, and its role in tumor progression and therapy resistance. Here, we consider not only genetic and epigenetic mechanisms, but also inflammation and cell state reprogramming in creating tumor heterogeneity. We discuss similarities between normal mammary epithelial developmental states and various breast cancer molecular sub-types, and the cells that are thought to propagate them. We emphasize that while stem cell phenotypes and mesenchymal character have often been conflated, existing data suggest that the combination of intrinsic genetic and epigenetic changes, and microenvironmental influences generate multiple types of tumor propagating cells distinguishable by their positions along a continuum of epithelial to mesenchymal, stem to differentiated and embryonic to mature cell states. Consequently, in addition to the prospect of stem cell-directed tumor therapies, there is a need to understand interrelationships between stem cell, epithelial-mesenchymal, and tumor-associated reprogramming events to develop new therapies that mitigate cell state plasticity and minimize the evolution of tumor heterogeneity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA