Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Annu Rev Biochem ; 87: 871-896, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29661000

RESUMEN

Clathrin-mediated endocytosis (CME) is the major endocytic pathway in mammalian cells. It is responsible for the uptake of transmembrane receptors and transporters, for remodeling plasma membrane composition in response to environmental changes, and for regulating cell surface signaling. CME occurs via the assembly and maturation of clathrin-coated pits that concentrate cargo as they invaginate and pinch off to form clathrin-coated vesicles. In addition to the major coat proteins, clathrin triskelia and adaptor protein complexes, CME requires a myriad of endocytic accessory proteins and phosphatidylinositol lipids. CME is regulated at multiple steps-initiation, cargo selection, maturation, and fission-and is monitored by an endocytic checkpoint that induces disassembly of defective pits. Regulation occurs via posttranslational modifications, allosteric conformational changes, and isoform and splice-variant differences among components of the CME machinery, including the GTPase dynamin. This review summarizes recent findings on the regulation of CME and the evolution of this complex process.


Asunto(s)
Clatrina/metabolismo , Endocitosis/fisiología , Complejo 2 de Proteína Adaptadora/química , Complejo 2 de Proteína Adaptadora/metabolismo , Regulación Alostérica , Animales , Clatrina/química , Vesículas Cubiertas por Clatrina/metabolismo , Dinaminas/química , Dinaminas/metabolismo , Evolución Molecular , Humanos , Modelos Biológicos , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilación , Conformación Proteica , Transducción de Señal
2.
PLoS Biol ; 16(4): e2005377, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29668686

RESUMEN

Dynamin Guanosine Triphosphate hydrolases (GTPases) are best studied for their role in the terminal membrane fission process of clathrin-mediated endocytosis (CME), but they have also been proposed to regulate earlier stages of CME. Although highly enriched in neurons, dynamin-1 (Dyn1) is, in fact, widely expressed along with Dyn2 but inactivated in non-neuronal cells via phosphorylation by glycogen synthase kinase-3 beta (GSK3ß) kinase. Here, we study the differential, isoform-specific functions of Dyn1 and Dyn2 as regulators of CME. Endogenously expressed Dyn1 and Dyn2 were fluorescently tagged either separately or together in two cell lines with contrasting Dyn1 expression levels. By quantitative live cell dual- and triple-channel total internal reflection fluorescence microscopy, we find that Dyn2 is more efficiently recruited to clathrin-coated pits (CCPs) than Dyn1, and that Dyn2 but not Dyn1 exhibits a pronounced burst of assembly, presumably into supramolecular collar-like structures that drive membrane scission and clathrin-coated vesicle (CCV) formation. Activation of Dyn1 by acute inhibition of GSK3ß results in more rapid endocytosis of transferrin receptors, increased rates of CCP initiation, and decreased CCP lifetimes but did not significantly affect the extent of Dyn1 recruitment to CCPs. Thus, activated Dyn1 can regulate early stages of CME that occur well upstream of fission, even when present at low, substoichiometric levels relative to Dyn2. Under physiological conditions, Dyn1 is activated downstream of epidermal growth factor receptor (EGFR) signaling to alter CCP dynamics. We identify sorting nexin 9 (SNX9) as a preferred binding partner to activated Dyn1 that is partially required for Dyn1-dependent effects on early stages of CCP maturation. Together, we decouple regulatory and scission functions of dynamins and report a scission-independent, isoform-specific regulatory role for Dyn1 in CME.


Asunto(s)
Vesículas Cubiertas por Clatrina/metabolismo , Clatrina/metabolismo , Dinamina II/metabolismo , Dinamina I/metabolismo , Endocitosis/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células A549 , Línea Celular Tumoral , Clatrina/genética , Vesículas Cubiertas por Clatrina/ultraestructura , Dinamina I/genética , Dinamina II/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulación de la Expresión Génica , Glucógeno Sintasa Quinasa 3 beta/genética , Humanos , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Unión Proteica , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Transducción de Señal , Nexinas de Clasificación/genética , Nexinas de Clasificación/metabolismo , Coloración y Etiquetado/métodos
3.
EMBO J ; 35(4): 443-57, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26783363

RESUMEN

Vesicle release upon endocytosis requires membrane fission, catalyzed by the large GTPase dynamin. Dynamin contains five domains that together orchestrate its mechanochemical activity. Hydrogen-deuterium exchange coupled with mass spectrometry revealed global nucleotide- and membrane-binding-dependent conformational changes, as well as the existence of an allosteric relay element in the α2(S) helix of the dynamin stalk domain. As predicted from structural studies, FRET analyses detect large movements of the pleckstrin homology domain (PHD) from a 'closed' conformation docked near the stalk to an 'open' conformation able to interact with membranes. We engineered dynamin constructs locked in either the closed or open state by chemical cross-linking or deletion mutagenesis and showed that PHD movements function as a conformational switch to regulate dynamin self-assembly, membrane binding, and fission. This PHD conformational switch is impaired by a centronuclear myopathy-causing disease mutation, S619L, highlighting the physiological significance of its role in regulating dynamin function. Together, these data provide new insight into coordinated conformational changes that regulate dynamin function and couple membrane binding, oligomerization, and GTPase activity during dynamin-catalyzed membrane fission.


Asunto(s)
Dinaminas/química , Dinaminas/metabolismo , Línea Celular , Dinaminas/genética , Transferencia Resonante de Energía de Fluorescencia , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Membranas Intracelulares/metabolismo , Espectroscopía de Resonancia Magnética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformación Proteica , Multimerización de Proteína , Eliminación de Secuencia
4.
EMBO J ; 34(16): 2132-46, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26139537

RESUMEN

Clathrin-mediated endocytosis (CME) regulates signaling from the plasma membrane. Analysis of clathrin-coated pit (CCP) dynamics led us to propose the existence of a rate-limiting, regulatory step(s) that monitor the fidelity of early stages in CCP maturation. Here we show that nascent endocytic vesicles formed in mutant cells displaying rapid, dysregulated CME are defective in early endosomal trafficking, maturation and acidification, confirming the importance of this "checkpoint." Dysregulated CME also alters EGF receptor signaling and leads to constitutive activation of the protein kinase Akt. Dynamin-1, which was thought to be neuron specific, is activated by the Akt/GSK3ß signaling cascade in non-neuronal cells to trigger rapid, dysregulated CME. Acute activation of dynamin-1 in RPE cells by inhibition of GSK3ß accelerates CME, alters CCP dynamics and, unexpectedly, increases the rate of CCP initiation. CRISPR-Cas9n-mediated knockout and reconstitution studies establish that dynamin-1 is activated by Akt/GSK3ß signaling in H1299 non-small lung cancer cells. These findings provide direct evidence for an isoform-specific role for dynamin in regulating CME and reveal a feed-forward pathway that could link signaling from cell surface receptors to the regulation of CME.


Asunto(s)
Dinamina I/metabolismo , Endocitosis , Células Epiteliales/fisiología , Glucógeno Sintasa Quinasa 3/metabolismo , Mapas de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Línea Celular , Vesículas Cubiertas por Clatrina/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos
5.
Exp Cell Res ; 372(1): 1-15, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30144444

RESUMEN

Regulating the residence time of membrane proteins on the cell surface can modify their response to extracellular cues and allow for cellular adaptation in response to changing environmental conditions. The fate of membrane proteins that are internalized from the plasma membrane and arrive at the limiting membrane of the late endosome/multivesicular body (MVB) is dictated by whether they remain on the limiting membrane, bud into internal MVB vesicles, or bud outwardly from the membrane. The molecular details underlying the disposition of membrane proteins that transit this pathway and the mechanisms regulating these trafficking events are unclear. We established a cell-free system that reconstitutes budding of membrane protein cargo into internal MVB vesicles and onto vesicles that bud outwardly from the MVB membrane. Both budding reactions are cytosol-dependent and supported by Saccharomyces cerevisiae (yeast) cytosol. We observed that inward and outward budding from the MVB membrane are mechanistically distinct but may be linked, such that inhibition of inward budding triggers a re-routing of cargo from inward to outward budding vesicles, without affecting the number of vesicles that bud outwardly from MVBs.


Asunto(s)
Membrana Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Membranas Intracelulares/metabolismo , Lisosomas/metabolismo , Cuerpos Multivesiculares/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Membrana Celular/química , Sistema Libre de Células/química , Sistema Libre de Células/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/ultraestructura , Regulación de la Expresión Génica , Células HeLa , Humanos , Membranas Intracelulares/ultraestructura , Lisosomas/ultraestructura , Cuerpos Multivesiculares/ultraestructura , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Transducción de Señal
6.
Adv Exp Med Biol ; 855: 117-34, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26149928

RESUMEN

Serum amyloid A (SAA) is an acute-phase reactant protein predominantly bound to high-density lipoprotein in serum and presumed to play various biological and pathological roles. Upon tissue trauma or infection, hepatic expression of SAA increases up to 1,000 times the basal levels. Prolonged increased levels of SAA may lead to amyloid A (AA) amyloidosis, a usually fatal systemic disease in which the amyloid deposits are mostly comprised of the N-terminal 1-76 fragment of SAA. SAA isoforms may differ across species in their ability to cause AA amyloidosis, and the mechanism of pathogenicity remains poorly understood. In vitro studies have shown that SAA is a marginally stable protein that folds into various oligomeric species at 4 °C. However, SAA is largely disordered at 37 °C, reminiscent of intrinsically disordered proteins. Non-pathogenic murine (m)SAA2.2 spontaneously forms amyloid fibrils in vitro at 37 °C whereas pathogenic mSAA1.1 has a long lag (nucleation) phase, and eventually forms fibrils of different morphology than mSAA2.2. Remarkably, human SAA1.1 does not form mature fibrils in vitro. Thus, it appears that the intrinsic amyloidogenicity of SAA is not a key determinant of pathogenicity, and that other factors, including fibrillation kinetics, ligand binding effects, fibril stability, nucleation efficiency, and SAA degradation may play key roles. This chapter will focus on the known structural and biophysical properties of SAA and discuss how these properties may help better understand the molecular mechanism of AA amyloidosis.


Asunto(s)
Amiloide/biosíntesis , Biopolímeros/metabolismo , Proteína Amiloide A Sérica/metabolismo , Animales , HDL-Colesterol/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Conformación Proteica , Proteína Amiloide A Sérica/química
7.
Biochemistry ; 53(36): 5724-6, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25171143

RESUMEN

Biochemical and structural studies of dynamin have shown that the C-terminus of the GTPase effector domain (GED) folds back and docks onto a platform created by the N- and C-terminal α-helices of the GTPase domain to form a three-helix bundle. While cross-linking studies suggested that insect cell-expressed dynamin existed as a domain-swapped dimer, X-ray structures of protein expressed in Escherichia coli failed to detect evidence of this domain swap. Here, by cross-linking several cysteine pair replacements and analyzing cross-linked species by matrix-assisted laser desorption ionization Mega time of flight, we conclude that dynamin is not domain-swapped and that GED-GTPase domain interactions occur in cis.


Asunto(s)
Dinaminas/metabolismo , GTP Fosfohidrolasas/metabolismo , Transducción de Señal , Dimerización , Electroforesis en Gel de Poliacrilamida
8.
J Biol Chem ; 288(4): 2744-55, 2013 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-23223242

RESUMEN

Serum amyloid A (SAA) is best known for being the main component of amyloid in the inflammation-related disease amyloid A (AA) amyloidosis. Despite the high sequence identity among different SAA isoforms, not all SAA proteins are pathogenic. In most mouse strains, the AA deposits mostly consist of SAA1.1. Conversely, the CE/J type mouse expresses a single non-pathogenic SAA2.2 protein that is 94% identical to SAA1.1. Here we show that SAA1.1 and SAA2.2 differ in their quaternary structure, fibrillation kinetics, prefibrillar oligomers, and fibril morphology. At 37 °C and inflammation-related SAA concentrations, SAA1.1 exhibits an oligomer-rich fibrillation lag phase of a few days, whereas SAA2.2 shows virtually no lag phase and forms small fibrils within a few hours. Deep UV resonance Raman, far UV-circular dichroism, atomic force microscopy, and fibrillation cross-seeding experiments suggest that SAA1.1 and SAA2.2 fibrils possess different morphology. Both the long-lived oligomers of pathogenic SAA1.1 and the fleeting prefibrillar oligomers of non-pathogenic SAA2.2, but not their respective amyloid fibrils, permeabilized synthetic bilayer membranes in vitro. This study represents the first comprehensive comparison between the biophysical properties of SAA isoforms with distinct pathogenicities, and the results suggest that structural and kinetic differences in the oligomerization-fibrillation of SAA1.1 and SAA2.2, more than their intrinsic amyloidogenicity, may contribute to their diverse pathogenicity.


Asunto(s)
Amiloidosis/metabolismo , Proteína Amiloide A Sérica/química , Animales , Biofisica/métodos , Dicroismo Circular , Células HEK293 , Humanos , Inflamación , Cinética , Ratones , Microscopía de Fuerza Atómica/métodos , Unión Proteica , Desnaturalización Proteica , Pliegue de Proteína , Isoformas de Proteínas , Proteínas Recombinantes/química , Proteína Amiloide A Sérica/metabolismo , Espectrofotometría Ultravioleta/métodos
9.
Proc Natl Acad Sci U S A ; 108(6): 2210-5, 2011 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-21257910

RESUMEN

Protein aggregation is a hallmark of many diseases, including amyotrophic lateral sclerosis (ALS), where aggregation of Cu/Zn superoxide dismutase (SOD1) is implicated in causing neurodegeneration. Recent studies have suggested that destabilization and aggregation of the most immature form of SOD1, the disulfide-reduced, unmetallated (apo) protein is particularly important in causing ALS. We report herein in depth analyses of the effects of chemically and structurally diverse ALS-associated mutations on the stability and aggregation of reduced apo SOD1. In contrast with previous studies, we find that various reduced apo SOD1 mutants undergo highly reversible thermal denaturation with little aggregation, enabling quantitative thermodynamic stability analyses. In the absence of ALS-associated mutations, reduced apo SOD1 is marginally stable but predominantly folded. Mutations generally result in slight decreases to substantial increases in the fraction of unfolded protein. Calorimetry, ultracentrifugation, and light scattering show that all mutations enhance aggregation propensity, with the effects varying widely, from subtle increases in most cases, to pronounced formation of 40-100 nm soluble aggregates by A4V, a mutation that is associated with particularly short disease duration. Interestingly, although there is a correlation between observed aggregation and stability, there is minimal to no correlation between observed aggregation, predicted aggregation propensity, and disease characteristics. These findings suggest that reduced apo SOD1 does not play a dominant role in modulating disease. Rather, additional and/or multiple forms of SOD1 and additional biophysical and biological factors are needed to account for the toxicity of mutant SOD1 in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Mutación , Pliegue de Proteína , Superóxido Dismutasa/química , Esclerosis Amiotrófica Lateral/genética , Estabilidad de Enzimas/genética , Calor , Humanos , Desnaturalización Proteica , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1
10.
Mol Ther Methods Clin Dev ; 29: 133-144, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37025949

RESUMEN

Adeno-associated virus (AAV) gene therapy vectors, which contain a DNA transgene packaged into a protein capsid, have shown tremendous therapeutic potential in recent years. Methods traditionally used in quality control labs, such as high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE), do not provide a complete understanding of capsid viral protein (VP) charge heterogeneity. In the present study, we developed simple, one-step sample preparation and charge-based VP separation using imaged capillary isoelectric focusing (icIEF) for monitoring AAV products. The robustness of the method was confirmed through a design of experiments (DoE) exercise. An orthogonal reverse-phase (RP) HPLC method coupled with mass spectrometry was developed to separate and identify charge species. Additionally, capsid point mutants demonstrate the capability of the method to resolve deamidation at a single site on the viral proteins. Finally, case studies using two different AAV serotype vectors establish the icIEF method as stability indicating and demonstrate that increases in acidic species measured by icIEF correlate with increased deamidation, which, we show, results in decreased transduction efficiency. The addition of a rapid and robust icIEF method to the AAV capsid analytical toolkit enables development and consistent manufacturing of well-characterized gene therapy products.

11.
Biochemistry ; 51(14): 3092-9, 2012 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-22448726

RESUMEN

The fibrillar deposition of serum amyloid A (SAA) has been linked to the disease amyloid A (AA) amyloidosis. We have used the SAA isoform, SAA2.2, from the CE/J mouse strain, as a model system to explore the inherent structural and biophysical properties of SAA. Despite its nonpathogenic nature in vivo, SAA2.2 spontaneously forms fibrils in vitro, suggesting that SAA proteins are inherently amyloidogenic. However, whereas the importance of the amino terminus of SAA for fibril formation has been well documented, the influence of the proline-rich and presumably disordered carboxy terminus remains poorly understood. To clarify the inherent role of the carboxy terminus in the oligomerization and fibrillation of SAA, we truncated the proline-rich final 13 residues of SAA2.2. We found that unlike full-length SAA2.2, the carboxy-terminal truncated SAA2.2 (SAA2.2ΔC) did not oligomerize to a hexamer or octamer, but formed a high molecular weight soluble aggregate. Moreover, SAA2.2ΔC also exhibited a pronounced decrease in the rate of fibril formation. Intriguingly, when equimolar amounts of denatured SAA2.2 and SAA2.2ΔC were mixed and allowed to refold together, the mixture formed an octamer and exhibited rapid fibrillation kinetics, similar to those for full-length SAA2.2. These results suggest that the carboxy terminus of SAA, which is highly conserved among SAA sequences in all vertebrates, might play important structural roles, including modulating the folding, oligomerization, misfolding, and fibrillation of SAA.


Asunto(s)
Amiloide/química , Pliegue de Proteína , Proteína Amiloide A Sérica/química , Amiloide/metabolismo , Animales , Cinética , Ratones , Microscopía de Fuerza Atómica , Peso Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo
12.
Biochemistry ; 50(43): 9184-91, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21942925

RESUMEN

For nearly four decades, the formation of amyloid fibrils by the inflammation-related protein serum amyloid A (SAA) has been pathologically linked to the disease amyloid A (AA) amyloidosis. However, here we show that the nonpathogenic murine SAA2.2 spontaneously forms marginally stable amyloid fibrils at 37 °C that exhibit cross-beta structure, binding to thioflavin T, and fibrillation by a nucleation-dependent seeding mechanism. In contrast to the high stability of most known amyloid fibrils to thermal and chemical denaturation, experiments monitored by glutaraldehyde cross-linking/SDS-PAGE, thioflavin T fluorescence, and light scattering (OD(600)) showed that the mature amyloid fibrils of SAA2.2 dissociate upon incubation in >1.0 M urea or >45 °C. When considering the nonpathogenic nature of SAA2.2 and its ~1000-fold increased concentration in plasma during an inflammatory response, its extreme in vitro amyloidogenicity under physiological-like conditions suggest that SAA amyloid might play a functional role during inflammation. Of general significance, the combination of methods used here is convenient for exploring the stability of amyloid fibrils that are sensitive to urea and temperature. Furthermore, our studies imply that analogous to globular proteins, which can possess structures ranging from intrinsically disordered to extremely stable, amyloid fibrils formed in vivo might have a broader range of stabilities than previously appreciated with profound functional and pathological implications.


Asunto(s)
Amiloide/metabolismo , Proteína Amiloide A Sérica/metabolismo , Amiloide/química , Amiloide/ultraestructura , Amiloidosis/metabolismo , Animales , Benzotiazoles , Electroforesis en Gel de Poliacrilamida , Ratones , Unión Proteica , Estabilidad Proteica , Estructura Secundaria de Proteína , Proteína Amiloide A Sérica/química , Temperatura , Tiazoles/metabolismo
13.
Biochem Biophys Res Commun ; 407(4): 725-9, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21439938

RESUMEN

Serum amyloid A (SAA) is an inflammatory protein predominantly bound to high-density lipoprotein in plasma and presumed to play various biological and pathological roles. We previously found that the murine isoform SAA2.2 exists in aqueous solution as a marginally stable hexamer at 4-20°C, but becomes an intrinsically disordered protein at 37°C. Here we show that when urea-denatured SAA2.2 is dialyzed into buffer (pH 8.0, 4°C), it refolds mostly into an octameric species. The octamer transitions to the hexameric structure upon incubation from days to weeks at 4°C, depending on the SAA2.2 concentration. Thermal denaturation of the octamer and hexamer monitored by circular dichroism showed that the octamer is ∼10°C less stable, with a denaturation mid point of ∼22°C. Thus, SAA2.2 becomes kinetically trapped by refolding into a less stable, but more kinetically accessible octameric species. The ability of SAA2.2 to form different oligomeric species in vitro along with its marginal stability, suggest that the structure of SAA might be modulated in vivo to form different biologically relevant species.


Asunto(s)
Proteína Amiloide A Sérica/química , Animales , Isoenzimas/química , Ratones , Desnaturalización Proteica , Pliegue de Proteína , Multimerización de Proteína , Urea/química
14.
Sci Rep ; 7: 44695, 2017 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-28317901

RESUMEN

Membrane scission is a crucial step in all budding processes, from endocytosis to viral budding. Many proteins have been associated with scission, though the underlying molecular details of how scission is accomplished often remain unknown. Here, we investigate the process of M2-mediated membrane scission during the budding of influenza viruses. Residues 50-61 of the viral M2 protein bind membrane and form an amphipathic α-helix (AH). Membrane binding requires hydrophobic interactions with the lipid tails but not charged interactions with the lipid headgroups. Upon binding, the M2AH induces membrane curvature and lipid ordering, constricting and destabilizing the membrane neck, causing scission. We further show that AHs in the cellular proteins Arf1 and Epsin1 behave in a similar manner. Together, they represent a class of membrane-induced AH domains that alter membrane curvature and fluidity, mediating the scission of constricted membrane necks in multiple biological pathways.


Asunto(s)
Membranas Artificiales , Proteínas de la Matriz Viral/química , Secuencia de Aminoácidos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Péptidos/química , Unión Proteica , Estructura Secundaria de Proteína , Proteínas de la Matriz Viral/ultraestructura
15.
PLoS One ; 8(6): e64974, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23750222

RESUMEN

The fibrillation of Serum Amyloid A (SAA) - a major acute phase protein - is believed to play a role in the disease Amyloid A (AA) Amyloidosis. To better understand the amyloid formation pathway of SAA, we characterized the oligomerization, misfolding, and aggregation of a disease-associated isoform of human SAA - human SAA1.1 (hSAA1.1) - using techniques ranging from circular dichroism spectroscopy to atomic force microscopy, fluorescence spectroscopy, immunoblot studies, solubility measurements, and seeding experiments. We found that hSAA1.1 formed alpha helix-rich, marginally stable oligomers in vitro on refolding and cross-beta-rich aggregates following incubation at 37°C. Strikingly, while hSAA1.1 was not highly amyloidogenic in vitro, the addition of a single N-terminal methionine residue significantly enhanced the fibrillation propensity of hSAA1.1 and modulated its fibrillation pathway. A deeper understanding of the oligomerization and fibrillation pathway of hSAA1.1 may help elucidate its pathological role.


Asunto(s)
Multimerización de Proteína , Proteína Amiloide A Sérica/química , Humanos , Metionina , Modelos Moleculares , Isoformas de Proteínas/química , Replegamiento Proteico , Estructura Secundaria de Proteína , Solubilidad
16.
Protein Sci ; 20(2): 302-12, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21280122

RESUMEN

Factor for inversion stimulation (FIS), a 98-residue homodimeric protein, does not contain tryptophan (Trp) residues but has four tyrosine (Tyr) residues located at positions 38, 51, 69, and 95. The equilibrium denaturation of a P61A mutant of FIS appears to occur via a three-state (N(2) ⇆ I(2) ⇆ 2U) process involving a dimeric intermediate (I(2)). Although it was suggested that this intermediate had a denatured C-terminus, direct evidence was lacking. Therefore, three FIS double mutants, P61A/Y38W, P61A/Y69W, and P61A/Y95W were made, and their denaturation was monitored by circular dichroism and Trp fluorescence. Surprisingly, the P61A/Y38W mutant best monitored the N(2) ⇆ I(2) transition, even though Trp38 is buried within the dimer removed from the C-terminus. In addition, although Trp69 is located on the protein surface, the P61A/Y69W FIS mutant exhibited clearly biphasic denaturation curves. In contrast, P61A/Y95W FIS was the least effective in decoupling the two transitions, exhibiting a monophasic fluorescence transition with modest concentration-dependence. When considering the local environment of the Trp residues and the effect of each mutation on protein stability, these results not only confirm that P61A FIS denatures via a dimeric intermediate involving a disrupted C-terminus but also suggest the occurrence of conformational changes near Tyr38. Thus, the P61A mutation appears to compromise the denaturation cooperativity of FIS by failing to propagate stability to those regions involved mostly in intramolecular interactions. Furthermore, our results highlight the challenge of anticipating the optimal location to engineer a Trp residue for investigating the denaturation mechanism of even small proteins.


Asunto(s)
Factor Proteico para Inverción de Estimulación/química , Triptófano/química , Tirosina/química , Sustitución de Aminoácidos , Dicroismo Circular , Cristalografía por Rayos X , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Factor Proteico para Inverción de Estimulación/genética , Factor Proteico para Inverción de Estimulación/metabolismo , Microscopía Fluorescente , Modelos Moleculares , Conformación Proteica , Desnaturalización Proteica , Ingeniería de Proteínas , Pliegue de Proteína , Estabilidad Proteica , Triptófano/genética , Triptófano/metabolismo , Tirosina/genética , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA