Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
RNA Biol ; 14(11): 1592-1605, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-28640671

RESUMEN

Non-coding regulatory RNAs fine-tune gene expression post-transcriptionally. In the streptomycetes, rpfA - encoding a muralytic enzyme required for establishing and exiting dormancy - is flanked by non-coding regulatory RNA elements both upstream (riboswitch) and downstream [antisense small RNA (sRNA)]. In Streptomyces coelicolor, the upstream riboswitch decreases rpfA transcript abundance in response to the second messenger cyclic di-AMP, itself involved in cell wall metabolism and dormancy. There is, however, no obvious expression platform associated with this riboswitch and consequently, its mechanism of action is entirely unknown. Using in vitro transcription assays, we discovered that the rpfA riboswitch promoted premature transcription termination in response to cyclic di-AMP. Through an extensive mutational analysis, we determined that attenuation required ligand binding and involved an unusual extended stem-loop region unique to a subset of rpfA riboswitches in the actinobacteria. At the other end of the rpfA gene, an antisense sRNA, termed Scr3097, is expressed opposite the predicted rpfA terminator. Using northern blotting, we found that Scr3097 accumulation mirrored that of the rpfA mRNA. In liquid culture, we detected Scr3097 exclusively in exponential-phase cells, and in plate-grown culture, we observed the sRNA primarily in differentiating cultures. Using mutational analyses, we found that the sRNA increased rpfA mRNA abundance in cells. Taken together, our work revealed multiple regulatory RNAs controlling rpfA expression in the streptomycetes.


Asunto(s)
Aconitato Hidratasa/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/genética , ARN Pequeño no Traducido/genética , Riboswitch , Streptomyces coelicolor/genética , Aconitato Hidratasa/metabolismo , Proteínas Bacterianas/metabolismo , Emparejamiento Base , Fosfatos de Dinucleósidos/metabolismo , Mutación , Conformación de Ácido Nucleico , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/metabolismo , Transducción de Señal , Streptomyces coelicolor/metabolismo , Transcripción Genética
2.
Mol Microbiol ; 96(4): 779-95, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25682701

RESUMEN

Peptidoglycan degradative enzymes have important roles at many stages during the bacterial life cycle, and it is critical that these enzymes be stringently regulated to avoid compromising the integrity of the cell wall. How this regulation is exerted is of considerable interest: promoter-based control and protein-protein interactions are known to be employed; however, other regulatory mechanisms are almost certainly involved. In the actinobacteria, a class of muralytic enzymes - the 'resuscitation-promoting factors' (Rpfs) - orchestrates the resuscitation of dormant cells. In this study, we have taken a holistic approach to exploring the mechanisms governing RpfA function using the model bacterium Streptomyces coelicolor and have uncovered unprecedented multilevel regulation that is coordinated by three second messengers. Our studies show that RpfA is subject to transcriptional control by the cyclic AMP receptor protein, riboswitch-mediated transcription attenuation in response to cyclic di-AMP, and growth stage-dependent proteolysis in response to ppGpp accumulation. Furthermore, our results suggest that these control mechanisms are likely applicable to cell wall lytic enzymes in other bacteria.


Asunto(s)
Aconitato Hidratasa/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Nucleótidos de Guanina/metabolismo , Peptidoglicano/metabolismo , Sistemas de Mensajero Secundario , Streptomyces coelicolor/enzimología , Streptomyces coelicolor/genética , Aconitato Hidratasa/genética , Aconitato Hidratasa/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Pared Celular/metabolismo , AMP Cíclico/metabolismo , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , Mutación , Regiones Promotoras Genéticas , Riboswitch/genética , Streptomyces coelicolor/crecimiento & desarrollo , Streptomyces coelicolor/metabolismo
3.
J Bacteriol ; 197(5): 848-60, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25512314

RESUMEN

Dormancy is a common strategy adopted by bacterial cells as a means of surviving adverse environmental conditions. For Streptomyces bacteria, this involves developing chains of dormant exospores that extend away from the colony surface. Both spore formation and subsequent spore germination are tightly controlled processes, and while significant progress has been made in understanding the underlying regulatory and enzymatic bases for these, there are still significant gaps in our understanding. One class of proteins with a potential role in spore-associated processes are the so-called resuscitation-promoting factors, or Rpfs, which in other actinobacteria are needed to restore active growth to dormant cell populations. The model species Streptomyces coelicolor encodes five Rpf proteins (RpfA to RfpE), and here we show that these proteins have overlapping functions during growth. Collectively, the S. coelicolor Rpfs promote spore germination and are critical for growth under nutrient-limiting conditions. Previous studies have revealed structural similarities between the Rpf domain and lysozyme, and our in vitro biochemical assays revealed various levels of peptidoglycan cleavage capabilities for each of these five Streptomyces enzymes. Peptidoglycan remodeling by enzymes such as these must be stringently governed so as to retain the structural integrity of the cell wall. Our results suggest that one of the Rpfs, RpfB, is subject to a unique mode of enzymatic autoregulation, mediated by a domain of previously unknown function (DUF348) located within the N terminus of the protein; removal of this domain led to significantly enhanced peptidoglycan cleavage.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Citocinas/metabolismo , Esporas Bacterianas/crecimiento & desarrollo , Streptomyces coelicolor/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Pared Celular/genética , Citocinas/química , Citocinas/genética , Datos de Secuencia Molecular , Peptidoglicano/metabolismo , Alineación de Secuencia , Esporas Bacterianas/química , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo , Streptomyces coelicolor/química , Streptomyces coelicolor/genética , Streptomyces coelicolor/crecimiento & desarrollo
4.
Sci Rep ; 10(1): 8671, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32457334

RESUMEN

Conventional drug sensitivity assays used to screen prospective anti-cancer agents for cytotoxicity monitor biological processes associated with active growth and proliferation, used as proxies of cell viability. However, these assays are unable to distinguish between growth-arrested (but otherwise viable) cells and non-viable/dead cells. As a result, compounds selected based on the results of these assays may only be cytostatic, halting or slowing tumour progression temporarily, without tumour eradication. Because agents capable of killing tumour cells (cytotoxic drugs) are likely the most promising in the clinic, there is a need for drug sensitivity assays that reliably identify cytotoxic compounds that induce cell death. We recently developed a drug sensitivity assay, called the RNA disruption assay (RDA), which measures a phenomenon associated with tumour cell death. In this study, we sought to compare our assay's performance to that of current commonly used drug sensitivity assays (i.e, the clonogenic, the cell counting kit-8 and the Trypan blue exclusion assays). We found that RNA disruption occurred almost exclusively when total cell numbers decreased (cytotoxic concentrations), with little to no signal detected until cells had lost viability. In contrast, conventional assays detected a decrease in their respective drug sensitivity parameters despite cells retaining their viability, as assessed using a recovery assay. We also found that the RDA can differentiate between drug-sensitive and -resistant cells, and that it can identify agents capable of circumventing drug resistance. Taken together, our study suggests that the RDA is a superior drug discovery tool, providing a unique assessment of cell death.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas/métodos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Neoplasias Ováricas/tratamiento farmacológico , ARN/análisis , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Neoplasias Ováricas/genética , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA