Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Proc Biol Sci ; 290(2009): 20231372, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37876189

RESUMEN

Habitat fragmentation is altering species interactions worldwide. However, the mechanisms underlying the response of network specialization to habitat fragmentation remain unknown, especially for multi-trophic interactions. We here collected a large dataset consisting of 2670 observations of tri-trophic interactions among plants, sap-sucking aphids and honeydew-collecting ants on 18 forested islands in the Thousand Island Lake, China. For each island, we constructed an antagonistic plant-aphid and a mutualistic aphid-ant network, and tested how network specialization varied with island area and isolation. We found that both networks exhibited higher specialization on smaller islands, while only aphid-ant networks had increased specialization on more isolated islands. Variations in network specialization among islands was primarily driven by species turnover, which was interlinked across trophic levels as fragmentation increased the specialization of both antagonistic and mutualistic networks through bottom-up effects via plant and aphid communities. These findings reveal that species on small and isolated islands display higher specialization mainly due to effects of fragmentation on species turnover, with behavioural changes causing interaction rewiring playing only a minor role. Our study highlights the significance of adopting a multi-trophic perspective when exploring patterns and processes in structuring ecological networks in fragmented landscapes.


Asunto(s)
Hormigas , Áfidos , Animales , Ecosistema , Bosques , Plantas , Áfidos/fisiología , Estado Nutricional , Hormigas/fisiología , Simbiosis
2.
Glob Chang Biol ; 29(18): 5321-5333, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36970888

RESUMEN

Carbon-focused climate mitigation strategies are becoming increasingly important in forests. However, with ongoing biodiversity declines we require better knowledge of how much such strategies account for biodiversity. We particularly lack information across multiple trophic levels and on established forests, where the interplay between carbon stocks, stand age, and tree diversity might influence carbon-biodiversity relationships. Using a large dataset (>4600 heterotrophic species of 23 taxonomic groups) from secondary, subtropical forests, we tested how multitrophic diversity and diversity within trophic groups relate to aboveground, belowground, and total carbon stocks at different levels of tree species richness and stand age. Our study revealed that aboveground carbon, the key component of climate-based management, was largely unrelated to multitrophic diversity. By contrast, total carbon stocks-that is, including belowground carbon-emerged as a significant predictor of multitrophic diversity. Relationships were nonlinear and strongest for lower trophic levels, but nonsignificant for higher trophic level diversity. Tree species richness and stand age moderated these relationships, suggesting long-term regeneration of forests may be particularly effective in reconciling carbon and biodiversity targets. Our findings highlight that biodiversity benefits of climate-oriented management need to be evaluated carefully, and only maximizing aboveground carbon may fail to account for biodiversity conservation requirements.


Asunto(s)
Bosques , Árboles , Biodiversidad , Carbono , Clima
3.
J Anim Ecol ; 92(7): 1372-1387, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36748273

RESUMEN

Microhabitat differentiation of species communities such as vertical stratification in tropical forests contributes to species coexistence and thus biodiversity. However, little is known about how the extent of stratification changes during forest recovery and influences community reassembly. Environmental filtering determines community reassembly in time (succession) and in space (stratification), hence functional and phylogenetic composition of species communities are highly dynamic. It is poorly understood if and how these two concurrent filters-forest recovery and stratification-interact. In a tropical forest chronosequence in Ecuador spanning 34 years of natural recovery, we investigated the recovery trajectory of ant communities in three overlapping strata (ground, leaf litter, lower tree trunk) by quantifying 13 traits, as well as the functional and phylogenetic diversity of the ants. We expected that functional and phylogenetic diversity would increase with recovery time and that each ant community within each stratum would show a distinct functional reassembly. We predicted that traits related to ant diet would show divergent trajectories reflecting an increase in niche differentiation with recovery time. On the other hand, traits related to the abiotic environment were predicted to show convergent trajectories due to a more similar microclimate across strata with increasing recovery age. Most of the functional traits and the phylogenetic diversity of the ants were clearly stratified, confirming previous findings. However, neither functional nor phylogenetic diversity increased with recovery time. Community-weighted trait means had complex relationships to recovery time and the majority were shaped by a statistical interaction between recovery time and stratum, confirming our expectations. However, most trait trajectories converged among strata with increasing recovery time regardless of whether they were related to ant diet or environmental conditions. We confirm the hypothesized interaction among environmental filters during the functional reassembly in tropical forests. Communities in individual strata respond differently to recovery, and possible filter mechanisms likely arise from both abiotic (e.g. microclimate) and biotic (e.g. diet) conditions. Since vertical stratification is prevalent across animal and plant taxa, our results highlight the importance of stratum-specific analysis in dynamic ecosystems and may generalize beyond ants.


Asunto(s)
Hormigas , Ecosistema , Animales , Filogenia , Bosques , Biodiversidad
4.
Biol Lett ; 19(2): 20220500, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36789531

RESUMEN

Sparked by reports of insect declines of unexpected extent, there has been a surge in the compilation and analysis of insect time series data. While this effort has led to valuable databases, disagreement remains as to whether, where and why insects are declining. The 'why' question is particularly important because successful insect conservation will need to address the most important drivers of decline. Despite repeated calls for more long-term data, new time series will have to run for decades to quantitatively surpass those currently available. Here we argue that experimentation in addition to quantitative analysis of existing data is needed to identify the most important drivers of insect decline. While most potential drivers of insect population change are likely to have already been identified, their relative importance is largely unknown. Researchers should thus unite and use statistical insight to set up suitable experiments to be able to rank drivers by their importance. Such a coordinated effort is needed to produce the knowledge necessary for conservation action and will also result in increased monitoring and new time series.


Asunto(s)
Insectos , Proyectos de Investigación , Animales , Biodiversidad , Ecosistema
5.
Oecologia ; 202(2): 299-312, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37270722

RESUMEN

Forests canopy gaps play an important role in forest ecology by driving the forest mosaic cycle and creating conditions for rapid plant reproduction and growth. The availability of young plants, which represent resources for herbivores, and modified environmental conditions with greater availability of light and higher temperatures, promote the colonization of animals. Remarkably, the role of gaps on insect communities has received little attention and the source of insects colonizing gaps has not been studied comprehensively. Using a replicated full-factorial forest experiment (treatments: Gap; Gap + Deadwood; Deadwood; Control), we show that following gap creation, there is a rapid change in the true bug (Heteroptera) community structure, with an increase in species that are mainly recruited from open lands. Compared with closed-canopy treatments (Deadwood and Control), open canopy treatments (Gap and Gap + Deadwood) promoted an overall increase in species (+ 59.4%, estimated as number of species per plot) and individuals (+ 76.3%) of true bugs, mainly herbivores and species associated to herbaceous vegetation. Community composition also differed among treatments, and all 17 significant indicator species (out of 117 species in total) were associated with the open canopy treatments. Based on insect data collected in grasslands and forests over an 11-year period, we found that the species colonizing experimental gaps had greater body size and a greater preference for open vegetation. Our results indicate that animal communities that assemble following gap creation contain a high proportion of habitat generalists that not occurred in closed forests, contributing significantly to overall diversity in forest mosaics.


Asunto(s)
Ecosistema , Bosques , Animales , Ecología , Plantas , Árboles
6.
Ecol Appl ; 32(4): e2559, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35112764

RESUMEN

Regrowing secondary forests dominate tropical regions today, and a mechanistic understanding of their recovery dynamics provides important insights for conservation. In particular, land-use legacy effects on the fauna have rarely been investigated. One of the most ecologically dominant and functionally important animal groups in tropical forests are the ants. Here, we investigated the recovery of ant communities in a forest-agricultural habitat mosaic in the Ecuadorian Chocó region. We used a replicated chronosequence of previously used cacao plantations and pastures with 1-34 years of regeneration time to study the recovery dynamics of species communities and functional diversity across the two land-use legacies. We compared two independent components of responses on these community properties: resistance, which is measured as the proportion of an initial property that remains following the disturbance; and resilience, which is the rate of recovery relative to its loss. We found that compositional and trait structure similarity to old-growth forest communities increased with regeneration age, whereas ant species richness remained always at a high level along the chronosequence. Land-use legacies influenced species composition, with former cacao plantations showing higher resemblance to old-growth forests than former pastures along the chronosequence. While resistance was low for species composition and high for species richness and traits, all community properties had similarly high resilience. In essence, our results show that ant communities of the Chocó recovery rapidly, with former cacao reaching predicted old-growth forest community levels after 21 years and pastures after 29 years. Recovery in this community was faster than reported from other ecosystems and was likely facilitated by the low-intensity farming in agricultural sites and their proximity to old-growth forest remnants. Our study indicates the great recovery potential for this otherwise highly threatened biodiversity hotspot.


Asunto(s)
Hormigas , Agricultura , Animales , Hormigas/fisiología , Biodiversidad , Ecosistema , Bosques
7.
J Anim Ecol ; 91(10): 2113-2124, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35978526

RESUMEN

Ecosystem functioning may directly or indirectly-via change in biodiversity-respond to land use. Dung removal is an important ecosystem function central for the decomposition of mammal faeces, including secondary seed dispersal and improved soil quality. Removal usually increases with dung beetle diversity and biomass. In forests, dung removal can vary with structural variables that are, however, often interrelated, making experiments necessary to understand the role of single variables on ecosystem functions. How gaps and deadwood, two main outcomes of forest management influence dung removal, is unknown. We tested if dung removal responds to gap creation and deadwood provisioning or if treatment effects are mediated via responses of dung beetles. We expected lower removal rates in gaps due to lower dung beetle biomass and diversity. We sampled dung beetles and measured dung removal in a highly-replicated full-factorial forest experiment established at 29 sites in three regions of Germany (treatments: Gap, Gap + Deadwood, Deadwood, Control). All gaps were experimentally created and had a diameter of around 30 m. Dung beetle diversity, biomass and dung removal were each lower in gaps than in controls. Dung removal decreased from 61.9% in controls to 48.5% in gaps, irrespective of whether or not the gap had deadwood. This treatment effect was primarily driven by dung beetle biomass but not diversity. Furthermore, dung removal was reduced to 56.9% in the deadwood treatment. Our findings are not consistent with complementarity effects of different dung beetle species linked to biodiversity-ecosystem functioning relationships that have been shown in several ecosystems. In contrast, identity effects can be pronounced: gaps reduced the abundance of a large-bodied key forest species (Anoplotrupes stercorosus), without compensatory recruitment of open land species. While gaps and deadwood are important for many forest organisms, dung beetles and dung removal respond negatively. Our results exemplify how experiments can contribute to test hypotheses on the interrelation between land use, biodiversity and ecosystem functioning.


Asunto(s)
Escarabajos , Ecosistema , Animales , Biodiversidad , Escarabajos/fisiología , Heces , Bosques , Mamíferos , Suelo
8.
Biol Lett ; 18(4): 20210666, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35440233

RESUMEN

Temporal trends in insect numbers vary across studies and habitats, but drivers are poorly understood. Suitable long-term data are scant and biased, and interpretations of trends remain controversial. By contrast, there is substantial quantitative evidence for drivers of spatial variation. From observational and experimental studies, we have gained a profound understanding of where insect abundance and diversity is higher-and identified underlying environmental conditions, resource change and disturbances. We thus propose an increased consideration of spatial evidence in studying the causes of insect decline. This is because for most time series available today, the number of sites and thus statistical power strongly exceed the number of years studied. Comparisons across sites allow quantifying insect population risks, impacts of land use, habitat destruction, restoration or management, and stressors such as chemical and light pollution, pesticides, mowing or harvesting, climatic extremes or biological invasions. Notably, drivers may not have to change in intensity to have long-term effects on populations, e.g. annually repeated disturbances or mortality risks such as those arising from agricultural practices. Space-for-time substitution has been controversially debated. However, evidence from well-replicated spatial data can inform on urgent actions required to halt or reverse declines-to be implemented in space.


Asunto(s)
Biodiversidad , Insectos , Agricultura , Animales , Ecosistema
9.
Oecologia ; 196(1): 289-301, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33895883

RESUMEN

Plant diversity affects multi-trophic communities, but in young regrowth forests, where forest insects are in the process of re-establishment, other biotic and also abiotic factors might be more important. We studied cavity-nesting bees, wasps and their natural enemies along an experimental tree diversity gradient in subtropical South-East China. We compared insect communities of experimental young forests with communities of established natural forests nearby the experiment and tested for direct and indirect effects of tree diversity, tree basal area (a proxy of tree biomass), canopy cover and microclimate on bee and wasp community composition, abundance and species richness. Finally, we tested if the trophic levels of bees, herbivore-hunting wasps, spider-hunting wasps and their natural enemies respond similarly. Forest bee and wasp community composition re-established towards communities of the natural forest with increasing tree biomass and canopy cover. These factors directly and indirectly, via microclimatic conditions, increased the abundance of bees, wasps and their natural enemies. While bee and wasp species richness increased with abundance and both were not related to tree diversity, abundance increased directly with canopy cover, mediated by tree biomass. Abundance of natural enemies increased with host (bee and wasp) abundance irrespective of their trophic position. In conclusion, although maximizing tree diversity is an important goal of reforestation and forest conservation, rapid closure of canopies is also important for re-establishing communities of forest bees, wasps and their natural enemies.


Asunto(s)
Bosques , Microclima , Animales , Abejas , Biodiversidad , China , Ecosistema , Árboles
10.
Mol Ecol ; 29(14): 2747-2762, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32564434

RESUMEN

Declining plant diversity alters ecological networks, such as plant-herbivore interactions. However, our knowledge of the potential mechanisms underlying effects of plant species loss on plant-herbivore network structure is still limited. We used DNA barcoding to identify herbivore-host plant associations along declining levels of tree diversity in a large-scale, subtropical biodiversity experiment. We tested for effects of tree species richness, host functional and phylogenetic diversity, and host functional (leaf trait) and phylogenetic composition on species, phylogenetic and network composition of herbivore communities. We found that phylogenetic host composition and related palatability/defence traits but not tree species richness significantly affected herbivore communities and interaction network complexity at both the species and community levels. Our study indicates that evolutionary dependencies and functional traits of host plants determine the composition of higher trophic levels and corresponding interaction networks in species-rich ecosystems. Our findings highlight that characteristics of the species lost have effects on ecosystem structure and functioning across trophic levels that cannot be predicted from mere reductions in species richness.


Asunto(s)
Ecosistema , Herbivoria , Filogenia , Plantas/clasificación , Biodiversidad , Código de Barras del ADN Taxonómico , Plantas/genética , Árboles/clasificación , Árboles/genética
11.
J Anim Ecol ; 89(2): 299-308, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31562768

RESUMEN

Diversity of producers (e.g. plants) usually increases the diversity of associated organisms, but the scale (i.e. the spatial area of plant diversity considered) at which plant diversity acts on other taxa has rarely been studied. Most evidence for cross-taxon diversity relations come from above-ground consumers that directly interact with plants. Experimental tests of plant diversity effects on elusive organisms inhabiting the leaf litter layer, which are important for nutrient cycling and decomposition, are rare. Using a large tree diversity experiment, we tested whether tree diversity at the larger plot (i.e. community) or the smaller neighbourhood scale relates to the abundance, species richness, functional and phylogenetic diversity of leaf litter ants, which are dominant organisms in brown food webs. Contrary to our expectations of scale-independent positive tree diversity effects, ant diversity increased only with plot but not neighbourhood tree diversity. While the exact causal mechanisms are unclear, nest relocation or small-scale competition among ants may explain the stronger tree diversity effects at the plot scale. Our results indicate that even for small and less mobile organisms in the leaf litter, effects of tree diversity are stronger at relatively larger scales. The finding emphasizes the importance of diverse forest stands, in which mixing of tree species is not restricted to small patches, for supporting arthropod diversity in the leaf litter.


Asunto(s)
Hormigas/genética , Animales , Biodiversidad , Ecosistema , Bosques , Filogenia
12.
Oecologia ; 194(3): 465-480, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33079266

RESUMEN

Urban green spaces such as gardens often consist of native and exotic plant species, which provide pollen and nectar for flower-visiting insects. Although some exotic plants are readily visited by pollinators, it is unknown if and at which time of the season exotic garden plants may supplement or substitute for flower resources provided by native plants. To investigate if seasonal changes in flower availability from native vs. exotic plants affect flower visits, diversity and particularly plant-pollinator interaction networks, we studied flower-visiting insects over a whole growing season in 20 urban residential gardens in Germany. Over the course of the season, visits to native plants decreased, the proportion of flower visits to exotics increased, and flower-visitor species richness decreased. Yet, the decline in flower-visitor richness over the season was slowed in gardens with a relatively higher proportion of flowering exotic plants. This compensation was more positively linked to the proportion of exotic plant species than to the proportion of exotic flower cover. Plant-pollinator interaction networks were moderately specialized. Interactions were more complex in high summer, but interaction diversity, linkage density, and specialisation were not influenced by the proportion of exotic species. Thus, later in the season when few native plants flowered, exotic garden plants partly substituted for native flower resources without apparent influence on plant-pollinator network structure. Late-flowering garden plants support pollinator diversity in cities. If appropriately managed, and risk of naturalisation is minimized, late-flowering exotic plants may provide floral resources to support native pollinators when native plants are scarce.


Asunto(s)
Jardines , Polinización , Animales , Ciudades , Flores , Alemania , Plantas
13.
Proc Biol Sci ; 286(1898): 20182399, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30836869

RESUMEN

Multi-trophic interactions maintain critical ecosystem functions. Biodiversity is declining globally, while responses of trophic interactions to biodiversity change are largely unclear. Thus, studying responses of multi-trophic interaction robustness to biodiversity change is crucial for understanding ecosystem functioning and persistence. We investigate plant-Hemiptera (antagonism) and Hemiptera-ant (mutualism) interaction networks in response to experimental manipulation of tree diversity. We show increased diversity at both higher trophic levels (Hemiptera and ants) and increased robustness through redundancy of lower level species of multi-trophic interactions when tree diversity increased. Hemiptera and ant diversity increased with tree diversity through non-additive diversity effects. Network analyses identified that tree diversity also increased the number of tree and Hemiptera species used by Hemiptera and ant species, and decreased the specialization on lower trophic level species in both mutualistic and antagonist interactions. Our results demonstrate that bottom-up effects of tree diversity ascend through trophic levels regardless of interaction type. Thus, local tree diversity is a key driver of multi-trophic community diversity and interaction robustness in forests.


Asunto(s)
Hormigas/fisiología , Biodiversidad , Cadena Alimentaria , Hemípteros/fisiología , Simbiosis , Árboles/fisiología , Animales
14.
Proc Biol Sci ; 285(1885)2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30135164

RESUMEN

Forest ecosystems are an integral component of the global carbon cycle as they take up and release large amounts of C over short time periods (C flux) or accumulate it over longer time periods (C stock). However, there remains uncertainty about whether and in which direction C fluxes and in particular C stocks may differ between forests of high versus low species richness. Based on a comprehensive dataset derived from field-based measurements, we tested the effect of species richness (3-20 tree species) and stand age (22-116 years) on six compartments of above- and below-ground C stocks and four components of C fluxes in subtropical forests in southeast China. Across forest stands, total C stock was 149 ± 12 Mg ha-1 with richness explaining 28.5% and age explaining 29.4% of variation in this measure. Species-rich stands had higher C stocks and fluxes than stands with low richness; and, in addition, old stands had higher C stocks than young ones. Overall, for each additional tree species, the total C stock increased by 6.4%. Our results provide comprehensive evidence for diversity-mediated above- and below-ground C sequestration in species-rich subtropical forests in southeast China. Therefore, afforestation policies in this region and elsewhere should consider a change from the current focus on monocultures to multi-species plantations to increase C fixation and thus slow increasing atmospheric CO2 concentrations and global warming.


Asunto(s)
Biodiversidad , Secuestro de Carbono , Bosques , Árboles/fisiología , China , Factores de Tiempo
15.
Am Nat ; 190(3): 442-450, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28829637

RESUMEN

Extrafloral nectaries (EFNs) allow plants to engage in mutualisms with ants, preventing herbivory in exchange for food. EFNs occur scattered throughout the plant phylogeny and likely evolved independent from herbivore-created wounds subsequently visited by ants collecting leaked sap. Records of wound-feeding ants are, however, anecdotal. By surveying 38,000 trees from 40 species, we conducted the first quantitative ecological study of this overlooked behavior. Ant-wound interactions were widespread (0.5% of tree individuals) and occurred on 23 tree species. Interaction networks were opportunistic, closely resembling ant-EFN networks. Fagaceae, a family lacking EFNs, was strongly overrepresented. For Fagaceae, ant occurrence at wounds correlated with species-level leaf damage, potentially indicating that wounds may attract mutualistic ants, which supports the hypothesis of ant-tended wounds as precursors of ant-EFN mutualisms. Given that herbivore wounds are common, wound sap as a steadily available food source might further help to explain the overwhelming abundance of ants in (sub)tropical forest canopies.


Asunto(s)
Hormigas , Evolución Biológica , Herbivoria , Néctar de las Plantas , Animales , Fenómenos Fisiológicos de las Plantas , Plantas , Simbiosis
16.
Proc Biol Sci ; 284(1862)2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-28878067

RESUMEN

Interactions across trophic levels influence plant diversity effects on ecosystem functions, but the complexity of these interactions remains poorly explored. For example, the interplay between different interactions (e.g. mutualism, predation) might be an important moderator of biodiversity-ecosystem function relationships. We tested for relationships between trophobioses (facultative ant-hemipteran mutualism) and leaf chewer herbivory in a subtropical forest biodiversity experiment. We analysed trophobiosis and herbivory data of more than 10 000 trees along a tree species richness gradient. Against expectations, chewing damage was higher on trees with trophobioses. However, the net positive relationship between trophobioses and overall herbivory depended on tree species richness, being most pronounced at low richness. Our results point to indirect, positive effects of ant-tended sap suckers on leaf chewers, potentially by altering plant defences. Direct antagonistic relationships of trophobiotic ants and leaf-chewing herbivores-frequently reported to drive community-wide effects of trophobioses in other ecosystems-seemed less relevant. However, antagonistic interactions likely contributed to the attenuating effect of tree species richness, because trophobiotic ant and herbivore communities changed from monocultures to species-rich mixtures. Our findings, therefore, suggest that biodiversity loss might lead to complex changes in higher trophic level effects on ecosystem functions, mediated by both trophic and non-trophic interactions.


Asunto(s)
Hormigas , Biodiversidad , Hemípteros , Herbivoria , Árboles/clasificación , Animales , Bosques
17.
Proc Biol Sci ; 283(1834)2016 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-27383815

RESUMEN

Evidence from grassland experiments suggests that a plant community's phylogenetic diversity (PD) is a strong predictor of ecosystem processes, even stronger than species richness per se This has, however, never been extended to species-rich forests and host-parasitoid interactions. We used cavity-nesting Hymenoptera and their parasitoids collected in a subtropical forest as a model system to test whether hosts, parasitoids, and their interactions are influenced by tree PD and a comprehensive set of environmental variables, including tree species richness. Parasitism rate and parasitoid abundance were positively correlated with tree PD. All variables describing parasitoids decreased with elevation, and were, except parasitism rate, dependent on host abundance. Quantitative descriptors of host-parasitoid networks were independent of the environment. Our study indicates that host-parasitoid interactions in species-rich forests are related to the PD of the tree community, which influences parasitism rates through parasitoid abundance. We show that effects of tree community PD are much stronger than effects of tree species richness, can cascade to high trophic levels, and promote trophic interactions. As during habitat modification phylogenetic information is usually lost non-randomly, even species-rich habitats may not be able to continuously provide the ecosystem process parasitism if the evolutionarily most distinct plant lineages vanish.


Asunto(s)
Biodiversidad , Bosques , Himenópteros/parasitología , Filogenia , Árboles/clasificación , Animales , Interacciones Huésped-Parásitos
18.
Nat Commun ; 15(1): 1251, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341437

RESUMEN

Organismal functional strategies form a continuum from slow- to fast-growing organisms, in response to common drivers such as resource availability and disturbance. However, whether there is synchronisation of these strategies at the entire community level is unclear. Here, we combine trait data for >2800 above- and belowground taxa from 14 trophic guilds spanning a disturbance and resource availability gradient in German grasslands. The results indicate that most guilds consistently respond to these drivers through both direct and trophically mediated effects, resulting in a 'slow-fast' axis at the level of the entire community. Using 15 indicators of carbon and nutrient fluxes, biomass production and decomposition, we also show that fast trait communities are associated with faster rates of ecosystem functioning. These findings demonstrate that 'slow' and 'fast' strategies can be manifested at the level of whole communities, opening new avenues of ecosystem-level functional classification.


Asunto(s)
Biodiversidad , Ecosistema , Biomasa , Agricultura , Suelo
20.
Mol Ecol Resour ; 23(7): 1556-1573, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37265018

RESUMEN

The Holy Grail of an Insect Tree of Life can only be 'discovered' through extensive collaboration among taxon specialists, phylogeneticists and centralized frameworks such as Open Tree of Life, but insufficient effort from stakeholders has so far hampered this promising approach. The resultant unavailability of synthesis phylogenies is an unfortunate situation given the numerous practical usages of phylogenies in the near term and against the backdrop of the ongoing biodiversity crisis. To resolve this issue, we establish a new online hub that centralizes the collation of relevant phylogenetic data and provides the resultant synthesis molecular phylogenies. This is achieved through key developments in a proposed pipeline for the construction of a species-level insect phylogeny. The functionality of the framework is demonstrated through the construction of a highly supported, species-comprehensive phylogeny of Diptera, built from integrated omics data, COI DNA barcodes, and a compiled database of over 100 standardized, published Diptera phylogenies. Machine-readable forms of the phylogeny (and subsets thereof) are publicly available at insectphylo.org, a new public repository for species-comprehensive phylogenies for biological research.


Asunto(s)
Dípteros , Insectos , Animales , Filogenia , Insectos/genética , Dípteros/genética , ADN , Biodiversidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA