Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
BMC Plant Biol ; 24(1): 278, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609866

RESUMEN

BACKGROUND: The availability of soil phosphorus (P) often limits the productivities of wet tropical lowland forests. Little is known, however, about the metabolomic profile of different chemical P compounds with potentially different uses and about the cycling of P and their variability across space under different tree species in highly diverse tropical rainforests. RESULTS: We hypothesised that the different strategies of the competing tree species to retranslocate, mineralise, mobilise, and take up P from the soil would promote distinct soil 31P profiles. We tested this hypothesis by performing a metabolomic analysis of the soils in two rainforests in French Guiana using 31P nuclear magnetic resonance (NMR). We analysed 31P NMR chemical shifts in soil solutions of model P compounds, including inorganic phosphates, orthophosphate mono- and diesters, phosphonates, and organic polyphosphates. The identity of the tree species (growing above the soil samples) explained > 53% of the total variance of the 31P NMR metabolomic profiles of the soils, suggesting species-specific ecological niches and/or species-specific interactions with the soil microbiome and soil trophic web structure and functionality determining the use and production of P compounds. Differences at regional and topographic levels also explained some part of the the total variance of the 31P NMR profiles, although less than the influence of the tree species. Multivariate analyses of soil 31P NMR metabolomics data indicated higher soil concentrations of P biomolecules involved in the active use of P (nucleic acids and molecules involved with energy and anabolism) in soils with lower concentrations of total soil P and higher concentrations of P-storing biomolecules in soils with higher concentrations of total P. CONCLUSIONS: The results strongly suggest "niches" of soil P profiles associated with physical gradients, mostly topographic position, and with the specific distribution of species along this gradient, which is associated with species-specific strategies of soil P mineralisation, mobilisation, use, and uptake.


Asunto(s)
Microbiota , Fósforo , Bosque Lluvioso , Árboles , Guyana Francesa , Fosfatos , Suelo
2.
J Exp Bot ; 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613495

RESUMEN

Knowledge of the physiological mechanisms underlying species vulnerability to drought is critical to better understand patterns of tree mortality. Investigating plant adaptive strategies to drought should thus help to fill this knowledge gap, especially in tropical rainforests exhibiting high functional diversity. In a semi-controlled drought experiment on 12 rainforest tree species, we investigated the diversity in hydraulic strategies and whether they determined the ability of saplings to use stored non-structural carbohydrates during an extreme imposed drought. We further explored the importance of water- and carbon-use strategies in relation to drought-survival through a modelling approach. Hydraulic strategies varied considerably across species with a continuum between dehydration- tolerance and -avoidance. During dehydration leading to hydraulic failure and irrespective of hydraulic strategies, species showed strong declines in whole-plant starch concentrations and a maintenance or even an increase in soluble sugar concentrations potentially favouring osmotic adjustments. Residual water losses mediated the trade-off between time to hydraulic failure and growth, suggesting that it is linked to the 'fast-slow' continuum of plant performances and that dehydration avoidance is an effective drought-survival strategy at the sapling stage. Further investigations on residual water losses may be key to understanding the response of tropical rainforest tree communities to climate change.

3.
Glob Chang Biol ; 30(5): e17287, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38695768

RESUMEN

While droughts predominantly induce immediate reductions in plant carbon uptake, they can also exert long-lasting effects on carbon fluxes through associated changes in leaf area, soil carbon, etc. Among other mechanisms, shifts in carbon allocation due to water stress can contribute to the legacy effects of drought on carbon fluxes. However, the magnitude and impact of these allocation shifts on carbon fluxes and pools remain poorly understood. Using data from a wet tropical flux tower site in French Guiana, we demonstrate that drought-induced carbon allocation shifts can be reliably inferred by assimilating Net Biosphere Exchange (NBE) and other observations within the CARbon DAta MOdel fraMework. This model-data fusion system allows inference of optimized carbon and water cycle parameters and states from multiple observational data streams. We then examined how these inferred shifts affected the duration and magnitude of drought's impact on NBE during and after the extreme event. Compared to a static allocation scheme analogous to those typically implemented in land surface models, dynamic allocation reduced average carbon uptake during drought recovery by a factor of 2.8. Additionally, the dynamic model extended the average recovery time by 5 months. The inferred allocation shifts influenced the post-drought period by altering foliage and fine root pools, which in turn modulated gross primary productivity and heterotrophic respiration for up to a decade. These changes can create a bust-boom cycle where carbon uptake is enhanced some years after a drought, compared to what would have occurred under drought-free conditions. Overall, allocation shifts accounted for 65% [45%-75%] of drought legacy effects in modeled NBE. In summary, drought-induced carbon allocation shifts can play a substantial role in the enduring influence of drought on cumulative land-atmosphere CO2 exchanges and should be accounted for in ecosystem models.


Asunto(s)
Ciclo del Carbono , Sequías , Clima Tropical , Guyana Francesa , Bosques , Carbono/metabolismo , Modelos Teóricos
4.
New Phytol ; 239(2): 576-591, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37222272

RESUMEN

Water stress can cause declines in plant function that persist after rehydration. Recent work has defined 'resilience' traits characterizing leaf resistance to persistent damage from drought, but whether these traits predict resilience in whole-plant function is unknown. It is also unknown whether the coordination between resilience and 'resistance' - the ability to maintain function during drought - observed globally occurs within ecosystems. For eight rainforest species, we dehydrated and subsequently rehydrated leaves, and measured water stress thresholds for declines in rehydration capacity and maximum quantum yield of photosystem II (Fv /Fm ). We tested correlations with embolism resistance and dry season water potentials (ΨMD ), and calculated safety margins for damage (ΨMD - thresholds) and tested correlations with drought resilience in sap flow and growth. Ψ thresholds for persistent declines in Fv /Fm , indicating resilience, were positively correlated with ΨMD and thresholds for leaf vein embolism. Safety margins for persistent declines in Fv /Fm , but not rehydration capacity, were positively correlated with drought resilience in sap flow. Correlations between resistance and resilience suggest that species' differences in performance during drought are perpetuated after drought, potentially accelerating shifts in forest composition. Resilience to photochemical damage emerged as a promising functional trait to characterize whole-plant drought resilience.


Asunto(s)
Deshidratación , Bosque Lluvioso , Ecosistema , Sequías , Hojas de la Planta , Árboles
5.
Plant Physiol ; 190(1): 371-386, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-35567500

RESUMEN

Embolism spreading in xylem is an important component of plant drought resistance. Since embolism resistance has been shown to be mechanistically linked to pit membrane characters in stem xylem, we speculate that similar mechanisms account for leaf xylem. We conducted transmission electron microscopy to investigate pit membrane characters in leaf xylem across 18 Neotropical tree species. We also conducted gold perfusion and polar lipid detection experiments on three species covering the full range of leaf embolism resistance. We then related these observations to previously published data on embolism resistance of leaf xylem. We also incorporated previously published data on stem embolism resistance and stem xylem pit membranes to investigate the link between vulnerability segmentation (i.e. difference in embolism resistance) and leaf-stem anatomical variation. Maximum pit membrane thickness (Tpm,max) and the pit membrane thickness-to-diameter ratio (Tpm,max/Dpm) were predictive of leaf embolism resistance, especially when vestured pits were taken into account. Variation in Tpm,max/Dpm was the only trait predictive of vulnerability segmentation between leaves and stems. Gold particles of 5- and 10-nm infiltrated pit membranes in three species, while the entry of 50-nm particles was blocked. Moreover, polar lipids were associated with inner conduit walls and pits. Our results suggest that mechanisms related to embolism spreading are determined by Tpm, pore constrictions (i.e. the narrowest bottlenecks along pore pathways), and lipid surfactants, which are largely similar between leaf and stem xylem and between temperate and tropical trees. However, our mechanistic understanding of embolism propagation and the functional relevance of Tpm,max/Dpm remains elusive.


Asunto(s)
Embolia , Árboles , Sequías , Oro , Lípidos , Hojas de la Planta , Agua , Xilema
6.
New Phytol ; 229(3): 1453-1466, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32964439

RESUMEN

Drought-induced xylem embolism is considered to be one of the main factors driving mortality in woody plants worldwide. Although several structure-functional mechanisms have been tested to understand the anatomical determinants of embolism resistance, there is a need to study this topic by integrating anatomical data for many species. We combined optical, laser, and transmission electron microscopy to investigate vessel diameter, vessel grouping, and pit membrane ultrastructure for 26 tropical rainforest tree species across three major clades (magnoliids, rosiids, and asteriids). We then related these anatomical observations to previously published data on drought-induced embolism resistance, with phylogenetic analyses. Vessel diameter, vessel grouping, and pit membrane ultrastructure were all predictive of xylem embolism resistance, but with weak predictive power. While pit membrane thickness was a predictive trait when vestured pits were taken into account, the pit membrane diameter-to-thickness ratio suggests a strong importance of the deflection resistance of the pit membrane. However, phylogenetic analyses weakly support adaptive coevolution. Our results emphasize the functional significance of pit membranes for air-seeding in tropical rainforest trees, highlighting also the need to study their mechanical properties due to the link between embolism resistance and pit membrane diameter-to-thickness ratio. Finding support for adaptive coevolution also remains challenging.


Asunto(s)
Embolia , Madera , Sequías , Filogenia , Agua , Xilema
7.
New Phytol ; 230(6): 2487-2500, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33738819

RESUMEN

Tree stems and soils can act as sources and sinks for the greenhouse gases (GHG) carbon dioxide (CO2 ), methane (CH4 ), and nitrous oxide (N2 O). Since both uptake and emission capacities can be large, especially in tropical rainforests, accurate assessments of the magnitudes and temporal variations of stem and soil GHG fluxes are required. We designed a new flexible stem chamber system for continuously measuring GHG fluxes in a French Guianese rainforest. Here, we describe this new system, which is connected to an automated soil GHG flux system, and discuss measurement uncertainty and potential error sources. In line with findings for soil GHG flux estimates, we demonstrated that lengthening the stem chamber closure time was required for accurate estimates of tree stem CH4 and N2 O flux but not tree stem CO2 flux. The instrumented stem was a net source of CO2 and CH4 and a weak sink of N2 O. Our experimental setup operated successfully in situ and provided continuous tree and soil GHG measurements at a high temporal resolution over an 11-month period. This automated system is a major step forward in the measurement of GHG fluxes in stems and the atmosphere concurrently with soil GHG fluxes in tropical forest ecosystems.


Asunto(s)
Gases de Efecto Invernadero , Dióxido de Carbono , Ecosistema , Metano/análisis , Óxido Nitroso , Suelo , Árboles
8.
J Exp Bot ; 72(22): 7957-7969, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34390333

RESUMEN

The leaf size-stem size spectrum is one of the main dimensions of plant ecological strategies. Yet the anatomical, mechanical, and hydraulic implications of small versus large shoots are still poorly understood. We investigated 42 tropical rainforest tree species in French Guiana, with a wide range of leaf areas at the shoot level. We quantified the scaling of hydraulic and mechanical constraints with shoot size, estimated as the water potential difference (ΔΨ) and the bending angle (ΔΦ), respectively. We investigated how anatomical tissue area, flexural stiffness and xylem vascular architecture affect such scaling by deviating (or not) from theoretical isometry with shoot size variation. Vessel diameter and conductive path length were found to be allometrically related to shoot size, thereby explaining the independence between ΔΨ and shoot size. Leaf mass per area, stem length, and the modulus of elasticity were allometrically related to shoot size, explaining the independence between ΔΦ and shoot size. Our study also shows that the maintenance of both water supply and mechanical stability across the shoot size range are not in conflict.


Asunto(s)
Hojas de la Planta , Árboles , Brotes de la Planta , Agua , Xilema
9.
New Phytol ; 226(2): 385-395, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31872884

RESUMEN

Soil water and nutrient availability are key drivers of tree species distribution and forest ecosystem functioning, with strong species differences in water and nutrient use. Despite growing evidence for intraspecific trait differences, it remains unclear under which circumstances the effects of environmental gradients trump those of ontogeny and taxonomy on important functional dimensions related to resource use, particularly in tropical forests. Here, we explore how physiological, chemical, and morphological traits related to resource use vary between life stages in four species within the genus Micropholis that is widespread in lowland Amazonia. Specifically, we evaluate how environment, developmental stage, and taxonomy contribute to single-trait variation and multidimensional functional strategies. We find that environment, developmental stage, and taxonomy differentially contribute to functional dimensions. Habitats and seasons shape physiological and chemical traits related to water and nutrient use, whereas developmental stage and taxonomic identity impact morphological traits -especially those related to the leaf economics spectrum. Our findings suggest that combining environment, ontogeny, and taxonomy allows for a better understanding of important functional dimensions in tropical trees and highlights the need for integrating tree physiological and chemical traits with classically used morphological traits to improve predictions of tropical forests' responses to environmental change.


Asunto(s)
Ecosistema , Árboles , Bosques , Hojas de la Planta , Suelo , Clima Tropical
10.
New Phytol ; 228(2): 512-524, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32496575

RESUMEN

Hydraulic segmentation at the stem-leaf transition predicts higher hydraulic resistance in leaves than in stems. Vulnerability segmentation, however, predicts lower embolism resistance in leaves. Both mechanisms should theoretically favour runaway embolism in leaves to preserve expensive organs such as stems, and should be tested for any potential coordination. We investigated the theoretical leaf-specific conductivity based on an anatomical approach to quantify the degree of hydraulic segmentation across 21 tropical rainforest tree species. Xylem resistance to embolism in stems (flow-centrifugation technique) and leaves (optical visualization method) was quantified to assess vulnerability segmentation. We found a pervasive hydraulic segmentation across species, but with a strong variability in the degree of segmentation. Despite a clear continuum in the degree of vulnerability segmentation, eight species showed a positive vulnerability segmentation (leaves less resistant to embolism than stems), whereas the remaining species studied exhibited a negative or no vulnerability segmentation. The degree of vulnerability segmentation was positively related to the degree of hydraulic segmentation, such that segmented species promote both mechanisms to hydraulically decouple leaf xylem from stem xylem. To what extent hydraulic and vulnerability segmentation determine drought resistance requires further integration of the leaf-stem transition at the whole-plant level, including both xylem and outer xylem tissue.


Asunto(s)
Árboles , Xilema , Sequías , Hojas de la Planta , Tallos de la Planta , Bosque Lluvioso , Agua
11.
Physiol Plant ; 170(4): 488-507, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32623731

RESUMEN

Studying the response to drought stress of keystone epiphytes such as tank bromeliads is essential to better understand their resistance capacity to future climate change. The objective was to test whether there is any variation in the carbon, water and nutrient status among different leaf ontogenetic stages in a bromeliad rosette subjected to a gradient of drought stress. We used a semi-controlled experiment consisting in a gradient of water shortage in Aechmea aquilega and Lutheria splendens. For each bromeliad and drought treatment, three leaves were collected based on their position in the rosette and several functional traits related to water and nutrient status, and carbon metabolism were measured. We found that water status traits (relative water content, leaf succulence, osmotic and midday water potentials) and carbon metabolism traits (carbon assimilation, maximum quantum yield of photosystem II, chlorophyll and starch contents) decreased with increasing drought stress, while leaf soluble sugars and carbon, nitrogen and phosphorus contents remained unchanged. The different leaf ontogenetic stages showed only marginal variations when subjected to a gradient of drought. Resources were not reallocated between different leaf ontogenetic stages but we found a reallocation of soluble sugars from leaf starch reserves to the root system. Both species were capable of metabolic and physiological adjustments in response to drought. Overall, this study advances our understanding of the resistance of bromeliads faced with increasing drought stress and paves the way for in-depth reflection on their strategies to cope with water shortage.


Asunto(s)
Bromeliaceae , Sequías , Bromeliaceae/metabolismo , Clorofila/metabolismo , Nitrógeno , Fotosíntesis , Hojas de la Planta/metabolismo , Agua
12.
Molecules ; 25(17)2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32877991

RESUMEN

Productivity of tropical lowland moist forests is often limited by availability and functional allocation of phosphorus (P) that drives competition among tree species and becomes a key factor in determining forestall community diversity. We used non-target 31P-NMR metabolic profiling to study the foliar P-metabolism of trees of a French Guiana rainforest. The objective was to test the hypotheses that P-use is species-specific, and that species diversity relates to species P-use and concentrations of P-containing compounds, including inorganic phosphates, orthophosphate monoesters and diesters, phosphonates and organic polyphosphates. We found that tree species explained the 59% of variance in 31P-NMR metabolite profiling of leaves. A principal component analysis showed that tree species were separated along PC 1 and PC 2 of detected P-containing compounds, which represented a continuum going from high concentrations of metabolites related to non-active P and P-storage, low total P concentrations and high N:P ratios, to high concentrations of P-containing metabolites related to energy and anabolic metabolism, high total P concentrations and low N:P ratios. These results highlight the species-specific use of P and the existence of species-specific P-use niches that are driven by the distinct species-specific position in a continuum in the P-allocation from P-storage compounds to P-containing molecules related to energy and anabolic metabolism.


Asunto(s)
Metaboloma , Metabolómica , Fósforo/metabolismo , Bosque Lluvioso , Árboles/metabolismo , Guyana Francesa , Hojas de la Planta/metabolismo , Especificidad de la Especie
13.
Proc Biol Sci ; 286(1910): 20191300, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31480974

RESUMEN

Soil fauna is a key control of the decomposition rate of leaf litter, yet its interactions with litter quality and the soil environment remain elusive. We conducted a litter decomposition experiment across different topographic levels within the landscape replicated in two rainforest sites providing natural gradients in soil fertility to test the hypothesis that low nutrient availability in litter and soil increases the strength of fauna control over litter decomposition. We crossed these data with a large dataset of 44 variables characterizing the biotic and abiotic microenvironment of each sampling point and found that microbe-driven carbon (C) and nitrogen (N) losses from leaf litter were 10.1 and 17.9% lower, respectively, in the nutrient-poorest site, but this among-site difference was equalized when meso- and macrofauna had access to the litterbags. Further, on average, soil fauna enhanced the rate of litter decomposition by 22.6%, and this contribution consistently increased as nutrient availability in the microenvironment declined. Our results indicate that nutrient scarcity increases the importance of soil fauna on C and N cycling in tropical rainforests. Further, soil fauna is able to equalize differences in microbial decomposition potential, thus buffering to a remarkable extent nutrient shortages at an ecosystem level.


Asunto(s)
Bosque Lluvioso , Animales , Carbono , Nitrógeno , Hojas de la Planta , Suelo/química
14.
Glob Chang Biol ; 25(1): 39-56, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30406962

RESUMEN

Most of the planet's diversity is concentrated in the tropics, which includes many regions undergoing rapid climate change. Yet, while climate-induced biodiversity changes are widely documented elsewhere, few studies have addressed this issue for lowland tropical ecosystems. Here we investigate whether the floristic and functional composition of intact lowland Amazonian forests have been changing by evaluating records from 106 long-term inventory plots spanning 30 years. We analyse three traits that have been hypothesized to respond to different environmental drivers (increase in moisture stress and atmospheric CO2 concentrations): maximum tree size, biogeographic water-deficit affiliation and wood density. Tree communities have become increasingly dominated by large-statured taxa, but to date there has been no detectable change in mean wood density or water deficit affiliation at the community level, despite most forest plots having experienced an intensification of the dry season. However, among newly recruited trees, dry-affiliated genera have become more abundant, while the mortality of wet-affiliated genera has increased in those plots where the dry season has intensified most. Thus, a slow shift to a more dry-affiliated Amazonia is underway, with changes in compositional dynamics (recruits and mortality) consistent with climate-change drivers, but yet to significantly impact whole-community composition. The Amazon observational record suggests that the increase in atmospheric CO2 is driving a shift within tree communities to large-statured species and that climate changes to date will impact forest composition, but long generation times of tropical trees mean that biodiversity change is lagging behind climate change.


Asunto(s)
Biodiversidad , Cambio Climático , Bosques , Brasil , Dióxido de Carbono , Ecosistema , Estaciones del Año , Árboles/clasificación , Árboles/fisiología , Clima Tropical , Agua
15.
Oecologia ; 191(3): 519-530, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31541317

RESUMEN

Transpiration in humid tropical forests modulates the global water cycle and is a key driver of climate regulation. Yet, our understanding of how tropical trees regulate sap flux in response to climate variability remains elusive. With a progressively warming climate, atmospheric evaporative demand [i.e., vapor pressure deficit (VPD)] will be increasingly important for plant functioning, becoming the major control of plant water use in the twenty-first century. Using measurements in 34 tree species at seven sites across a precipitation gradient in the neotropics, we determined how the maximum sap flux velocity (vmax) and the VPD threshold at which vmax is reached (VPDmax) vary with precipitation regime [mean annual precipitation (MAP); seasonal drought intensity (PDRY)] and two functional traits related to foliar and wood economics spectra [leaf mass per area (LMA); wood specific gravity (WSG)]. We show that, even though vmax is highly variable within sites, it follows a negative trend in response to increasing MAP and PDRY across sites. LMA and WSG exerted little effect on vmax and VPDmax, suggesting that these widely used functional traits provide limited explanatory power of dynamic plant responses to environmental variation within hyper-diverse forests. This study demonstrates that long-term precipitation plays an important role in the sap flux response of humid tropical forests to VPD. Our findings suggest that under higher evaporative demand, trees growing in wetter environments in humid tropical regions may be subjected to reduced water exchange with the atmosphere relative to trees growing in drier climates.


Asunto(s)
Transpiración de Plantas , Árboles , Sequías , Bosques , Presión de Vapor , Agua
16.
Glob Chang Biol ; 23(8): 3382-3392, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27966250

RESUMEN

Amazonian forests continuously accumulate carbon (C) in biomass and in soil, representing a carbon sink of 0.42-0.65 GtC yr-1 . In recent decades, more than 15% of Amazonian forests have been converted into pastures, resulting in net C emissions (~200 tC ha-1 ) due to biomass burning and litter mineralization in the first years after deforestation. However, little is known about the capacity of tropical pastures to restore a C sink. Our study shows in French Amazonia that the C storage observed in native forest can be partly restored in old (≥24 year) tropical pastures managed with a low stocking rate (±1 LSU ha-1 ) and without the use of fire since their establishment. A unique combination of a large chronosequence study and eddy covariance measurements showed that pastures stored between -1.27 ± 0.37 and -5.31 ± 2.08 tC ha-1  yr-1 while the nearby native forest stored -3.31 ± 0.44 tC ha-1  yr-1 . This carbon is mainly sequestered in the humus of deep soil layers (20-100 cm), whereas no C storage was observed in the 0- to 20-cm layer. C storage in C4 tropical pasture is associated with the installation and development of C3 species, which increase either the input of N to the ecosystem or the C:N ratio of soil organic matter. Efforts to curb deforestation remain an obvious priority to preserve forest C stocks and biodiversity. However, our results show that if sustainable management is applied in tropical pastures coming from deforestation (avoiding fires and overgrazing, using a grazing rotation plan and a mixture of C3 and C4 species), they can ensure a continuous C storage, thereby adding to the current C sink of Amazonian forests.


Asunto(s)
Secuestro de Carbono , Bosques , Suelo/química , Biomasa , Brasil , Carbono , Árboles
17.
Glob Chang Biol ; 20(3): 979-91, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23996917

RESUMEN

The relative contribution of gross primary production and ecosystem respiration to seasonal changes in the net carbon flux of tropical forests remains poorly quantified by both modelling and field studies. We use data assimilation to combine nine ecological time series from an eastern Amazonian forest, with mass balance constraints from an ecosystem carbon cycle model. The resulting analysis quantifies, with uncertainty estimates, the seasonal changes in the net carbon flux of a tropical rainforest which experiences a pronounced dry season. We show that the carbon accumulation in this forest was four times greater in the dry season than in the wet season and that this was accompanied by a 5% increase in the carbon use efficiency. This seasonal response was caused by a dry season increase in gross primary productivity, in response to radiation and a similar magnitude decrease in heterotrophic respiration, in response to drying soils. The analysis also predicts increased carbon allocation to leaves and wood in the wet season, and greater allocation to fine roots in the dry season. This study demonstrates implementation of seasonal variations in parameters better enables models to simulate observed patterns in data. In particular, we highlight the necessity to simulate the seasonal patterns of heterotrophic respiration to accurately simulate the net carbon flux seasonal tropical forest.


Asunto(s)
Ciclo del Carbono , Modelos Teóricos , Árboles , Estaciones del Año , Suelo/química , Clima Tropical , Agua/análisis
19.
Oecologia ; 173(4): 1191-201, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23852028

RESUMEN

Though the root biomass of tropical rainforest trees is concentrated in the upper soil layers, soil water uptake by deep roots has been shown to contribute to tree transpiration. A precise evaluation of the relationship between tree dimensions and depth of water uptake would be useful in tree-based modelling approaches designed to anticipate the response of tropical rainforest ecosystems to future changes in environmental conditions. We used an innovative dual-isotope labelling approach (deuterium in surface soil and oxygen at 120-cm depth) coupled with a modelling approach to investigate the role of tree dimensions in soil water uptake in a tropical rainforest exposed to seasonal drought. We studied 65 trees of varying diameter and height and with a wide range of predawn leaf water potential (Ψpd) values. We confirmed that about half of the studied trees relied on soil water below 100-cm depth during dry periods. Ψpd was negatively correlated with depth of water extraction and can be taken as a rough proxy of this depth. Some trees showed considerable plasticity in their depth of water uptake, exhibiting an efficient adaptive strategy for water and nutrient resource acquisition. We did not find a strong relationship between tree dimensions and depth of water uptake. While tall trees preferentially extract water from layers below 100-cm depth, shorter trees show broad variations in mean depth of water uptake. This precludes the use of tree dimensions to parameterize functional models.


Asunto(s)
Raíces de Plantas/fisiología , Suelo , Árboles/fisiología , Agua , Biomasa , Deuterio/análisis , Sequías , Ecosistema , Guyana Francesa , Modelos Teóricos , Isótopos de Oxígeno/análisis , Hojas de la Planta/fisiología , Transpiración de Plantas/fisiología , Estaciones del Año , Xilema/fisiología
20.
Ecology ; 104(11): e4118, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37282712

RESUMEN

Biogeochemical niche (BN) hypothesis aims to relate species/genotype elemental composition with its niche based on the fact that different elements are involved differentially in distinct plant functions. We here test the BN hypothesis through the analysis of the 10 foliar elemental concentrations and 20 functional-morphological of 60 tree species in a French Guiana tropical forest. We observed strong legacy (phylogenic + species) signals in the species-specific foliar elemental composition (elementome) and, for the first time, provide empirical evidence for a relationship between species-specific foliar elementome and functional traits. Our study thus supports the BN hypothesis and confirms the general niche segregation process through which the species-specific use of bio-elements drives the high levels of α-diversity in this tropical forest. We show that the simple analysis of foliar elementomes may be used to test for BNs of co-occurring species in highly diverse ecosystems, such as tropical rainforests. Although cause and effect mechanisms of leaf functional and morphological traits in species-specific use of bio-elements require confirmation, we posit the hypothesis that divergences in functional-morphological niches and species-specific biogeochemical use are likely to have co-evolved.


Asunto(s)
Ecosistema , Árboles , Bosque Lluvioso , Guyana Francesa , Clima Tropical , Hojas de la Planta/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA