Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 79(1): 61, 2022 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-34999972

RESUMEN

Apical localization of Intercellular Adhesion Receptor (ICAM)-1 regulates the adhesion and guidance of leukocytes across polarized epithelial barriers. Here, we investigate the molecular mechanisms that determine ICAM-1 localization into apical membrane domains of polarized hepatic epithelial cells, and their effect on lymphocyte-hepatic epithelial cell interaction. We had previously shown that segregation of ICAM-1 into apical membrane domains, which form bile canaliculi and bile ducts in hepatic epithelial cells, requires basolateral-to-apical transcytosis. Searching for protein machinery potentially involved in ICAM-1 polarization we found that the SNARE-associated protein plasmolipin (PLLP) is expressed in the subapical compartment of hepatic epithelial cells in vitro and in vivo. BioID analysis of ICAM-1 revealed proximal interaction between this adhesion receptor and PLLP. ICAM-1 colocalized and interacted with PLLP during the transcytosis of the receptor. PLLP gene editing and silencing increased the basolateral localization and reduced the apical confinement of ICAM-1 without affecting apicobasal polarity of hepatic epithelial cells, indicating that ICAM-1 transcytosis is specifically impaired in the absence of PLLP. Importantly, PLLP depletion was sufficient to increase T-cell adhesion to hepatic epithelial cells. Such an increase depended on the epithelial cell polarity and ICAM-1 expression, showing that the epithelial transcytotic machinery regulates the adhesion of lymphocytes to polarized epithelial cells. Our findings strongly suggest that the polarized intracellular transport of adhesion receptors constitutes a new regulatory layer of the epithelial inflammatory response.


Asunto(s)
Adhesión Celular/fisiología , Células Epiteliales/metabolismo , Hepatocitos/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito/metabolismo , Linfocitos T/metabolismo , Línea Celular Tumoral , Células Hep G2 , Humanos , Hígado/metabolismo , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito/genética , Transcitosis/fisiología
2.
PLoS Negl Trop Dis ; 9(3): e0003666, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25826250

RESUMEN

BACKGROUND: Visceral leishmaniasis (VL) is hypoendemic in the Mediterranean region, where it is caused by the protozoan Leishmania infantum. An effective vaccine for humans is not yet available and the severe side-effects of the drugs in clinical use, linked to the parenteral administration route of most of them, are significant concerns of the current leishmanicidal medicines. New drugs are desperately needed to treat VL and phenotype-based High Throughput Screenings (HTS) appear to be suitable to achieve this goal in the coming years. METHODOLOGY/PRINCIPAL FINDINGS: We generated two infrared fluorescent L. infantum strains, which stably overexpress the IFP 1.4 and iRFP reporter genes and performed comparative studies of their biophotonic properties at both promastigote and amastigote stages. To improve the fluorescence emission of the selected reporter in intracellular amastigotes, we engineered distinct constructs by introducing regulatory sequences of differentially-expressed genes (A2, AMASTIN and HSP70 II). The final strain that carries the iRFP gene under the control of the L. infantum HSP70 II downstream region (DSR), was employed to perform a phenotypic screening of a collection of small molecules by using ex vivo splenocytes from infrared-infected BALB/c mice. In order to further investigate the usefulness of this infrared strain, we monitored an in vivo infection by imaging BALB/c mice in a time-course study of 20 weeks. CONCLUSIONS/SIGNIFICANCE: The near-infrared fluorescent L. infantum strain represents an important step forward in bioimaging research of VL, providing a robust model of phenotypic screening suitable for HTS of small molecule collections in the mammalian parasite stage. Additionally, HSP70 II+L. infantum strain permitted for the first time to monitor an in vivo infection of VL. This finding accelerates the possibility of testing new drugs in preclinical in vivo studies, thus supporting the urgent and challenging drug discovery program against this parasitic disease.


Asunto(s)
Modelos Animales de Enfermedad , Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Rayos Infrarrojos , Leishmania infantum/genética , Leishmaniasis Visceral/tratamiento farmacológico , Imagen Óptica/métodos , Animales , Femenino , Regulación de la Expresión Génica/genética , Genes Reporteros/genética , Humanos , Ratones , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA