Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 74(4): 713-728.e6, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-30981631

RESUMEN

Repeat expansion in the C9orf72 gene is the most common cause of the neurodegenerative disorder amyotrophic lateral sclerosis (C9-ALS) and is linked to the unconventional translation of five dipeptide-repeat polypeptides (DPRs). The two enriched in arginine, poly(GR) and poly(PR), infiltrate liquid-like nucleoli, co-localize with the nucleolar protein nucleophosmin (NPM1), and alter the phase separation behavior of NPM1 in vitro. Here, we show that poly(PR) DPRs bind tightly to a long acidic tract within the intrinsically disordered region of NPM1, altering its phase separation with nucleolar partners to the extreme of forming large, soluble complexes that cause droplet dissolution in vitro. In cells, poly(PR) DPRs disperse NPM1 from nucleoli and entrap rRNA in static condensates in a DPR-length-dependent manner. We propose that R-rich DPR toxicity involves disrupting the role of phase separation by NPM1 in organizing ribosomal proteins and RNAs within the nucleolus.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Proteínas Nucleares/genética , Secuencias Repetitivas de Aminoácido/genética , Esclerosis Amiotrófica Lateral/patología , Arginina/genética , Nucléolo Celular/química , Nucléolo Celular/genética , Dipéptidos/genética , Humanos , Nucleofosmina , Péptidos/genética , Poli A/genética , ARN Ribosómico/genética
2.
Circ Res ; 132(7): 812-827, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-36876485

RESUMEN

BACKGROUND: The rupture of atherosclerotic plaque contributes significantly to cardiovascular disease. Plasma concentrations of bilirubin-a byproduct of heme catabolism-inversely associate with risk of cardiovascular disease, although the link between bilirubin and atherosclerosis remains unclear. METHODS: To assess the role of bilirubin in atherosclerotic plaque stability, we crossed Bvra-/- with Apoe-/- mice and used the tandem stenosis model of plaque instability. Human coronary arteries were obtained from heart transplant recipients. Analysis of bile pigments, heme metabolism, and proteomics were performed by liquid chromatography tandem mass spectrometry. MPO (myeloperoxidase) activity was determined by in vivo molecular magnetic resonance imaging, liquid chromatography tandem mass spectrometry analysis, and immunohistochemical determination of chlorotyrosine. Systemic oxidative stress was evaluated by plasma concentrations of lipid hydroperoxides and the redox status of circulating Prx2 (peroxiredoxin 2), whereas arterial function was assessed by wire myography. Atherosclerosis and arterial remodeling were quantified by morphometry and plaque stability by fibrous cap thickness, lipid accumulation, infiltration of inflammatory cells, and the presence of intraplaque hemorrhage. RESULTS: Compared with Bvra+/+Apoe-/- tandem stenosis littermates, Bvra-/-Apoe-/- tandem stenosis mice were deficient in bilirubin, showed signs of increased systemic oxidative stress, endothelial dysfunction, as well as hyperlipidemia, and had a higher atherosclerotic plaque burden. Heme metabolism was increased in unstable compared with stable plaque of both Bvra+/+Apoe-/- and Bvra-/-Apoe-/- tandem stenosis mice and in human coronary plaques. In mice, Bvra deletion selectively destabilized unstable plaque, characterized by positive arterial remodeling and increased cap thinning, intraplaque hemorrhage, infiltration of neutrophils, and MPO activity. Proteomic analysis confirmed Bvra deletion enhanced extracellular matrix degradation, recruitment and activation of neutrophils, and associated oxidative stress in unstable plaque. CONCLUSIONS: Bilirubin deficiency, resulting from global Bvra deletion, generates a proatherogenic phenotype and selectively enhances neutrophil-mediated inflammation and destabilization of unstable plaque, thereby providing a link between bilirubin and cardiovascular disease risk.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Placa Aterosclerótica , Humanos , Animales , Ratones , Placa Aterosclerótica/patología , Bilirrubina , Constricción Patológica , Proteómica , Aterosclerosis/metabolismo , Antioxidantes , Hemorragia , Hemo , Apolipoproteínas E , Lípidos , Modelos Animales de Enfermedad
3.
Nature ; 566(7745): 548-552, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30760924

RESUMEN

Singlet molecular oxygen (1O2) has well-established roles in photosynthetic plants, bacteria and fungi1-3, but not in mammals. Chemically generated 1O2 oxidizes the amino acid tryptophan to precursors of a key metabolite called N-formylkynurenine4, whereas enzymatic oxidation of tryptophan to N-formylkynurenine is catalysed by a family of dioxygenases, including indoleamine 2,3-dioxygenase 15. Under inflammatory conditions, this haem-containing enzyme is expressed in arterial endothelial cells, where it contributes to the regulation of blood pressure6. However, whether indoleamine 2,3-dioxygenase 1 forms 1O2 and whether this contributes to blood pressure control have remained unknown. Here we show that arterial indoleamine 2,3-dioxygenase 1 regulates blood pressure via formation of 1O2. We observed that in the presence of hydrogen peroxide, the enzyme generates 1O2 and that this is associated with the stereoselective oxidation of L-tryptophan to a tricyclic hydroperoxide via a previously unrecognized oxidative activation of the dioxygenase activity. The tryptophan-derived hydroperoxide acts in vivo as a signalling molecule, inducing arterial relaxation and decreasing blood pressure; this activity is dependent on Cys42 of protein kinase G1α. Our findings demonstrate a pathophysiological role for 1O2 in mammals through formation of an amino acid-derived hydroperoxide that regulates vascular tone and blood pressure under inflammatory conditions.


Asunto(s)
Presión Sanguínea/fisiología , Inflamación/sangre , Inflamación/fisiopatología , Oxígeno Singlete/metabolismo , Vasodilatadores/metabolismo , Animales , Línea Celular , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/antagonistas & inhibidores , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/química , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Cisteína/metabolismo , Activación Enzimática/efectos de los fármacos , Femenino , Humanos , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/química , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Inflamación/enzimología , Masculino , Oxidación-Reducción/efectos de los fármacos , Ratas , Transducción de Señal , Oxígeno Singlete/química , Triptófano/química , Triptófano/metabolismo
4.
Trop Med Int Health ; 29(6): 499-506, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38584312

RESUMEN

OBJECTIVES: A lumbar puncture (LP) procedure plays a key role in meningitis diagnosis. In Malawi and other sub-Saharan African countries, LP completion rates are sometimes poor, making meningitis surveillance challenging. Our objective was to measure LP rates following an intervention to improve these during a sentinel hospital meningitis surveillance exercise in Malawi. METHODS: We conducted a before/after intervention analysis among under-five children admitted to paediatric wards at four secondary health facilities in Malawi. We used local and World Health Organization (WHO) guidelines to determine indications for LP, as these are widely used in low- and middle-income countries (LMIC). The intervention comprised of refresher trainings for facility staff on LP indications and procedure, use of automated reminders to perform LP in real time in the wards, with an electronic data management system, and addition of surveillance-specific clinical officers to support existing health facility staff with performing LPs. Due to the low numbers in the before/after analysis, we also performed a during/after analysis to supplement the findings. RESULTS: A total of 13,375 under-five children were hospitalised over the 21 months window for this analysis. The LP rate was 10.4% (12/115) and 60.4% (32/53) in the before/after analysis, respectively, and 43.8% (441/1006) and 72.5% (424/599) in the supplemental during/after analysis, respectively. In our intervention-specific analysis among the three individual components, there were improvements in the LP rate by 48% (p < 0.001) following the introduction of surveillance-specific clinical officers, 10% (p < 0.001) following the introduction of automated reminders to perform an LP and 13% following refresher training. CONCLUSIONS: This analysis demonstrated a rise in LP rates following our intervention. This intervention package may be considered for planning future facility-based meningitis surveillances in similar low-resource settings.


Asunto(s)
Meningitis , Punción Espinal , Humanos , Malaui/epidemiología , Punción Espinal/métodos , Lactante , Preescolar , Meningitis/diagnóstico , Meningitis/epidemiología , Masculino , Femenino , Instituciones de Salud , Recién Nacido , Vigilancia de Guardia
5.
Malar J ; 22(1): 246, 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37633902

RESUMEN

BACKGROUND: In Malawi, malaria is responsible for 40% of hospital deaths. Prompt diagnosis and effective treatment within 24 h of fever onset is critical to prevent progression from uncomplicated to severe disease and to reduce transmission. METHODS: As part of the large evaluation of the malaria vaccine implementation programme (MVIP), this study analysed survey data to investigate whether prompt treatment-seeking behaviour is clustered at community-level according to socio-economic demographics. RESULTS: From 4563 households included in the survey, 4856 children aged 5-48 months were enrolled. Out of 4732 children with documented gender, 52.2% were female and 47.8% male. Among the 4856 children, 33.8% reported fever in the two weeks prior to the survey. Fever prevalence was high in communities with low socio-economic status (SES) (38.3% [95% CI: 33.7-43.5%]) and low in areas with high SES (29.8% [95% CI: 25.6-34.2%]). Among children with fever, 648 (39.5%) sought treatment promptly i.e., within 24 h from onset of fever symptoms. Children were more likely to be taken for prompt treatment among guardians with secondary education compared to those without formal education (aOR:1.37, 95% CI: 1.11-3.03); in communities with high compared to low SES [aOR: 2.78, 95% CI: 1.27-6.07]. Children were less likely to be taken for prompt treatment if were in communities far beyond 5 km to health facility than within 5 km [aOR: 0.44, 95% CI: 0.21-0.92]. CONCLUSION: The high heterogeneity in prevalence of fever and levels of prompt treatment-seeking behaviour underscore the need to promote community-level malaria control interventions (such as use of long-lasting insecticide-treated nets (LLINs), indoor residual spraying (IRS), intermittent preventive therapy (IPT), presumptive treatment and education). Programmes aimed at improving treatment-seeking behaviour should consider targeting communities with low SES and those far from health facility.


Asunto(s)
Vacunas contra la Malaria , Malaria , Desnutrición , Humanos , Niño , Femenino , Masculino , Malaui/epidemiología , Malaria/tratamiento farmacológico , Malaria/epidemiología , Malaria/prevención & control , Escolaridad , Fiebre/epidemiología
6.
Am J Respir Crit Care Med ; 205(9): 1093-1101, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35081010

RESUMEN

Rationale: Pleural effusion commonly complicates community-acquired pneumonia and is associated with intense pleural inflammation. Whether antiinflammatory treatment with corticosteroids improves outcomes is unknown. Objectives: To assess the effects of corticosteroids in an adult population with pneumonia-related pleural effusion. Methods: The STOPPE (Steroid Therapy and Outcome of Parapneumonic Pleural Effusions) trial was a pilot, multicenter, double-blinded, placebo-controlled, randomized trial involving six Australian centers. Patients with community-acquired pneumonia and pleural effusion were randomized (2:1) to intravenous dexamethasone (4 mg twice daily for 48 h) or placebo and followed for 30 days. Given the diverse effects of corticosteroids, a comprehensive range of clinical, serological, and imaging outcomes were assessed in this pilot trial (ACTRN12618000947202). Measurements and Main Results: Eighty patients were randomized (one withdrawn before treatment) and received dexamethasone (n = 51) or placebo (n = 28). This pilot trial found no preliminary evidence of benefits of dexamethasone in improving time to sustained (>12 h) normalization of vital signs (temperature, oxygen saturations, blood pressure, heart, and respiratory rates): median, 41.0 (95% confidence interval, 32.3-54.5) versus 27.8 (15.4-49.5) hours in the placebo arm (hazard ratio, 0.729 [95% confidence interval, 0.453-1.173]; P = 0.193). Similarly, no differences in C-reactive protein or leukocyte counts were observed, except for a higher leukocyte count in the dexamethasone group at Day 3. Pleural drainage procedures were performed in 49.0% of dexamethasone-treated and 42.9% of placebo-treated patients (P = 0.60). Radiographic pleural opacification decreased over time with no consistent intergroup differences. Mean duration of antibiotic therapy (22.4 [SD, 15.4] vs. 20.4 [SD, 13.8] d) and median hospitalization (6.0 [interquartile range, 5.0-10.0] vs. 5.5 [interquartile range, 5.0-8.0] d) were similar between the dexamethasone and placebo groups. Serious adverse events occurred in 25.5% of dexamethasone-treated and 21.4% of placebo-treated patients. Transient hyperglycemia more commonly affected the dexamethasone group (15.6% vs. 7.1%). Conclusions: Systemic corticosteroids showed no preliminary benefits in adults with parapneumonic effusions. Clinical trial registered with www.anzctr.org.au (ACTRN12618000947202).


Asunto(s)
Infecciones Comunitarias Adquiridas , Derrame Pleural , Neumonía , Corticoesteroides/uso terapéutico , Adulto , Australia , Infecciones Comunitarias Adquiridas/complicaciones , Infecciones Comunitarias Adquiridas/tratamiento farmacológico , Dexametasona/uso terapéutico , Humanos , Proyectos Piloto , Derrame Pleural/tratamiento farmacológico , Neumonía/complicaciones , Esteroides/uso terapéutico
7.
Proc Natl Acad Sci U S A ; 117(39): 24258-24268, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32913056

RESUMEN

The small GTPase KRAS is localized at the plasma membrane where it functions as a molecular switch, coupling extracellular growth factor stimulation to intracellular signaling networks. In this process, KRAS recruits effectors, such as RAF kinase, to the plasma membrane where they are activated by a series of complex molecular steps. Defining the membrane-bound state of KRAS is fundamental to understanding the activation of RAF kinase and in evaluating novel therapeutic opportunities for the inhibition of oncogenic KRAS-mediated signaling. We combined multiple biophysical measurements and computational methodologies to generate a consensus model for authentically processed, membrane-anchored KRAS. In contrast to the two membrane-proximal conformations previously reported, we identify a third significantly populated state using a combination of neutron reflectivity, fast photochemical oxidation of proteins (FPOP), and NMR. In this highly populated state, which we refer to as "membrane-distal" and estimate to comprise ∼90% of the ensemble, the G-domain does not directly contact the membrane but is tethered via its C-terminal hypervariable region and carboxymethylated farnesyl moiety, as shown by FPOP. Subsequent interaction of the RAF1 RAS binding domain with KRAS does not significantly change G-domain configurations on the membrane but affects their relative populations. Overall, our results are consistent with a directional fly-casting mechanism for KRAS, in which the membrane-distal state of the G-domain can effectively recruit RAF kinase from the cytoplasm for activation at the membrane.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Quinasas raf/metabolismo , Membrana Celular/metabolismo , Simulación de Dinámica Molecular
8.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38139267

RESUMEN

Peripheral artery disease (PAD) is caused by blocked arteries due to atherosclerosis and/or thrombosis which reduce blood flow to the lower limbs. It results in major morbidity, including ischemic limb, claudication, and amputation, with patients also suffering a heightened risk of heart attack, stroke, and death. Recent studies suggest women have a higher prevalence of PAD than men, and with worse outcomes after intervention. In addition to a potential unconscious bias faced by women with PAD in the health system, with underdiagnosis, and lower rates of guideline-based therapy, fundamental biological differences between men and women may be important. In this review, we highlight sexual dimorphisms in endothelial cell functions and how they may impact PAD pathophysiology in women. Understanding sex-specific mechanisms in PAD is essential for the development of new therapies and personalized care for patients with PAD.


Asunto(s)
Aterosclerosis , Enfermedad Arterial Periférica , Masculino , Humanos , Femenino , Enfermedad Arterial Periférica/terapia , Extremidad Inferior/irrigación sanguínea , Claudicación Intermitente , Células Endoteliales , Factores de Riesgo
9.
Biophys J ; 121(10): 1799-1812, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35443926

RESUMEN

Precursor molecules for biomass incorporation must be imported into cells and made available to the molecular machines that build the cell. Sulfur-containing macromolecules require that sulfur be in its S2- oxidation state before assimilation into amino acids, cofactors, and vitamins that are essential to organisms throughout the biosphere. In α-proteobacteria, NADPH-dependent assimilatory sulfite reductase (SiR) performs the final six-electron reduction of sulfur. SiR is a dodecameric oxidoreductase composed of an octameric flavoprotein reductase (SiRFP) and four hemoprotein metalloenzyme oxidases (SiRHPs). SiR performs the electron transfer reduction reaction to produce sulfide from sulfite through coordinated domain movements and subunit interactions without release of partially reduced intermediates. Efforts to understand the electron transfer mechanism responsible for SiR's efficiency are confounded by structural heterogeneity arising from intrinsically disordered regions throughout its complex, including the flexible linker joining SiRFP's flavin-binding domains. As a result, high-resolution structures of SiR dodecamer and its subcomplexes are unknown, leaving a gap in the fundamental understanding of how SiR performs this uniquely large-volume electron transfer reaction. Here, we use deuterium labeling, in vitro reconstitution, analytical ultracentrifugation (AUC), small-angle neutron scattering (SANS), and neutron contrast variation (NCV) to observe the relative subunit positions within SiR's higher-order assembly. AUC and SANS reveal SiR to be a flexible dodecamer and confirm the mismatched SiRFP and SiRHP subunit stoichiometry. NCV shows that the complex is asymmetric, with SiRHP on the periphery of the complex and the centers of mass between SiRFP and SiRHP components over 100 Å apart. SiRFP undergoes compaction upon assembly into SiR's dodecamer and SiRHP adopts multiple positions in the complex. The resulting map of SiR's higher-order structure supports a cis/trans mechanism for electron transfer between domains of reductase subunits as well as between tightly bound or transiently interacting reductase and oxidase subunits.


Asunto(s)
Neutrones , Oxidorreductasas , NADP/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Sulfito Reductasa (NADPH)/química , Sulfito Reductasa (NADPH)/metabolismo , Azufre
10.
Nucleic Acids Res ; 48(1): 200-211, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31665475

RESUMEN

Escherichia coli replication initiator protein DnaA binds ATP with high affinity but the amount of ATP required to initiate replication greatly exceeds the amount required for binding. Previously, we showed that ATP-DnaA, not ADP-DnaA, undergoes a conformational change at the higher nucleotide concentration, which allows DnaA oligomerization at the replication origin but the association state remains unclear. Here, we used Small Angle X-ray Scattering (SAXS) to investigate oligomerization of DnaA in solution. Whereas ADP-DnaA was predominantly monomeric, AMP-PNP-DnaA (a non-hydrolysable ATP-analog bound-DnaA) was oligomeric, primarily dimeric. Functional studies using DnaA mutants revealed that DnaA(H136Q) is defective in initiating replication in vivo. The mutant retains high-affinity ATP binding, but was defective in producing replication-competent initiation complexes. Docking of ATP on a structure of E. coli DnaA, modeled upon the crystallographic structure of Aquifex aeolicus DnaA, predicts a hydrogen bond between ATP and imidazole ring of His136, which is disrupted when Gln is present at position 136. SAXS performed on AMP-PNP-DnaA (H136Q) indicates that the protein has lost its ability to form oligomers. These results show the importance of high ATP in DnaA oligomerization and its dependence on the His136 residue.


Asunto(s)
Adenosina Difosfato/química , Adenosina Trifosfato/química , Proteínas Bacterianas/química , Replicación del ADN , ADN Bacteriano/genética , Proteínas de Unión al ADN/química , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Adenilil Imidodifosfato/química , Adenilil Imidodifosfato/metabolismo , Aquifex , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cromosomas Bacterianos/química , Cromosomas Bacterianos/metabolismo , Cristalografía por Rayos X , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dimerización , Escherichia coli/metabolismo , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Mutación , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Origen de Réplica , Termodinámica
11.
Proc Natl Acad Sci U S A ; 116(43): 21545-21555, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31591245

RESUMEN

The cadherin-catenin adhesion complex is the central component of the cell-cell adhesion adherens junctions that transmit mechanical stress from cell to cell. We have determined the nanoscale structure of the adherens junction complex formed by the α-catenin•ß-catenin•epithelial cadherin cytoplasmic domain (ABE) using negative stain electron microscopy, small-angle X-ray scattering, and selective deuteration/small-angle neutron scattering. The ABE complex is highly pliable and displays a wide spectrum of flexible structures that are facilitated by protein-domain motions in α- and ß-catenin. Moreover, the 107-residue intrinsically disordered N-terminal segment of ß-catenin forms a flexible "tongue" that is inserted into α-catenin and participates in the assembly of the ABE complex. The unanticipated ensemble of flexible conformations of the ABE complex suggests a dynamic mechanism for sensitivity and reversibility when transducing mechanical signals, in addition to the catch/slip bond behavior displayed by the ABE complex under mechanical tension. Our results provide mechanistic insight into the structural dynamics for the cadherin-catenin adhesion complex in mechanotransduction.


Asunto(s)
Cadherinas/química , Cadherinas/metabolismo , Mecanotransducción Celular , alfa Catenina/química , alfa Catenina/metabolismo , beta Catenina/química , beta Catenina/metabolismo , Uniones Adherentes/química , Uniones Adherentes/genética , Uniones Adherentes/metabolismo , Secuencias de Aminoácidos , Cadherinas/genética , Humanos , Conformación Molecular , Unión Proteica , Dominios Proteicos , Dispersión del Ángulo Pequeño , alfa Catenina/genética , beta Catenina/genética
12.
J Struct Biol ; 213(2): 107724, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33722582

RESUMEN

Sulfite reductase (SiR), a dodecameric complex of flavoprotein reductase subunits (SiRFP) and hemoprotein oxidase subunits (SiRHP), reduces sulfur for biomass incorporation. Electron transfer within SiR requires intra- and inter-subunit interactions that are mediated by the relative position of each protein, governed by flexible domain movements. Using small-angle neutron scattering, we report the first solution structures of SiR heterodimers containing a single copy of each subunit. These structures show how the subunits bind and how both subunit binding and oxidation state impact SiRFP's conformation. Neutron contrast matching experiments on selectively deuterated heterodimers allow us to define the contribution of each subunit to the solution scattering. SiRHP binding induces a change in the position of SiRFP's flavodoxin-like domain relative to its ferredoxin-NADP+ reductase domain while compacting SiRHP's N-terminus. Reduction of SiRFP leads to a more open structure relative to its oxidized state, re-positioning SiRFP's N-terminal flavodoxin-like domain towards the SiRHP binding position. These structures show, for the first time, how both SiRHP binding to, and reduction of, SiRFP positions SiRFP for electron transfer between the subunits.


Asunto(s)
Sulfito Reductasa (NADPH)/química , Sulfito Reductasa (NADPH)/metabolismo , Ferredoxinas/metabolismo , Modelos Moleculares , Difracción de Neutrones , Oxidación-Reducción , Dominios Proteicos , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Dispersión del Ángulo Pequeño , Soluciones , Solventes/química , Ultracentrifugación/métodos
13.
J Biol Chem ; 295(4): 1105-1119, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31836666

RESUMEN

Neurofibromin is a tumor suppressor encoded by the NF1 gene, which is mutated in Rasopathy disease neurofibromatosis type I. Defects in NF1 lead to aberrant signaling through the RAS-mitogen-activated protein kinase pathway due to disruption of the neurofibromin GTPase-activating function on RAS family small GTPases. Very little is known about the function of most of the neurofibromin protein; to date, biochemical and structural data exist only for its GAP domain and a region containing a Sec-PH motif. To better understand the role of this large protein, here we carried out a series of biochemical and biophysical experiments, including size-exclusion chromatography-multiangle light scattering (SEC-MALS), small-angle X-ray and neutron scattering, and analytical ultracentrifugation, indicating that full-length neurofibromin forms a high-affinity dimer. We observed that neurofibromin dimerization also occurs in human cells and likely has biological and clinical implications. Analysis of purified full-length and truncated neurofibromin variants by negative-stain EM revealed the overall architecture of the dimer and predicted the potential interactions that contribute to the dimer interface. We could reconstitute structures resembling high-affinity full-length dimers by mixing N- and C-terminal protein domains in vitro The reconstituted neurofibromin was capable of GTPase activation in vitro, and co-expression of the two domains in human cells effectively recapitulated the activity of full-length neurofibromin. Taken together, these results suggest how neurofibromin dimers might form and be stabilized within the cell.


Asunto(s)
Neurofibromina 1/química , Neurofibromina 1/metabolismo , Multimerización de Proteína , Células HEK293 , Humanos , Neurofibromina 1/ultraestructura , Dominios Proteicos , Relación Estructura-Actividad , Proteínas Activadoras de ras GTPasa/metabolismo
14.
Int J Cancer ; 149(2): 371-377, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33687746

RESUMEN

Malawi has the highest invasive cervical cancer (ICC) mortality rate worldwide, and ICC is the leading cause of cancer death among women. In 2004, Malawi adopted visual inspection with acetic acid (VIA) and ablative treatment with cryotherapy. However, screening coverage has remained low (<30%) and few women (<50%) who require ablative treatment receive it. Additional barriers include long distances to health facilities and challenges with maintaining gas supplies. Thermal ablation is a safe and effective alternative to cryotherapy. We assessed the safety and uptake of community-based ICC screening with VIA and same-day treatment using a handheld thermocoagulator (HTU) in rural Malawi. We held educational talks alongside community leaders and conducted VIA screening in nonclinic community settings to nonpregnant women aged 25 to 49 years without history of hysterectomy or genital cancer/precancer. Eligible women received same-day thermal ablation and HIV testing/counseling. We collected cervical biopsies before treatment and followed up women at Weeks 6 and 12, with repeat biopsy at Week 12. Between July and August 2017, 408 (88%) of 463 eligible women underwent VIA. Overall, 7% (n = 30) of women had a positive VIA, of whom 93% (n = 28) underwent same-day thermal ablation. Among the 30 VIA-positive women, 5 had cervical intraepithelial neoplasia (CIN) 1, 4 had CIN 2/3 and 21 had benign histologic findings. Abnormal vaginal discharge (60%) and light vaginal bleeding (52%) were the most reported adverse events. There was high uptake of the community-based ICC screening in the study population and treatment was safe in this setting. Similar strategies that minimize false-positive results are urgently needed in Malawi.


Asunto(s)
Ácido Acético/administración & dosificación , Hipertermia Inducida/métodos , Displasia del Cuello del Útero/terapia , Neoplasias del Cuello Uterino/terapia , Adulto , Detección Precoz del Cáncer , Femenino , Humanos , Hipertermia Inducida/efectos adversos , Malaui , Tamizaje Masivo , Persona de Mediana Edad , Población Rural
15.
Curr Opin Nephrol Hypertens ; 30(2): 145-150, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33427761

RESUMEN

PURPOSE OF REVIEW: The principle aim of this review is to prompt vascular researchers interested in vascular inflammation and oxidative stress to consider singlet molecular oxygen (1O2) as a potentially relevant contributor. A secondary goal is to propose novel treatment strategies to address haemodynamic complications associated with septic shock. RECENT FINDINGS: Increased inflammation and oxidative stress are hallmarks of a range of vascular diseases. We recently showed that in systemic inflammation and oxidative stress associated with models of inflammation including sepsis, the tryptophan catabolizing enzyme indoleamine 2,3-dioxygenase-1 (Ido1) contributes to hypotension and decreased blood pressure through production of singlet molecular oxygen (1O2). Once formed, 1O2 converts tryptophan bound to Ido1 to a vasoactive hydroperoxide which decreases arterial tone and blood pressure via oxidation of a specific cysteine residue of protein kinase G1α. SUMMARY: These works show, for the first time, that 1O2 contributes to arterial redox signalling and that Ido1 contributes to the regulation of blood pressure through production of a novel tryptophan-derived hydroperoxide, thus presenting a new signalling pathway as novel target in the treatment of blood pressure disorders such as sepsis.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa , Oxígeno Singlete , Presión Sanguínea , Humanos , Inflamación , Oxígeno
16.
BMC Infect Dis ; 21(1): 132, 2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33516174

RESUMEN

BACKGROUND: Correct knowledge about transmission of tuberculosis (TB) can influence better health-seeking behaviors, and in turn, it can aid TB prevention in society. Therefore, this study aimed to examine the prevalence and predictors of self-reported correct knowledge about TB transmission among adults in Malawi. METHODS: We conducted a secondary analysis of the data obtained from the Malawi Demographic and Health Survey, 2015/16 (MDHS 2015/16). Questions regarding self-reported TB transmission were computed to evaluate the correct knowledge about TB transmission. The factors associated with the correct knowledge about Tb were assessed using univariate and multivariable logistic regression. RESULTS: Overall, the prevalence of correct knowledge about TB transmission in the general population of Malawian adults was 61.5%. Specifically, the prevalence of correct knowledge about TB transmission was 63.6 and 60.8% in men and women, respectively. Those aged 35-44 years, having secondary or high education, belonging to the richest household, being exposed to mass media, being in professional/technical/managerial, having knowledge that "TB can be cured", and those living in urban areas were significantly associated with correct knowledge about TB transmission. CONCLUSIONS: The findings of this study show that if appropriate strategies for TB communication and education to address the rural masses, young individuals, poor individuals, and individuals in the agriculture sector are put it place, can enhance TB prevention in Malawi.


Asunto(s)
Conocimientos, Actitudes y Práctica en Salud , Alfabetización en Salud , Autoinforme , Tuberculosis/transmisión , Adolescente , Adulto , Escolaridad , Composición Familiar , Femenino , Alfabetización en Salud/normas , Alfabetización en Salud/estadística & datos numéricos , Humanos , Malaui/epidemiología , Masculino , Persona de Mediana Edad , Prevalencia , Población Rural/estadística & datos numéricos , Autoinforme/normas , Autoinforme/estadística & datos numéricos , Factores Socioeconómicos , Encuestas y Cuestionarios , Tuberculosis/epidemiología , Adulto Joven
17.
J Biol Chem ; 294(29): 11297-11310, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31171716

RESUMEN

The Na+/H+ exchange regulatory cofactor 1 (NHERF1) protein modulates the assembly and intracellular trafficking of several transmembrane G protein-coupled receptors (GPCRs) and ion transport proteins with the membrane-cytoskeleton adapter protein ezrin. Here, we applied solution NMR and small-angle neutron scattering (SANS) to structurally characterize full-length NHERF1 and disease-associated variants that are implicated in impaired phosphate homeostasis. Using NMR, we mapped the modular architecture of NHERF1, which is composed of two structurally-independent PDZ domains that are connected by a flexible, disordered linker. We observed that the ultra-long and disordered C-terminal tail of NHERF1 has a type 1 PDZ-binding motif that interacts weakly with the proximal, second PDZ domain to form a dynamically autoinhibited structure. Using ensemble-optimized analysis of SANS data, we extracted the molecular size distribution of structures from the extensive conformational space sampled by the flexible chain. Our results revealed that NHERF1 is a diffuse ensemble of variable PDZ domain configurations and a disordered C-terminal tail. The joint NMR/SANS data analyses of three disease variants (L110V, R153Q, and E225K) revealed significant differences in the local PDZ domain structures and in the global conformations compared with the WT protein. Furthermore, we show that the substitutions affect the affinity and kinetics of NHERF1 binding to ezrin and to a C-terminal peptide from G protein-coupled receptor kinase 6A (GRK6A). These findings provide important insight into the modulation of the intrinsic flexibility of NHERF1 by disease-associated point mutations that alter the dynamic assembly of signaling complexes.


Asunto(s)
Fosfoproteínas/metabolismo , Transducción de Señal , Intercambiadores de Sodio-Hidrógeno/metabolismo , Humanos , Cinética , Mutación , Resonancia Magnética Nuclear Biomolecular , Dominios PDZ , Fosfoproteínas/química , Unión Proteica , Estructura Secundaria de Proteína , Intercambiadores de Sodio-Hidrógeno/química , Resonancia por Plasmón de Superficie
18.
PLoS Biol ; 15(5): e2002214, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28542493

RESUMEN

Examining the fundamental structure and processes of living cells at the nanoscale poses a unique analytical challenge, as cells are dynamic, chemically diverse, and fragile. A case in point is the cell membrane, which is too small to be seen directly with optical microscopy and provides little observational contrast for other methods. As a consequence, nanoscale characterization of the membrane has been performed ex vivo or in the presence of exogenous labels used to enhance contrast and impart specificity. Here, we introduce an isotopic labeling strategy in the gram-positive bacterium Bacillus subtilis to investigate the nanoscale structure and organization of its plasma membrane in vivo. Through genetic and chemical manipulation of the organism, we labeled the cell and its membrane independently with specific amounts of hydrogen (H) and deuterium (D). These isotopes have different neutron scattering properties without altering the chemical composition of the cells. From neutron scattering spectra, we confirmed that the B. subtilis cell membrane is lamellar and determined that its average hydrophobic thickness is 24.3 ± 0.9 Ångstroms (Å). Furthermore, by creating neutron contrast within the plane of the membrane using a mixture of H- and D-fatty acids, we detected lateral features smaller than 40 nm that are consistent with the notion of lipid rafts. These experiments-performed under biologically relevant conditions-answer long-standing questions in membrane biology and illustrate a fundamentally new approach for systematic in vivo investigations of cell membrane structure.


Asunto(s)
Bacillus subtilis/metabolismo , Membrana Celular/metabolismo , Ácidos Grasos/metabolismo , Membrana Dobles de Lípidos/metabolismo , Microdominios de Membrana/metabolismo , Modelos Biológicos , Algoritmos , Bacillus subtilis/química , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Cerulenina/farmacología , Deuterio , Enoil-CoA Hidratasa/genética , Enoil-CoA Hidratasa/metabolismo , Inhibidores de la Síntesis de Ácidos Grasos/farmacología , Ácidos Grasos/química , Eliminación de Gen , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos/química , Microdominios de Membrana/química , Microdominios de Membrana/efectos de los fármacos , Viabilidad Microbiana/efectos de los fármacos , Difracción de Neutrones , Ácidos Palmíticos/química , Ácidos Palmíticos/metabolismo , Dispersión del Ángulo Pequeño , Estereoisomerismo
19.
Biomacromolecules ; 21(10): 4053-4062, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-32820901

RESUMEN

Phytoglycogen is a highly branched polymer of glucose produced as soft, compact nanoparticles by sweet corn. Properties such as softness, porosity, and mechanical integrity, combined with nontoxicity and biodegradability, make phytoglycogen nanoparticles ideal for applications involving the human body, ranging from skin moisturizing and rejuvenation agents in personal care formulations to functional therapeutics in biomedicine. To further broaden the range of applications, phytoglycogen nanoparticles can be chemically modified with hydrophobic species such as octenyl succinic anhydride (OSA). Here, we present a self-consistent model of the particle structure, water content, and degree of chemical modification of the particles, as well as the emergence of well-defined interparticle spacings in concentrated dispersions, based on small-angle neutron scattering (SANS) measurements of aqueous dispersions of native phytoglycogen nanoparticles and particles that were hydrophobically modified using octenyl succinic anhydride (OSA) in both its protiated (pOSA) and deuterated (dOSA) forms. Measurements on native particles with reduced polydispersity have allowed us to refine the particle morphology, which is well described by a hairy particle (core-chain) geometry with short chains decorating the surface of the particles. The isotopic variants of OSA-modified particles enhanced the scattering contrast for neutrons, revealing lightly modified hairy chains for small degrees of substitution (DS) of OSA, and a raspberry particle geometry for the largest DS value, where the OSA-modified hairy chains collapse to form small seeds on the surface of the particles. This refined model of native and OSA-modified phytoglycogen nanoparticles establishes a quantitative basis for the development of new applications of this promising sustainable nanotechnology.


Asunto(s)
Nanopartículas , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Almidón , Agua
20.
Arterioscler Thromb Vasc Biol ; 39(7): 1448-1457, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31043077

RESUMEN

Objective- Inflammation-driven endothelial dysfunction initiates and contributes to the progression of atherosclerosis, and MPO (myeloperoxidase) has been implicated as a potential culprit. On release by circulating phagocytes, MPO is thought to contribute to endothelial dysfunction by limiting NO bioavailability via formation of reactive oxidants including hypochlorous acid. However, it remains largely untested whether specific pharmacological inhibition of MPO attenuates endothelial dysfunction. We, therefore, tested the ability of a mechanism-based MPO inhibitor, AZM198, to inhibit endothelial dysfunction in models of vascular inflammation. Approach and Results- Three models of inflammation were used: femoral cuff, the tandem stenosis model of plaque rupture in Apoe-/- mice, and C57BL/6J mice fed a high-fat, high-carbohydrate diet as a model of insulin resistance. Endothelial dysfunction was observed in all 3 models, and oral administration of AZM198 significantly improved endothelial function in the femoral cuff and tandem stenosis models only. Improvement in endothelial function was associated with decreased arterial MPO activity, determined by the in vivo conversion of hydroethidine to 2-chloroethidium, without affecting circulating inflammatory cytokines or arterial MPO content. Mechanistic studies in Mpo-/- mice confirmed the contribution of MPO to endothelial dysfunction and revealed oxidation of sGC (soluble guanylyl cyclase) as the underlying cause of the observed limited NO bioavailability. Conclusions- Pharmacological inhibition of MPO is a potential strategy to limit endothelial dysfunction in vascular inflammation. Visual Overview- An online visual overview is available for this article.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Células Endoteliales/efectos de los fármacos , Inflamación/tratamiento farmacológico , Peroxidasa/antagonistas & inhibidores , Enfermedades Vasculares/tratamiento farmacológico , Animales , Apolipoproteínas E/fisiología , Aterosclerosis/fisiopatología , Modelos Animales de Enfermedad , Células Endoteliales/fisiología , Inhibidores Enzimáticos/farmacología , Inflamación/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Peroxidasa/fisiología , Enfermedades Vasculares/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA